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The spin-flip model describing optically pumped spin-polarized vertical-cavity surface-emitting lasers is
considered. The steady-state solutions of the model for elliptically polarized fields are studied. Asymptotic
analysis for the existence and stability of the steady-state solutions is developed, particularly in the presence of
pump polarization ellipticity. The expansion is with respect to small parameters representing the ellipticity and
the difference between the total pump power and the lasing threshold. The analytical results are then confirmed
numerically, where it is obtained that generally one of the steady-state solutions is stable while the other is not.
The theoretical results are shown to be in qualitative agreement with the experiments.
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I. INTRODUCTION

Spin-polarized vertical-cavity surface-emitting lasers (VC-
SELs) offer advantages over conventional lasers such as
threshold reduction, independent control of output polarization
and intensity, and faster dynamics [1]. These features are a
consequence of a spin-polarized electron population which
can be achieved either by electrical injection using magnetic
contacts or by optical pumping using circularly polarized
light. Since the development of the electrically pumped spin-
VCSELs [2,3] and the presentation of the first electrically
pumped spin-laser at room temperature [4] very recently,
it is clear that spin-lasers represent a promising new class
of applicable room-temperature spintronic devices beyond
magnetoresistive effects. New applications are foreseen in
optical information processing and data storage, optical
communication, quantum computing, and biochemical sensing
(including chiral spectroscopy).

Various forms of instability are predicted to occur in
spin-VCSELs, including periodic oscillations, polarization
switching, and chaotic dynamics [5]. Triggerable, ultrafast
(11.6 GHz) circular polarization oscillations that decay in
a few nanoseconds have been experimentally observed in
an 850-nm VCSEL with hybrid excitation (dc electrical
plus pulsed circularly polarized optical pumping) [6]. Self-
sustained periodic oscillations that can be tuned from 8.6 to
11 GHz with the pump polarization have been reported for
an optically pumped 1300-nm dilute nitride spin-VCSEL [7].
Simulations using the spin-flip model (SFM) [8] have yielded
good agreement with the latter experimental results [5,9,10],
confirming that the oscillation frequency is dominated by
the birefringence of the active material in combination with
the dichroism and spin relaxation processes, as originally
predicted by Gahl et al. [11].

A widely used test for spin-VCSEL behavior is to measure
the variation of output polarization ellipticity when that of
the optical pump is varied from left circularly polarized
(LCP) to right circularly polarized (RCP). Polarization gain
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is found in some cases when the output ellipticity exceeds
that of the pump [1,12,13]. However, numerical simulations
also indicate situations where switching can occur between
opposite polarization states, i.e., from LCP to RCP output
or vice versa, in spin-VCSELs with either quantum-well
[5,10,13] or quantum-dot [14] active regions. Experimental
results on dilute nitride quantum-well spin-VCSELs have
confirmed the existence of this polarization switching [15].
In order to understand this phenomenon, particularly the
polarization selection mechanism(s), it is necessary to deter-
mine the regions of stability and of switching by performing
a stability analysis as a function of pump strength and
polarization.

Some insight into the polarization switching behavior of
spin-VCSELs can be gained by considering first the steady-
state solutions (equilibria) of the SFM equations for elliptically
polarized fields. These are characterized by a constant phase
difference between the LCP and RCP components of the
optical field [11,16]. For the case of linearly polarized (LP)
pumping, when this phase difference is 0 the VCSEL output
is LP with the field in the x direction (the in-phase mode); a
phase difference of π gives LP emission with the field in the
y direction (the out-of-phase mode). For elliptically polarized
pumping the lasing emission is, in general, elliptically polar-
ized with two solutions corresponding to the cases when the
phase difference is the continuation either of 0 or π ; hence we
refer to these two cases as in-phase or out-of-phase solutions.
The aim of this work is to explain why the spin-VCSEL system
chooses one solution over the other for a given operating
condition.

