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We consider an optomechanical quantum system composed of a single cavity mode interacting with N
mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size
and shape, including the so-called cluster states for universal quantum computation. The main feature of this
scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of

freedom rather than in the radiative ones. Specifically, via a 2/N-tone drive, we engineer a linear Hamiltonian
which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme
is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards
quantum state engineering for continuous-variable computation in a solid-state platform.
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I. INTRODUCTION

Recent experimental advances have shown that various
types of mechanical oscillators can operate deeply in the
quantum regime [1-3], promoting these systems to interesting
candidates for quantum technologies. In particular, different
cooling techniques have succeeded in bringing these oscil-
lators close to their ground state [4-9], whereas the ability
to realize a coherent radiation-pressure interaction between
electromagnetic and mechanical degrees of freedom has
allowed for the realization of genuine quantum processes, such
as quantum state transfer [10] and the generation of squeez-
ing [11-13] and entanglement [14]. These achievements,
together with the possibility to scale up the number of involved
oscillators [15-18], pave the way for more advanced quantum
information applications such as the engineering of quantum
dissipation [19], quantum many-body simulators [20-22], and
quantum information processing in general [23,24].

In this context, Schimidt et al. [24] have proposed a plat-
form, based on the linearized radiation-pressure interaction,
to implement general Gaussian operations [25-27] between
multiple mechanical oscillators. The implementation of such
a platform would represent a first step towards the realization
of the circuit model of universal quantum computation over
continuous variables [28,29]. However, a valid alternative
approach to quantum computation is constituted by the so-
called measurement-based model [30]. The latter allows one to
perform general processing of quantum information over con-
tinuous variables [31] provided a massively entangled state—
dubbed cluster state—is used as a resource and additional
measurements are locally performed over its constituents. De-
spite the limitations of finite squeezing [32,33], this approach
has been proven to be fault tolerant [34] and, as a matter of fact,
much effort has been devoted towards the generation of cluster
states of light, culminating with the experimental realization
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of states composed of a high number of modes (up to 10 000)
both in the time [35] and frequency [36,37] domain. However,
specific schemes for the generation of cluster states involving
massive degrees of freedoms, rather than radiative ones, are
still lacking—despite some theoretical framework generically
suitable for their implementation has been proposed [38,39].
The main advantage of this type of cluster states is that,
being hosted in stationary or solid-state based architectures,
they offer a promising path towards integrated and scalable
quantum technologies.

In order to bridge this gap, the aim of the present
work is to introduce a scheme to generate continuous-
variable cluster states of mechanical oscillators. We propose a
scheme for generating graph states [40] of arbitrary size and
shape (including cluster states) whose nodes are embodied by
the mechanical modes of an optomechanical system. The graph
states are obtained by properly engineering both the Hamil-
tonian and the dissipative dynamics of the radiation degrees
of freedom. Specifically, the method we use to engineer the
desired Hamiltonian is based on multitone external driving,
adapting and generalizing previous approaches [41-46] so
that the required sidebands could be independently excited.
In order to drive dissipatively the system to the graph states,
we use a theoretical framework—introduced in Ref. [47]—
that adapts quantum dissipation engineering to Gaussian
continuous-variable systems. The merit of our scheme is that
one can generate arbitrary graph states only by driving the
optomechanical system with a sequence of tunable pulses.

The paper is organized as follows. In Sec. II we intro-
duce the system under consideration and derive the tunable
linearized Hamiltonian that will be instrumental for the
graph-state generation. In Sec. III we will introduce the state
generation protocol for the case of a generic graph state and
in the absence of mechanical noise. We illustrate the action
of the protocol via considering two specific examples. The
detrimental effect of mechanical noise will be considered in
detail in Sec. IV, confirming the robustness of the present pro-
tocol for low noise. A brief discussion about the experimental
feasibility of our scheme is given in Sec. V. Finally, Sec. VI
will close the paper with some concluding remarks.
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FIG. 1. (Color online) (a) Optomechanical system consisting of
one optical cavity mode a coupled to N noninteracting mechanical
resonators by, ...,by. The cavity dissipates with a damping rate
k, and it is driven by M classical laser fields. (b) The state of
the mechanical resonators can be prepared in different graph state

geometries, e.g., from left to right, a linear, a dual-rail, and a generic
graph state.