The only stability analysis to have been reported (to
our knowledge) is for the case of LP pumping where the
SFM equations can be studied by perturbing around the
LP modes [8,9,17–26]. The stability analysis of the LP
solutions provides a system of equations that decouple (in the
linear approximation) into two subsets, each of three coupled
equations. The first subset describes the fluctuations of the
LP fields and the total electron density; a pair of eigenvalues
determines the frequency and damping of the relaxation
oscillations which are controlled by some parameters and are
a well-known feature of laser dynamics. This demonstrates

1050-2947/2015/92(6)/063838(10) 063838-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.063838


H. SUSANTO, K. SCHIRES, M. J. ADAMS, AND I. D. HENNING PHYSICAL REVIEW A 92, 063838 (2015)

that the LP modes are stable with respect to perturbations
by amplitude perturbations of the same polarization. The
remaining eigenvalue is zero and is associated with the ar-
bitrariness of the phase of the electric field. The second subset
of equations characterizes the stability of a polarized solution
with respect to perturbations of the orthogonal polarization.
This yields a third-order characteristic polynomial, analysis
of which produces various regimes of dynamics including
polarization oscillations. Polarization switching between the
LP modes has also been discussed for this case [9]; algebraic
results for borders separating regions of LP mode stability
have been obtained [9,18,22,23]. Here we provide a systematic
stability analysis for the case of nonvanishing optical pump
ellipticity.

After an initial discussion of the SFM equations, we
present first a small-signal (asymptotic) stability analysis for
the case of LP optical pumping just above the lasing threshold.
Analytical results are obtained for the stability of both the
in-phase and the out-of-phase solutions. Next the small-signal
analysis is extended to the case of very small optical pump
elipticity, and again asymptotic analytical results are obtained
for both solutions. These analytical results are then compared
with numerical computations of the eigenvalues of the
SFM system, revealing good agreement for a typical set of
values of the spin-VCSEL parameters. In addition numerical
results are presented for the output polarization versus the
pumping polarization for much higher values of optical
pumping above threshold and for the full range of pumping
polarization ellipticity (from linear up to circular). Finally
some experimental results of the ellipticity behavior are
presented and interpreted in the context of the theory in terms
of changes of stability between in-phase and out-of-phase
solutions.

II. SPIN-LASER MODEL AND TIME-INDEPENDENT
SOLUTIONS

In the SFM [8], the circularly polarized electric field compo-
nents are coupled by the crystal birefringence, characterized by
the rate γp. Gain anisotropy (dichroism) due to cavity geometry
and other effects is also included with the rate γa . Thus the
complex rate equations for the time dependence of the RCP and
LCP field components, denoted by E+ and E−, respectively,
are

dE+
dt

= κ(N + m − 1)(1 + iα)E+ − (γa + iγp)E−, (1)

dE−
dt

= κ(N − m − 1)(1 + iα)E− − (γa + iγp)E+, (2)

where κ is the cavity decay rate and α is the “linewidth
enhancement factor” that relates changes in real and imaginary
parts of the refractive index.

The normalized carrier variables N and m appearing
in Eqs. (1) and (2) are defined by N = (n+ + n−)/2 and
m = (n+ − n−)/2, where n+ and n− are the correspond-
ing normalized densities of electrons with spin-down and

spin-up, respectively. The rate equations for these variables
are [11]

dN

dt
= γ [η − (1 + |E+|2 + |E−|2)N

− (|E+|2 − |E−|2)m], (3)

dm

dt
= γPη − [γs + γ (|E+|2 + |E−|2)]m

− γ (|E+|2 − |E−|2)N, (4)

where γ is the electron density decay rate, γs is the spin
relaxation rate, η = η+ + η− is the total normalized pump
power, and the pump polarization ellipticity P is defined
as

P = η+ − η−
η+ + η−

, (5)

where (η+,η−) are dimensionless circularly polarized pump
components that describe polarized optical pumping.

The SFM equations, Eqs. (1)–(4), are quite general in the
spin-polarized pumping terms and can equally well apply to
electrical pumping as to optical pumping [1].

The spin-laser output is usually expressed in terms
of circularly polarized intensities I+ = |E+|2,I− = |E−|2
and Itotal = (I+ + I−), and polarization ellipticity ε defined
as

ε = I+ − I−
I+ + I−

. (6)

Values of P or ε of +1(−1) correspond to right (left)
circular polarization, while a value of 0 corresponds to linear
polarization. Note that the equation is invariant under the
transformation P → −P , m → −m, E± → E∓. Therefore,
without loss of generality one may only consider the case of
P > 0.