(b)

II. TUNABLE LINEARIZED HAMILTONIAN
OF THE SYSTEM

Consider an optomechanical system consisting of N non-
interacting mechanical resonators and a single-mode optical
cavity driven by M classical laser fields [M-tone drive;
see Fig. 1(a)]. This configuration extends and adapts to
our purposes some approaches already considered in the
literature in order to generate single-mode squeezing [41] and
entanglement among two mechanical oscillators [42-46]. In
this section, we derive the family of tunable Hamiltonians that
we will use later on to generate our target states.

The Hamiltonian of the system described in Fig. 1 is given
by [1,2]

N
H = wala+ Yy [Qblb; +g;ala®] +b))]
j=1
+e(a’ +e*(t)a, (M

where a and w. (b; and ;) are the annihilation operator
and frequency of the cavity (jth mechanical-resonator) mode,
respectively, whereas g; is the one photon coupling to the jth
mechanical resonator mode. The driving laser fields €(¢) are
given by

M
€t) = Zeke*"“’“ei@k, 2
k=1

where wy, €;, and @, are respectively the frequency, intensity,
and phase of the kth laser field.

The equation of motion for the optical and mechanical
modes are written as

N
a=—iw.a—ia Zgj(b; +b;)—ie(t)

j=1
K
54~ Viai, 3)
b'j = —inbj — igjafa, (4)
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where aj, is the input noise operator for the cavity mode
with decay rate k. In Eq. (4) we have omitted the terms
describing the mechanical noise, assuming that the cavity
damping process dominates all other noisy processes. This
requirement will be relaxed in Sec. IV, where we will consider
the robustness of our scheme against mechanical noise.

Now, we linearize the equations of motion by considering
the following:

gj < a)Cij3 (5)
a —a+a, (6)
b; — b+ Bj, @)

where, in Eqgs. (6) and (7), we split the optical (mechanical)
field into classical part & (8;) and a quantum noise term a (b;).
Neglecting the second-order terms in a and b;, the equations
of motion become

N
a~ —iwa—ia Zgj(ﬂf + B;)

j=1

N
. K
—ia )y g;(bj + b))~ sa—Vean.  ®)

Jj=1

. . . N * o K
O~ —iw.o — i Zgj(ﬁj + Bj) —ie(t) — Ea’ ©))
i=1
by ~ —iQb; —igj(aa’ +a*a), (10)

B; ~ —iQ;p; —igjlal’, (11)

and the linearized Hamiltonian reads

N N
H = a)éa a —|— Z ijjbj + Zgj(ocat + a*a)(bj + bj),
j=1 j=1
(12)
with w/, = w. + Zj-\/:, g;(B; + Bj). For |Bjlg; < w. we have
W), X w,.
From Eq. (9), the parameter « is approximately given by

M .
—l€g

“= ZK/2+i(wc — )

k=1

el oul ol Pk (13)
By defining aze'¥ := meiq’k with o > 0 and ¢y €
R, the linearized Hamiltonian becomes

N
H = wea'a+ Z ij;bj
j=1
M

otkgje”"ke_""”aT(b; +bj)+Hec. |. (14)
=1

N
+ 2
j=1k

In order to eliminate the explicit time dependence of the
Hamiltonian we first go to the interaction picture

N M
H :CZT Z Z akgjei¢kei(wo—a)k)t(eiﬂjtbj + e—intbj) +Hec.
=1 k=1

15)
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We then consider for each mechanical resonator j, two laser
drives with frequencies wf = w, & 2}, amplitudes af, and
phases q&f. Assuming that the mechanical frequencies do not
overlap and that we are in the weak coupling regime

+
o < Q. (16)

we can invoke the rotating wave approximation, finally
obtaining the following Hamiltonian:

N
H=a")y giefe? bl +a;e%b))+He. (17)
j=1

The main feature of the Hamiltonian above is that it includes
both “beam-splitter” and “two-mode squeezing” interactions
that can be independently tuned for each mechanical oscillator.
In particular, we will see in the next section that, by controlling
the amplitude and relative phase of each driving laser, one can
conveniently tune the parameters af and qb]-i to generate the
desired graph state.

III. GRAPH-STATE GENERATION PROTOCOL

As said, our aim is to devise a scheme to generate arbitrary
graph states of the mechanical degrees of freedom for the
system described in Sec. II [see Fig. 1(b)]. We will show now
how this goal can be achieved by exploiting as a resource the
dissipation of the radiation mode, together with a suitably
tuned sequence of laser pulses. For the sake of clarity, in
this section we will neglect the dissipation of the mechanical
degrees of freedom, which will be taken into account in
Sec. IV.

In general, the dissipation into an inaccessible environment
causes the loss of quantum coherence, driving the system
of interest into a state void of genuine quantum features.
However, dissipation can indeed turn into a resource that
does stabilize quantum coherence, provided the dissipative
dynamics is properly engineered [48—52]. In the context of
continuous-variable systems, dissipation engineering has been
considered for the purpose of entanglement generation, both
at a general theoretical level [47,53-55] and in experiments
involving atomic ensembles [56-58]. Concerning the specific
setting of optomechanics, recent theoretical proposals have
shown how dissipation engineering can allow to achieve strong
steady-state squeezing [41] and two-mode entanglement in
three- and four-mode systems [42-46,59,60]. Here, we gen-
eralize these approaches and propose a scheme to achieve an
arbitrary graph state at the steady state.

The dynamics of the system is described by the master
equation

dp .

= i[H.pl+ L, (18)
with p the system’s density matrix, H given by Eq. (17),
and £ accounting for the dissipation processes. Assuming that
the cavity damping process dominates all other dissipative
processes, L reads as follows:

L= /c(a,oaT - %a*ap — %,oaT ) (19)

One can show that the system above admits a unique
pure Gaussian steady state only if just a single mechanical
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mode is involved (see Appendix A). This obstacle can be
circumvented, in the case of many mechanical resonators,
using the mechanism of Hamiltonian switching proposed by Li
et al. [61] and generalized by lkeda and Yamamoto [47]. The
key point of this approach is that only one suitable collective
mode is in fact coupled at each switching step. This is achieved
by dividing the dynamics in as many steps as the number N
of (mechanical) modes involved. At each step, the interaction
Hamiltonian has to be properly engineered in order for the
optical dissipation to cool a specific collective mechanical
mode. Once the steady state is achieved, another collective
mode is cooled by switching to a new Hamiltonian (with the
remaining collective modes uncoupled). The main difficulty
of this scheme is to design a system that sustains the set of
Hamiltonians required to generate a certain desired state, in
our case an arbitrary Gaussian graph state.

More specifically, consider a generic quadratic unitary
transformation U [25-27] acting as ¢ = U b on the mechanical
modes b = (b, ...,by)T, where ¢ = (ci,...,cy)! defines
a set of collective modes. As said, we perform an N-step
transformation, where in the kth step we set the driving laser’s
amplitudes and phases in Eq. (17) as follows:

o = Ly, (20)
J
ocf = rocj_, 21
$7 = —¢F = arg(Uy)). (22)

where f > 0 and 0 < r < 1. With these settings Eq. (17)
becomes

H=H® = Ba'(c, +rc))+He. (23)

One can show (see Appendix A) that the above Hamiltonian,
with the help of the cavity dissipation in Eq. (19), generates
at the steady state a single-mode squeezed state for the
collective mode c;. After applying all the N steps of the
transformation, we obtain N single-mode squeezed state
relative to the modes ¢y, ...,cy. In terms of the mechanical
modes by, ...,by, the latter corresponds to a Gaussian state
with zero mean. Let us introduce the canonical position and

momentum operators for each mechanical mode g; = (b} +

bj)/ V2 and pj = i(bj - b))/ V2, respectively, the vector R =
(41, ---,9N,DP1, ---,PN), and the covariance matrix V whose
elements are [V]y; = (RyR; + R;Ry)/2. Then the covariance
matrix of the mechanical Gaussian state reads

v lST 872§]1N><N ON><N s (24)
2 ONxN eZEﬂNxN ’