Our analysis is particularly pertinent to time-independent
solutions. In that case, we look for solutions in a rotating frame
of the form

E+ = E+ eiωt , E− = E− eiθ eiωt , N = Ns, m = ms,

(7)

with all the unknown variables, i.e., E+, E−, θ , ω, Ns , and
ms , being time independent and real valued. When θ is the
“continuation” of 0 or π , we refer to the solution as in-phase
or out-of-phase, respectively.

The linear stability of the time-independent solution is
obtained by substituting E+ = (E+ + εÊ+eλt )eiωt , E− =
(E−eiθ + εÊ−eλt )eiωt , N = Ns + εN̂eλt , and m = ms +
εm̂eλt into the governing equations and linearizing for small ε

to obtain the eigenvalue problem

Mv = λv, (8)

where v = (Ê+,Ê−,Ê∗
+,Ê∗

−,N̂,m̂)
T

, aT denotes the tran-
spose of the matrix a, ∗ represents complex conjugation,
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and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M11 M12 0 0 K1E+ K1E+
M12 M22 0 0 K1E−eiθ −K1E−eiθ

0 0 M∗
11 M∗

12 K∗
1 E+ K∗

1 E+
0 0 M∗

12 M∗
22 K∗

1 E−e−iθ −K∗
1 E−e−iθ

K2E+ K3E−e−iθ K2E+ K3E−eiθ M55 M56

K2E+ −K3E−e−iθ K2E+ −K3E−eiθ M56 M66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

with

M11 = κ(Ns + ms − 1)(1 + iα) − iω, M12 = −(γa + iγp),

M22 = κ(Ns − ms − 1)(1 + iα) − iω,

M55 = −γ (1 + E2
+ + E2

−), M56 = −γ (E2
+ − E2

−), M66 = −[γs + γ (E2
+ + E2

−)],

K1 = κ(1 + iα), K2 = −γ (Ns + ms), K3 = γ (−Ns + ms).

It is clear that the solution is unstable when there is an eigenvalue with Re(λ) > 0 and stable when Re(λ) < 0.

III. VANISHING PUMP POLARIZATION ELLIPTICITY: P = 0

First, consider the case of linear polarization P = 0. One can check that [9,23]

E+ = E− =
√

η1

2Ns

, Ns = 1 + γa

κ
cos θ, (10)

ω cos θ = γaα − γp, ms = 0, (11)

where η1 = η − Ns and θ = 0,π are time-independent solutions of the governing equations.
The stability of LP modes in the general case η1 = O(1) has been considered in Ref. [23]. However, no explicit expression

of the eigenvalues is presented, which will be needed later for the case of P �= 0. Here, we study the stability analytically for
0 < η1 � 1 and assume that the other parameters are O(1). It is therefore natural to expand the variables in the eigenvalue
problem (8) as the following:

M = M0,0 + √
η1M0,1 + η1M0,2 + · · · , v = v0,0 + √

η1v0,1 + η1v0,2 + · · · , λ = λ0,0 + √
η1λ0,1 + η1λ0,2 + · · · .

(12)

A. Stability of in-phase solutions

When θ = 0, we obtain that

M0,0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γa + iγp −γa − iγp 0 0 0 0

−γa − iγp γa + iγp 0 0 0 0

0 0 γa − iγp −γa + iγp 0 0

0 0 −γa + iγp γa − iγp 0 0

0 0 0 0 −γ 0

0 0 0 0 0 −γs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

M0,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 κ(1+iα)√
2Ns

κ(1+iα)√
2Ns

0 0 0 0 κ(1+iα)√
2Ns

−κ(1+iα)√
2Ns

0 0 0 0 κ(1−iα)√
2Ns

κ(1−iα)√
2Ns

0 0 0 0 κ(1−iα)√
2Ns

0

−γ

√
Ns

2 −γ

√
Ns

2 −γ

√
Ns

2 −γ

√
Ns

2 0 0

−γ

√
Ns

2 γ

√
Ns

2 −γ

√
Ns

2 γ

√
Ns

2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

063838-3



H. SUSANTO, K. SCHIRES, M. J. ADAMS, AND I. D. HENNING PHYSICAL REVIEW A 92, 063838 (2015)

M0,2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −γ /Ns 0
0 0 0 0 0 −γ /Ns

⎞⎟⎟⎟⎟⎟⎠. (15)

From Eq. (8), terms at O(1) yield

(M0,0 − λ0,0)v0,0 = 0, (16)

from which we obtain the eigenvalues

λ0,0 = 0, 2(γa ± iγp),−γs,−γ. (17)

The eigenvalue λ0,0 = 0 has double algebraic and geometric
multiplicity, with one of them due to the gauge phase
invariance of the governing equations, Eqs. (1)–(4).

When η1 is switched on, the only source of instability is any
eigenvalue with a vanishing real part. It is therefore necessary
to track the influence of the parameter on the eigenvalue. In
addition to the zero eigenvalues, we also need to compute the
bifurcation of the eigenvalues λ0,0 = 2(γa ± iγp), particularly
because for our experimental setup the gain anisotropy γa is
negligibly small.

1. λ0,0 = 0

The corresponding eigenvectors of the eigenvalue are

v1 =

⎛⎜⎜⎜⎜⎜⎝
1
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠, v2 =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
1
0
0

⎞⎟⎟⎟⎟⎟⎠. (18)

One therefore obtains that a generalized corresponding eigen-
vector of the eigenvalue is

v0,0 = c1v1 + c2v2, (19)

with cj being a constant.
Terms at O(

√
η1) give us

(M0,0 − λ0,0)v0,1 = (λ0,1 − M0,1)v0,0. (20)

As the matrix operator (M0,0 − λ0,0) on the left-hand side
of the equation is the same as that in Eq. (16), Eq. (20) can
have a solution provided that the right-hand side is orthogonal
to the null space of the Hermitian (conjugate) transpose of
the matrix operator, i.e., (M0,0 − λ0,0)H . The orthogonality is
with respect to the common inner product

〈a,b〉 = bH a.

Here, one can easily compute that the null space of
(M0,0 − λ0,0)H is spanned by v1 and v2 (18) from which we
obtain that λ0,1 = 0 and

v0,1 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0

−√
2Ns(c1 + c2)

0

⎞⎟⎟⎟⎟⎟⎠, (21)

from solving Eq. (20).

At the order O(η1), we have the system

(M0,0 − λ0,0)v0,2 = (λ0,2 − M0,2)v0,0 − M0,1v0,1. (22)

Applying the same procedure as before, we obtain the coupled
equations

λ0,2c1 = (iα − 1)κ(c1 + c2), λ0,2c2 = −(iα + 1)κ(c1 + c2).
(23)

Solving the coupled equations as an eigenvalue problem yields

λ0,2 = 0,−2κ. (24)

Therefore, we obtain that one of the zero eigenvalues bifurcates
linearly for small η1 as

λ = −2κη1 + O
(
η

3/2
1

)
. (25)

2. λ0,0 = 2(γa ± iγ p)

Here, we only consider one of the eigenvalue pair, i.e.,
λ0,0 = 2(γa + iγp). The corresponding eigenvector of the
eigenvalue is

v0,0 =

⎛⎜⎜⎜⎜⎜⎝
−1

1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠, (26)

v0,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

γ
√

2
√

(κ + γa)κ

κ(2iγp + γs + 2γa)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

Following the same procedure as above, we obtain that

λ0,2 = − (1 + iα)κγ

2γa + 2iγp + γs

. (28)

Thus, the eigenvalue bifurcates linearly as η1 is increased.

3. Other eigenvalues

For the sake of completeness, using the same analysis we
obtain that the other eigenvalues bifurcate as

λ = −γ + 2 η1(γa + κ − γ /2)/Ns + · · · , (29)

λ = −γs + γ κη1 × [4γp(γaα + γp + κα)

+ 2γa(4γa + 2κ + 3γs) + γs(2κ + γs)]/
[(

4γ 2
p + 4γ 2

a

+ 4γsγa + γ 2
s

)
(κ + γa)

] + · · · . (30)
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Note that these eigenvalues are initially on the left half plane
and hence cannot create instability for small η1.