where & = tanh™' 7 and § is the symplectic transformation
corresponding to the quadratic unitary transformation U
[25-27]. The quantity e~ is the squeezing parameter and
the state given by the covariance matrix (24) has a level
of squeezing of 10 loglo[ez"g ldB. Ikeda and Yamamoto [47]
showed that the unitary transformation U that generates an
arbitrary Gaussian graph state is obtained from the polar
decomposition of the matrix —(ily + A) = RU, where A is
the adjacency matrix describing the graph state that one wants
to generate [62,63], and R is N x N real matrix.
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TABLE I. Assignment of the parameters in Eq. (17) for each of
the four steps of the Hamiltonian switching procedure that allows one
to generate a four-mode linear graph state.
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TABLE II. Assignment of the parameters in Eq. (17) for each of
the four steps of the Hamiltonian switching procedure that allows one
to generate a four-mode square graph.

Step  «p oy a3 o b Oy by @y Step oy oy oy L Y 2
S5 5145
1 \/2(5:\@) \/stzﬁ x/sgzﬁ «/sgzﬁ 32 7 w2 0 1 S %(5[ =3 %@f 3n/2 m® w/2 &
’ ’ 1 5443 1 —514/5
) V5425 Af542v5 A26-V5) /5245 3772 ’ 2 7 - 7 m T 3nj2 =m /2
5 5 3 5 /2 w7/ 3 —5+45 % 545 %ﬁ 72 m 3w ow
10 3 10 5
3 \/sgzﬁ «/2<55 V5) «/5;26 \/sgzﬁ X2 w 32 x 4 % _55‘5 %5 Sta/g B R )

4 S VSO NSNS NS g apn n 3ap

Examples

In the remaining part of this section, we give explicit
examples demonstrating how to generate a linear and a square
four-mode graph state using the foregoing scheme. We have
chosen four modes only for the sake of clarity but, in principle,
the size and shape of a graph state that can be engineered is
arbitrary. For simplicity we set g; = g for all j =1,...,4,
and all the amplitudes are given in units of 8/g.

Let us first consider a four-mode equally weighted lin-
ear graph state. This state is a basic building block in
measurement-based quantum computation since it allows one
to implement an arbitrary single-mode Bogoliubov transfor-
mation via local measurements [64,65]. The adjacency matrix
is given by

01 00

1 010
A=

01 0 1

0010

from which, as explained above, we obtain the corresponding
unitary matrix U via the polar decomposition of the matrix
—(i14 + A). The graph state is then generated in four steps. In
each step the parameters of the driving laser fields are tuned
to the values obtained from Egs. (20) and (22) and indicated
in Table I [a;f is always given by Eq. (21) and ¢j-’ =—¢; 1

As a second example, we consider a four-mode equally
weighted square graph state. The relevance of the latter stems
from the fact that it allows one to perform two-mode quantum
operations and, in addition, it can be used in a redundant
encoding scheme for error filtration [66]. The corresponding
adjacency matrix is

01 0 1

1 010
A=

01 0 1

1 010

As before, the graph state is generated in four steps, where in
each step, the parameters of the laser fields are set according
to the values indicated in Table II.

In principle, the results derived here are strictly valid only in
the ideal case in which the steady state is reached at each step
of the Hamiltonian switching scheme. In practice, the amount
of time that can be devoted to each step is finite and one should
assess the errors determined by the finite-time dynamics. The

latter can be estimated using the Uhlmann fidelity between
the ideal target state and the actual one, as a function of the
switching time  (i.e., the time elapsing between one step and
the other). Given two generic states p; and p;, the Uhlmann

fidelity is defined as F(p1,02) = (Tr//P102+/P1 )2, which

satisfies 0 < F(p1,02) < 1 and F(p;,p2) =1 if and only if
the states p; and p, are identical [67]. The latter can be conve-
niently expressed in terms of covariance matrices for Gaussian
states, using the expressions provided in Refs. [68,69]. In Fig. 2
we plot the time evolution of the fidelity for a finite switching
time #; and for the case of a four-mode linear cluster state. We
can see that the fidelity approaches its final value Fg, step
after step. In Fig. 3 we report instead the final fidelity Fe, as
a function of 7, for the same target state. We can see that, as
expected, the fidelity of the state generated via Hamiltonian
switching and dissipation engineering approaches the unit
value for large enough switching times #. In Appendix B,
we give the time scale to reach the steady state at each step
of the switching scheme. In the numerical simulations shown
in Figs. 2 and 3, we have chosen 8 = k/(4+/1 — r?), so that
the system reaches the steady state at each step in minimal
time (see Appendix B) and with minimum driving power [the
driving power determines the value of «F, which are related
to B via Eq. (20)]. With this choice of g, using Eq. (20) and
considering the condition (16), the cavity decay rate must
satisfy the following condition:

Q.
1 —r2 min U (25)

kK4
koj=1...N |Uyg;|

The latter implies that (i) the scheme here introduced works in
the resolved-sideband regime and (ii) the higher the squeezing
the deeper into the good cavity regime one has to operate.

Fidelity

8

Time (units of H'l)

FIG. 2. (Color online) Time evolution of the fidelity for a four-
modes linear graph state with fixed switching time #, = 20k ~'. We
have set for the jth oscillator the frequency Q; /2w = j MHz.
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FIG. 3. (Color online) Fidelity of the steady state of the four-
mode linear graph as a function of evolution time per switching
step. The fidelity shown in this plot is that of the steady state of the
mechanical oscillators after applying all the switching steps. We have
set for the jth oscillator the frequency Q; /2w = j MHz.

IV. ROBUSTNESS OF THE GRAPH-STATE GENERATION
AGAINST MECHANICAL NOISE

We have hitherto showed how to generate the target state
without considering any mechanical dissipation. We now
relax this condition and consider the mechanical resonators in
contact with a thermal bath, addressing the detrimental effect
of the latter to the scheme introduced above.

In the master equation (18), we include the following
additional decoherence channels:

N
P | 1
Lr=7) v+ 1)(bjpb} —5bibie - prjb,-), (26)
j=1

N
1 1
L= ymn; <bj.pbj - Eb,-bjp - pr,bj.) 27)

Jj=1
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with y; <« Q;, where y; and n; = (exp ;B—% -1 " are the
damping rate and the mean phonon number of the jth mechan-
ical bath, respectively, with 7; being the bath temperatures.
Notice that we are assuming high-Q mechanical oscillators;
hence we have considered the Markovian master equation
above [41-44] rather than the full non-Markovian Brownian
noise [70].

The thermal baths interact with the system during the
preparation of the graph states, which results in a deviation of
the final state from the target one. To quantify this deviation,
we use again the Uhlmann fidelity. To see the effect of the
thermal noise on our results of Sec. II, we calculate the fidelity
as a function of the mechanical damping rates and the bath
temperatures. In our numerical simulations, we took the latter
equal for each mechanical oscillator (y =y, = - = yn,
T =T, = --- = Ty) and set mechanical modes frequencies as
Q;/2r = jMHz (j =1, ...,N). Figure 4 shows the fidelity
for two-, four-, and eight-modes graph states as a function
of y/k and T. Each point of our simulation was obtained
by searching for the optimal evolution time of the system in
order to have maximum fidelity: very short evolution times
do not allow to reach the target graph state, while very long
times lead to dominant decoherence effects caused by the
thermal bath. In other words, in the presence of mechanical
noise, the best fidelity is not achieved at the steady state
but at an intermediate evolution time typically larger than
[Re(5 — \/(5)? = B(1 = r)I™! (see Appendix B)—so that
the desired target state can be achieved—and small compared
to N times the inverse of the thermal decoherence rate, i.e.,
smaller than min;¢;<y %, so that the mechanical noise is
not too detrimental durinjg the N switching steps.

One might wonder whether the fact that we are no longer
considering the steady state constitutes an issue. This is in

152 5 dB o 12.7 dB 52 20.5 dB .
10 0.9
-6
10 08
108
107 1073 10! 10.7
10.6
10.5
10.4
{ 2 ; 0.3
I I 10
0.2
- 104 104 104
‘l-l 106‘ 106‘ " -
l‘ I 108 108 108 ‘ 0
N 107 1073 10! 107 1073 10! 10° 1072 10!