B. Stability of out-of-phase solutions

One can do the same calculations as above. Therefore,
here we only present our results. The eigenvalues of the
time-independent solution (11) for θ = π and small η1 are
given by

λ = 0,−2κη1 + · · · , −γ − 2η1(γa − κ + γ /2)/Ns + · · · ,

− 2(γa ± iγp) − η1(1 ± iα)κγ /(2γa ± 2iγp − γs) + · · ·,
− γs − η1κγ × [4γp(γaα + γp − κα)

+ 2γa(4γa − 2κ − 3γs) + γs(γs + 2κ)]/
[(

4γ 2
p + 4γ 2

a

− 4γsγa + γ 2
s

)
(−κ + γa)

] + · · · . (31)

IV. NONVANISHING PUMP POLARIZATION

Next, we consider the existence and stability of the time-
independent solutions when P �= 0. In particular, we study
analytically the case of 0 < η1 and P � 1 and assume that
the other parameters are O(1). One would expect that the
computation will be similar as before. However, it is important
to note that here we have two small parameters which can be
competing. In the following, our analysis is formal and we
assume that the series is convergent.

A. In-phase solutions

The asymptotic expansions of the in-phase solutions can be
written as

E+ =
√

η1

2
(
1 + γa

κ

) + E+1P + E+2P
2 + · · · ,

E− =
(√

η1

2
(
1 + γa

κ

) + E−1P + E−2P
2 + · · ·

)
ei(θ1P+··· ),

Ns = 1 + γa/κ + N2P
2 + · · · , (32)

ω = γaα − γp + ω2P
2 + · · · ,

ms = m1P + · · · .

Performing perturbation expansions as before but now in
P , we obtain

E+1 = −E−1 = −1

4

√
2η1καγ

γpγs

+ O
(
η

3/2
1 ,γa

√
η1

)
, (33)

E+2 = E−2 = −αγpκγ 2

√
8η1γ 2

pγ 2
s

+ O(
√

η1,γa/
√

η1), (34)

θ1 = −γ κ

γpγs

+ O(γa), ω2 = 1

2

(α2 + 1)γ 2κ2

γ 2
s γp

+ O(γa),

(35)

m1 = γ (κ + γa)/(κγs), N2 = γ 2κα

γ 2
s γp

+ O(γa). (36)

Note that E+2 = E−2 becomes singular in the limit η1 → 0.
This informs us that the expansion (32) is valid provided that
P 2 � √

η1 and there may be bifurcations when this condition
is violated.

Next, we study the stability of the solutions. It is natural to
expand the variables in the eigenvalue problem (8) as

� = �0 + �1P + �2P
2 + · · · , (37)

where � = M, v, λ. Substituting the expansion in the eigen-
value problem, we obtain at O(1), O(P ), and O(P 2), respec-
tively,

(M0 − λ0)v0 = 0, (M0 − λ0)v1 = (λ1 − M1)v0,
(38)

(M0 − λ0)v2 = (λ2 − M2)v0 + (λ1 − M1)v1.

Note that the equation at O(1) is the same as that solved in the
previous section. Therefore, we expand each variable in η1 and
solve the corresponding eigenvalue problems asymptotically,
i.e., we write for �j , j = 0,1,2,

�j = �j,0 + �j,1
√

η1 + · · · , j = 0,1, (39)

�2 = �2,−1√
η1

+ �2,0 + · · · . (40)

Due to the expansion, it can be easily checked that the
asymptotic values of �0 will be the same as those obtained
in Sec. III above.

First, consider the eigenvalue

λ0,0 = 2(γa ± iγp).

From the equation at order O(P,η0
1), i.e.,

(M0,0 − λ0,0)v1,0 = (λ1,0 − M1,0)v0,0,

its solvability condition yields λ1,0 = 0.
Solving the equation at order O(P 2,η0

1), i.e.,

(M0,0 − λ0,0)v2,0 = (λ2,−1 − M2,0)v0,0,

gives us λ2,−1 = 0.
A leading-order nonvanishing eigenvalue in the presence of

P can be obtained from the equation at order O(P 2,η1
1), i.e.,

(M0,0 − λ0,0)v2,1 = (λ2,0 − M2,1)v0,0 − M0,1v2,0

− M1,0v1,0 − M2,0v0,1,

from which we obtain that up to O(γa)

λ2,0 = −(2(iα − 1)γp − α(γs + γ ) − iγs)(i + α)γ 2κ2

(iγs + 2γp)γpγ 2
s

.

(41)
For

λ0,0 = −γ,

we obtain

λ2,0 = γ 2(γ − 2κ)ακ

γ 2
s γp

+ O(γa). (42)

Performing the same calculation for

λ0,0 = 0
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yields λ0,1 = λ1,0 = λ2,−1 = 0 and

λ2,0 = 2αγ 2κ2

γpγ 2
s

+ O(γa). (43)

For

λ0,0 = −γs,

we obtain

λ2,0 = γ 3ακ
(−4γ 2

p + 4αγpκ − γ 2
s + 2γsκ

)
γpγ 2

s

(−4γ 2
p − γ 2

s

) .

B. Out-of-phase solutions

The asymptotic expressions of the out-of-phase solutions
are written as

E+ =
√

η1√
2(1 − γa/κ)

+ E+1P + E+2P
2 + · · · ,

E− =
( −√

η1√
2(1 − γa/κ)

+ E−1P + E−2P
2 + · · ·

)
ei(θ1P+··· ),

Ns = (1 − γa/κ) + · · · , ω = γp − γaα + · · · ,

ms = m1P + · · · . (44)

Performing perturbation expansions as before, we obtain

E+1 = E−1 = 1

4

√
2η1κγα

γpγs

+ O
(
η

3/2
1 ,γa

√
η1

)
, (45)

E+2 = −E−2 = 1√
8

αγ 2κ√
η1γpγ 2

s

+ O(
√

η1,γa/
√

η1), (46)

N2 = −1

2

2καγ 2

γpγ 2
s

+ O(γa), (47)

w2 = −1

2

κ2(α2 + 1)γ 2

γpγ 2
s

+ O(γa), (48)

θ1 = κγ

γpγs

+ O(γa), m1 = γ (κ − γa)/(κγs). (49)

Note that E+2 = E−2 also becomes singular in the limit
η1 → 0.

Next, we study the stability of the solutions. Using the same
expansions and following the same procedures as above, we

obtain that for the nonzero eigenvalue

λ0,0 = −2(γa + iγp),

the pump yields the correction

λ2,0 = [2(iα + 1)γp + iγs − (γ + γs)α](i − α)γ 2κ2

(iγs + 2γp)γpγ 2
s

.

For

λ0,0 = −γ,

we obtain

λ2,0 = − (γ − 2κ)ακγ 2

γ 2
s γp

. (50)

For λ0,0 = 0, we also obtain

λ2,0 = −2ακ2γ 2

γpγ 2
s

.

For λ0,0 = −γs , we obtain

λ2,0 = −γ 3ακ
(−2γsκ + 4αγpκ + γ 2

s + 4γ 2
p

)
γpγ 2

s

(
γ 2

s + 4γ 2
p

) .

V. NUMERICAL RESULTS

We solved the governing equations, Eqs. (1)–(4) and (7),
numerically using a Newton-Raphson method. To track the
solution continuation when there is a saddle-node bifurca-
tion, we use a pseudoarclength method. The stability of
the solution is then determined by solving the eigenvalue
problem (8).

In the following, we take the linewidth enhancement factor
α = 5, birefringence rate γp = 35 ns−1, spin relaxation rate
γs = 105 ns−1, dichroism rate γa = 0, carrier recombination
rate γ = 1 ns−1, and the cavity decay rate κ = 250 ns−1.

Shown in Fig. 1 are the eigenvalues λ of the in-phase
solution in the upper half of the complex plane as η increases
from η = 1. From the figure one can conclude that in
general the effect of η on the in-phase solution is stabilizing
it. This can be seen by the fact that all the eigenvalues
have negative real parts as η ∼ 1 varies (except the trivial
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FIG. 1. (Color online) The eigenvalues of the in-phase solution in the complex plane as η increases from 1, with the trajectory direction
indicated by the arrows. The insets compare some of the numerically obtained eigenvalues (dots) and our analytical approximations (solid blue
curves).
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FIG. 2. (Color online) The same as Fig. 1, but for the out-of-phase solution.

eigenvalue λ = 0 that is always present due to the gauge-phase
invariance).

To compare the numerics and the analytical results cal-
culated previously, we show in inset (i) of Fig. 1 that the
eigenvalues bifurcating from 0 and −γ collide and create a pair
of complex-valued eigenvalues. Our analytical approximations
are shown in blue. It is clear that the theoretical expression can
only predict the dynamics of the bifurcating eigenvalues as the
parameter η is varied prior to the collision.