Temperature (Kelvin)

FIG. 4. (Color online) Contour plots of the fidelity between the target state and the state generated using the protocol described in the text.
The fidelity is shown as a function of the temperature of the mechanical bath (horizontal axis) and the mechanical damping rate (vertical axis)
for different target graph states and levels of squeezing. Each mechanical oscillator has a frequency Q; /27 = j MHz (j =1, ...,N, with
N = 2,4,8). The solid white lines correspond to a fidelity of 0.99, the dashed lines to 0.90, and the dotted lines to 0.80. Each data point is taken

for an optimal evolution time (see text).
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fact not the case in the context of cluster state quantum
computation, where it is not necessary to build the entire
cluster ahead of the computational task to perform, but rather
it is possible to build and consume the cluster during the
computation itself (see, e.g., Refs. [71-73]).

In Fig. 4 we focused on three paradigmatic graph states
and squeezing levels. The first row shows results for the
simplest graph, consisting of two modes only. Up to local
symplectic operations that do not change its entanglement,
the latter is equivalent to the usual two-mode squeezed
state whose generation in optomechanical systems have been
already addressed in previous literature [42—46,59,60]. The
second row refers to a four-mode linear graph, which as
said allows to implement a general single-mode symplectic
transformation. The third row concerns an eight-mode dual
rail graph, which allows one instead to implement a generic
two-mode symplectic transformation. The last two graphs
thus encompass the necessary building blocks for universal
multimode Gaussian unitaries. Each column in Fig. 4 refers
to a specific squeezing level for the target state: from left
to right we set 5dB, 12.7 dB, and 21 dB. The first level
of squeezing coincides with the one of the largest optical
cluster state reported to date [35], whereas 12.7 dB is the
highest optical squeezing experimentally achieved with one
optical mode [74]. The third squeezing level is a theoretical
upper bound to the squeezing required to perform universal
fault-tolerant quantum computation over continuous variables
(see Ref. [34]). As before, the plots of Fig. 4 were obtained
by setting B = «/(4+/1 — r2) in order to reach the maximum
fidelity in minimum time (see Appendix B for more details).
As said, this implies that the cavity decay rate must satisfy
condition (25).

From Fig. 4 we can see that, for a given squeezing and
number of modes of the target state, the fidelity between the
latter and the state obtained with our protocol decreases as the
temperature 7 and the coupling with the bath y increase. This
is to be expected since our protocol will end up in a steady
state that is far from a pure state for large mechanical noise.
In general, one can also see in Fig. 4 that the region of high
fidelity shrinks from the left panels to the right ones. This
means that, for a given graph, the higher the squeezing of the
target the less the mechanical noise that can be tolerated. The
same behavior can be see from top to bottom, implying that
for a given target squeezing the larger the graph state the less
the mechanical noise tolerated.

Let us notice here that the choice of the frequencies used in
Figs. 4 and 6 is not unique. Indeed, our protocol works as well
for any other choices of the oscillators frequencies, as long as
they do not overlap and the rotating wave approximation can
therefore be applied to the Hamiltonian in Eq. (15).

V. EXPERIMENTAL FEASIBILITY

In view of the results of the previous sections, let us now
discuss some aspects regarding the experimental feasibility of
the state generation scheme.

First, let us consider the attainability of the system Hamil-
tonian given in Eq. (17). As mentioned, various experiments
have recently succeeded in realizing the weak optomechanical
interaction that we have considered here [1-3]. The main

PHYSICAL REVIEW A 92, 063843 (2015)
b1 b2 b3 ba

FIG. 5. (Color online) Optomechanical system consisting of one
optical cavity mode and N mechanical resonators modes. The
cavity mode couples only to the first mechanical mode, and all
the mechanical modes couple to each other via nearest-neighbor
interaction.

M Laser

requirement that differentiates our scheme from the latter is
that we consider, rather than only one mechanical oscillator,
multiple oscillators with nonoverlapping frequencies. The
first implementations of such systems have been reported
recently [75-77], thus providing a promising route towards the
realization of small optomechanical networks. In addition, in
quantum electromechanical systems, mechanically compliant
membranes of slightly different geometry and size allow for
the realization of mechanical oscillators with nonoverlapping
frequencies—as required in order for the rotating wave
approximation adopted in Eq. (17) to be valid. For example, the
experiments described in Refs. [5,78-80] report a mechanical
frequency of 3.6 MHz, 4 MHz, 10.56 MHz, and 13.03 MHz,
respectively. This wide range of frequencies, obtained in com-
patible experimental setups, conveniently suits our proposal.
More in general, the variety of mechanical frequencies realized
in optomechanical systems (even within similar settings)
suggests that the realization of small optomechanical networks
with nonoverlapping frequencies should be within reach.

We should mention here that, despite the fact that our results
are obtained for noninteracting nondegenerate mechanical
resonators, the scheme here introduced can be easily extended
to the case of interacting mechanical modes. In this case, the
cavity mode could interact with one mechanical oscillator only
(see Fig. 5). After diagonalizing the mechanical Hamiltonian,
one obtains a set of noninteracting mechanical normal modes
with nonoverlapping frequencies, thus recovering the case
considered here. The nondegeneracy of the normal modes
could in principle be enforced by controlling the coupling
between the mechanical modes.

Given the findings of Sec. IV, our generation protocol
performs better in the resolved-sideband regime and for high
quality-factor oscillators at low temperature. High fidelity can
then be achieved when y < ¥k <« 2 and T « 1, a regime
that has been extensively considered for sideband cooling
in quantum electromechanical systems. For example, using
experimental parameters of the order of the ones of Ref. [5],
the values of fidelity shown in Fig. 6 could be achieved.

Finally, let us briefly mention a possible readout strategy
suitable to the setting here considered. In general, various
approaches have been put forward in order to reconstruct the
state of a single mechanical oscillator in an optomechanical
setting (see Ref. [81] for arecent review). The generalization of
those approaches to many mechanical oscillators could follow
the path already pursued in other experimental contexts, such
as ions or circuit-QED systems. In particular, in Ref. [82] the
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FIG. 6. (Color online) Fidelity as a function of the target squeez-
ing between a linear graph state of N nodes and the state generated
using the protocol described in the text. Each data point is taken for
an optimal evolution time (see text). Each mechanical oscillator has
afrequency Q;/2mr =11jMHz (j =1,...,N,with N =1,...,6)
and mechanical damping y /2w = 32 Hz. The cavity mode decays
with rate « /27w = 0.2 MHz. The bath temperature for panel (a) is
T = 15 mK and for panel (b) is 7 = 1 mK.

state of a network of interacting oscillators is reconstructed
via coupling only one of them to a two-level system, which
plays the role of a probe that is eventually measured. The
optomechanical setting here considered does not include any
two-level system; nonetheless the scheme of Ref. [§2] could be
adapted to the present case as well—where now the radiation,
rather than a two-level system, could act as a probe. In
fact, a tomographic scheme along these lines is currently
under study [83]. In particular, it is possible to show that
such a scheme works both for the case of interacting and
noninteracting mechanical oscillators in an optomechanical
setting (i.e., both in the case of Figs. 1 and 5).

VI. CONCLUSIONS

We have shown how to prepare arbitrary graph states
of mechanical oscillators in the optomechanical system of
Fig. 1. The preparation is achieved by properly driving with
external fields each of the two sidebands corresponding to each
mechanical oscillator. The target graph state is generated by
switching on and off a sequence of linearized Hamiltonians,
which in turn can be achieved by changing the intensities and
phases of the driving fields. Ateach switching step, the external
pulses are applied for a sufficient time until a steady state is
obtained by virtue of the optical losses.

In addition, we have considered the effect of nonzero
mechanical noise, confirming the robustness of the present
scheme. For a low number of mechanical oscillators and
moderate squeezing, our protocol appears to be within reach
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of current technology since it requires linearized radiation-
pressure interaction, resolved sideband, and low mechanical
noise—a regime that has been already achieved for the case
of a single mechanical oscillator [5] and approached for the
case of few oscillators [75-77]. In addition, experiments have
been recently reported [78,80] where single-mode mechan-
ical squeezing is achieved using the approach proposed in
Ref. [41]. This is, in turn, very promising for the realization
of the state generation protocol here presented, given that the
latter extends and adapts the approach of Ref. [41] to generic
multimode graph states. This work therefore identifies a
promising path towards cluster states generation in mechanical
systems, thus representing a first step towards measurement-
based computation over continuous variables in a solid-state
platform, rather than in the common optical setting.
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APPENDIX A: EXISTENCE AND UNIQUENESS OF
GAUSSIAN STEADY STATES