We also show the dynamics of the complex eigenvalue
bifurcating from λ = 2(γa ± iγp) as a function of η in inset
(ii) of Fig. 1. Depicted is the comparison between the real part
of the eigenvalues computed numerically and our analytical
result. It is interesting to note that the asymptotic result agrees
well with the numeric in a rather large interval of η.

If small η stabilizes the in-phase solution, large η has the
opposite effect. The in-phase solution can also be unstable
for large η. The instability is due to an eigenvalue bifurcating
from the far-left eigenvalue λ = −γs . Even though we did
not present a comparison with our analytical result, the
bifurcation is predicted by our asymptotic expression, i.e., that
the eigenvalue increases for increasing η. As shown in Fig. 1,
increasing η further makes the eigenvalue originated from
λ = −γs cross the vertical axis. This occurs at η ≈ 4.6. When
the eigenvalue crosses the origin, our system undergoes a pitch-
fork bifurcation. The bifurcating solution will be addressed
later.

If η ≈ 1 stabilizes in-phase solutions, the parameter has the
opposite effect on the out-of-phase solutions. In Fig. 2 we show
the behavior of the eigenvalues as η is varied, where one can
see that all the solutions are unstable. In the insets of the figure,
we also show the comparison between our asymptotic and the
numerical results of critical eigenvalues that potentially lead
to instability, i.e., eigenvalues bifurcating from λ = 0 and −γ

in inset (i) of Fig. 2 and that from λ = −2(γa ± iγp) in inset
(ii) of Fig. 2. Again one can note the good agreement between
the results.

Next, we consider the effect of P on the stability of the
in-phase and out-of-phase equilibrium solutions.

We plot in Figs. 3(a) and 3(b) the critical eigenvalues of the
in-phase solution as a function of P with η = 1.0004. For the
two eigenvalues on the real axis that can collide and become
a complex pair, our analytical result shows a qualitative
agreement, where one can note that the pump polarization

tends to destabilize the solution. For the complex-valued
eigenvalues that originally were on the imaginary axis, our
asymptotic result shows good agreement even quantitatively as
the numerical and analytical curves coincide visually. Again,
it also shows that the polarization P �= 0 destabilizes the
solution. From combining Figs. 3(a) and 3(b), we found
numerically that stability changes at P = 0.05. Moreover, the
solution ceases to exist beyond P ≈ 0.35.

In Fig. 3(c), we plot the eigenvalues of the out-of-phase
solutions in the complex plane as P varies. Our computations
show that the polarization P �= 0 has a stabilizing effect on
the solution. Insets (i) and (ii) in Fig. 3 present the comparison
between the numerical results of the critical eigenvalues and
our asymptotic analysis, where similarly to Figs. 3(a) and 3(b)
we also obtain quantitative agreement for the complex pair of
eigenvalues originally located at the imaginary axis. For the
parameter values used in Fig. 3, we found numerically that the
out-of-phase solution changes from being unstable to stable at
P = 0.03. The solution exists for any P .

In Fig. 3(d), we represent the in-phase and out-of-phase
solutions in terms of their ellipticity defined as Eq. (6).

In Fig. 3 we used the parameter value η = 1.0004 for the
sake of comparison with the analytical results, i.e., the eigen-
value bifurcating from λ = 0 has not collided with another
eigenvalue creating a pair of complex-valued eigenvalues. In
Fig. 4, we used η without the constraint (and hence no com-
parison with the analytical results). In Fig. 4(a), we still obtain
the same conclusion that P destabilizes the in-phase solution
and stabilizes the out-of-phase one. However, the difference
with Fig. 3(d) is that the in-phase and out-of-phase solutions
have wider stability and instability regions, respectively. This
is expected because of the effects of moderate η on those
solutions discussed previously. In addition to that, the in-phase
solution also exists in a longer interval of P .

However, when η is large enough, it can destabilize the
in-phase solution (see Fig. 1). We present in Fig. 4(b) examples
of the case when increasing η further does not necessarily
imply a wider stability window for the in-phase solution. As the
eigenvalue λ bifurcating from −γs approaches the origin, the
slope of the ellipticity curve ε(P ) at P = 0 is getting steeper
and becomes singular at the pitchfork bifurcation. When the
eigenvalue vanishes, the slope changes sign. Increasing η

further will cause the system to have another time-independent
solution, i.e., pitchfork bifurcation, that is stable.
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FIG. 3. (Color online) (a),(b) The eigenvalues of the in-phase solutions (that correspond to those in insets (i) and (ii) of Fig. 1, respectively)
as a function of P . (c) The eigenvalues of the out-of-phase solution in the complex plane as P increases from 0. (d) The ellipticity ε as a function
of P . The curves with the negative and positive slopes correspond to the in-phase and out-of-phase time-independent solutions, respectively.
Unstable and stable solutions are indicated, respectively, as dotted and solid lines. In all the panels, η = 1.0004.

VI. EXPERIMENTAL RESULTS

The fiber-based experimental setup has been described in
detail elsewhere [7,15,27] and hence only a brief summary
is given here. A commercial CW 980-nm laser which is
controlled in terms of its polarization and output power (via
the current) is used to optically pump the VCSEL sample. The

active region of the sample consists of a 3-λ cavity that contains
five groups of three GaInNAs (λ = 1300 nm) quantum wells
(QWs), sandwiched between high-reflectivity Bragg mirror
stacks; full details are given in Ref. [27]. Lasing emission from
the optically pumped spin-VCSEL sample is characterized
in terms of output power, wavelength, polarization, and their
stability, all as a function of pump conditions.
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FIG. 4. (Color online) The same as Fig. 3(d), but for (a) η = 1.05 and (b) η = 3 and 5.

Results for 1300-nm dilute nitride spin-VCSELs have
already been reported for cases where the output showed stable
lasing [27], periodic oscillations [7], and polarization switch-
ing [15]. Figure 5 shows results for polarization switching at
three different pump laser currents (950, 962, and 1006 mA)
above threshold (where the pump current was 875 mA). The
lack of symmetry around the linearly polarized state (zero
ellipticity) here arises from the fitting process used to obtain
values of absolute polarization, as discussed in Ref. [27]; in
this case, differences in calibration between both polarimeters
prevented optimal processing of the data and the fit was made
to ensure that the extreme values of the VCSEL ellipticity are
correct. Comparing these results with the theoretical ones in
Figs. 3(d) and 4, it is clear that there is switching between
the in-phase (negative slope) and out-of-phase (positive slope)
solutions (as discussed above) for each pump current. The

0 1

0

1

-1

P

ε

FIG. 5. (Color online) Measured output polarization ellipticity ε

versus ellipticity of the pump laser P at three different currents:
950 mA (black circles), 962 mA (blue triangles), and 1006 mA (red
squares).

switching always occurs from a stable branch that becomes
unstable to one that is stable. The regions of stability on each
branch change with pumping in the experimental results as
they do for the theoretical ones. While the trends are clearly
similar, detailed comparison between theory and experiment is
not possible at this stage since that would require more accurate
knowledge of the key parameters, namely, the rates of carrier
recombination, spin relaxation, birefringence, dichroism and
cavity decay, and the linewidth enhancement factor. Novel
experimental techniques for determining these parameters in
VCSELs developed recently by Perez et al. [28,29] might
enable further progress in this respect.

VII. CONCLUSION

We have analyzed the SFM describing spin-VCSELs. In
particular, we have considered the existence and stability
of in-phase and out-of-phase time-independent solutions
(equilibria), both in the absence and the presence of pump
polarization ellipticity. For the case of LP pumping just above
the lasing threshold, we showed that the in-phase solution
is stable while the out-of-phase one is not. Increasing the
total pump power will destabilize both types of equilibria.
Additionally we showed that the pump polarization ellipticity
stabilizes the out-of-phase solution and destabilizes the other.
The analytical and numerical results were shown to be in
agreement qualitatively with the experiments.

For future work, it is naturally interesting to study the
attracting solutions when the system does not admit stable
time-independent solutions (see Fig. 4). Normally in this
region one would obtain time-periodic solutions (i.e., Hopf
bifurcations) (see Refs. [23,26] for the case of P = 0).
However, analytical results are currently lacking that may help
us have insight into the system for potential applications, such
as information coding.
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