Consider an open system of N modes with Hamiltonian H
and dissipation channels L, L,, ..., L. The system evolves
in time according to the master equation:

M
p=—ilH.pl+ Y (LipL} — 1/2L[Lip — 1/2pL{Ly).
k
(A1)
We define H =1/2RTGR and L =(L,Lo,...,Ly)" =
CR with G=GT e R¥™N*2N  CeCM*2N  and R =

T
(q19q2» oo 1qN3p11p21 e apN) .
For a Gaussian state of covariance matrix V and mean value

(R), the master equation (A1) is equivalent to [54]

dv

E:AV+VAT+B, (A2)

d(R)
—— = A(R), A3
ir (R) (A3)

where the matrices A and B are given by

A= 3[G+Im(CiO), (A4)
B = ZRe(CO)=T, (A5)

and
ON XN 1 NxN
X= (_]leN 0N><N>’
where 17>V and OV*V are the identity and zero matrices,
respectively, and the superscript denotes the dimension of the
matrix. Equation (A1) has a unique steady Gaussian state if

and only if A is a Hurwitz matrix, i.e., the real part of each
eigenvalue is negative.
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For the system described in Sec. II given by the vector
R = (l]1 y oo sqN 7QCaVityvpl PICIEIN ’pN’pcavity)T, the Hamiltonian
is given by Eq. (17), and the matrices G and C are given in the
block matrix form:

ONxN Ale ON><N Cle
(ANX])T 0 DlxN 0
G = 0N><N (DIXN)T ON><N BNXI ’ (A6)
(CNXI)T 0 (BNXI)T 0
C= \/g(o‘xN,l,o“N,i), (A7)

where, as before, the superscript denotes the dimension of the
corresponding matrix, and the matrix elements are found to be
as follows:

A;\/xl _ gj(a;f cos ¢}L +a; cosg;), (A8)
BY*! = gj(—af cos¢ +a; cos ). (A9)
CY*! = gj(af sing] +a; sing;), (A10)
DN = gj(af sing} —aj sing;). (Al1)

The eigenvalues of the matrix A are

_gi\/<§>2—AT-B+D~C, 0,...,0

2 times degenerate

2(N-1) times degenerate

It is clear that when N > 1, the matrix A is not Hurwitz
and therefore there is no unique Gaussian steady state for
the system.

For N = 1, we have

=S4 \/(5)2 + &2t — (@),
4 4
where o are the amplitudes of the two driving lasers.
There exists a unique steady state if and only if ot < o™,
and it is obtained after a time of the order of 7 = ﬁ (see
Appendix B).
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APPENDIX B: TIME SCALE TO APPROACH
THE STEADY STATE

The solution of the differential equation (A2) is

t
V(1) = eAtypet - / ds eM=IB A (BY)
o
where V) is the state of the system at time fy. Diagonalizing
the matrix A = PDP~!, with P given by the eigenvectors of
A and D = Diag(A,A2, ...) by its eigenvalues A;, Eq. (B1)
becomes

V(t) = PPt p=ly, pT~" Pt pT

t
+/ ds P ePt=) p=igpT~! D=5 pT (By)

fo

At the kth step of the switching scheme described in Sec. III,
we have the Hamiltonian (23) and dissipator (19). Hence the
matrix A has eigenvalues

2
x_ X Y g2
R TN (O T e —

with negative real part, implying a unique steady state. The
speed at which the system approaches its steady state depends
on how much negative is the real part of the eigenvalues A*:
the more negative the faster the approach. Defining t as the
time scale to reach the steady state, we can estimate it as

1
= ReAt

and the condition of a maximum speed for approaching the
steady state is given by

% < BY1—r2. (B5)

Under this condition, the shortest time scale to reach the steady
state is

(B4)

A (B6)
Tmin = 7 -
k

We should mention that, in order to prepare an infinitely
squeezed state, an infinite amount of time is required, and
this is clear from Eq. (B4) where the denominator vanishes.
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