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Luminal pulse velocity in a superluminal medium

Heisuke Amano and Makoto Tomita
Department of Physics, Faculty of Science, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka 422-8529, Japan

(Received 6 September 2015; published 23 December 2015)

To investigate the physical meaning of pulse peak in fast and slow light media, we investigated propagation
of differently shaped pulses experimentally, controlling the sharpness of the pulse peak. Symmetric behavior
with respect to fast and slow light was observed in traditional Gaussian pulses; that is, propagated pulses were
advanced or delayed, respectively, whereas the pulse shape remained unchanged. This symmetry broke down
when the pulse peak was sharpened; in the fast light medium, the sharp pulse peak propagated with luminal
velocity, and the transmitted pulse deformed into a characteristic asymmetric profile. In contrast, in the slow
light medium, a time-delayed smooth peak appeared with a bending point at t = 0. This symmetry breaking
with respect to fast and slow light is a universal characteristic of pulse propagation in causal dispersive systems.
The sharp pulse peak can be recognized as a bending nonanalytical point and may be capable of transferring
information.
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I. INTRODUCTION

The problems surrounding the physical meaning of pulse
peaks in optical pulses have long been debated, especially for
fast light media. In anomalous dispersion regions, a pulse peak
can propagate with superluminal or even negative velocities
[1–7]. Such velocities seemingly contradict the theory of
special relativity, however, it is now understood that the
superluminal velocity of a smooth Gaussian-shaped pulse peak
does not violate causality; the arrival of the smooth pulse peak
can be predicted on the basis of the expansion of the leading
part of the pulse, and hence the pulse peak does not contain true
information [8–10]. Furthermore, it has been experimentally
demonstrated that a Gaussian-shaped peak exits from the far
side of a superluminal medium, even though the incident pulse
terminates at a time before the Gaussian pulse peak enters the
medium [11].

Historically, Sommerfeld and Brillouin showed that the
main body of a pulse propagates through the medium with
a group velocity, whereas the front edges of the precursors
always travel at c, the velocity of light in a vacuum [1].
This idea has been developed to incorporate the fact that true
information is encoded on nonanalytical points or singularities
along the wave packets [12–15]. As expansion of the leading
part of the pulse cannot be applied beyond nonanalytical
points, the arrival of pulse points after the nonanalytical point
is considered a new signal. Practically, the definition of the
information velocity incorporates many factors [16–19]. In
the presence of quantum noise associated with the amplifying
medium, a larger signal is required to achieve a given signal-
to-noise ratio at the output, hence the arrival of the signal
is significantly retarded [13,16,19]. This retardation has been
found in numerical simulations to be larger than the reduction
in propagation time due to anomalous dispersion.

Nonanalytical points, as information carriers, are not
restricted to the front of the pulse or discontinuous points in the
pulse envelope. A sharp bending point, at which the envelope
function is continuous but the derivatives are discontinuous,
could also act as a nonanalytical point [20]. Propagation
of bending nonanalytical points encoded on temporally
Gaussian-shaped optical pulses was recently investigated in

fast and slow light systems. It was shown that the propagation
of the bending nonanalytical point was in accordance with the
causal principle [21].

Our motivation here is to clarify the physical meaning of
the pulse peak in fast and slow light media. If the pulse has
a sufficiently sharp peak, such a peak could be recognized
as a bending nonanalytical point. The pulse peak could
then transfer information. The influence of pulse shape on
pulse propagation in a superluminal medium is systematically
investigated, particularly the sharpness of the pulse peak.
Although pulse propagation through resonant media has been
widely studied, there is no systematic data on the effect of
input pulse shape.

For traditional Gaussian pulses, transmitted pulses were
formed such that the delay times were symmetrically negative
and positive in fast and slow light media, respectively, whereas
the pulse shape was unchanged. When the pulse peak was
sharpened, this symmetry broke down. In the fast light
medium, the sharply peaked input pulses propagated with
luminal velocity rather than group velocity, and the transmitted
pulse deformed into a characteristic asymmetric profile. In
contrast, in the slow light medium, the sharply peaked input
pulse produced a relatively smooth output pulse peak with a
positive time delay. A bending point also appeared at t = 0.
The experimental results were analyzed considering the pulse
peak as a nonanalytical point. Universal characteristics of pulse
propagation in causal dispersive systems are discussed.

II. PULSE SHAPES

A number of experimental and theoretical investigations
have been reported on pulse propagation in resonant media.
The temporal functional forms of the input pulses were,
however, very limited; in most cases, Gaussian pulses were
considered. From an experimental point of view, pulses
naturally obtainable from instruments can frequently be
approximated as Gaussian pulses. For Gaussian pulses, the
effect of group velocity dispersion broadens the pulse duration
while maintaining the pulse shape. Gaussian pulses may
thus be suitable for experiments on pulse peak propagation.
Another functional form sometimes used is square-modulated
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pulses. Summerfield and Brillouin examined the propagation
of square-modulated pulses on the basis of the saddle-point
method and investigated the effect of optical precursors [1].
This type of square-modulated pulse was also employed
in recent experiments on precursors in electromagnetically
induced transparency [22–24] as well as coupled resonator-
induced transparency [25]. Single-side exponential pulses
have also been used successfully to examine both the pre-
cursors and the propagation of the main body of pulses
simultaneously [26].

In our experiments, we used the following functional form
for the slowly varying envelope of the input pulses:

f (t) = A exp

[
−

∣∣∣∣ t

tp

∣∣∣∣
α]

, (1)

where A and tp represent the pulse amplitude and temporal
duration, respectively. The parameter α indicates the sharpness
of the peak. For α = 1, the pulse is exponential on both
sides, and, in this case, the pulse peak is mathematically a
nonanalytical point limx→−0(df/dx) �= limx→+0(df/dx) in
Eq. (1). As α increases the pulse peak becomes smoother;
pulses of this functional form are an extension of traditional
Gaussian-shaped pulses, which arise for the specific case
where α = 2. In this case, both the function and the derivatives
are continuous at the peak. When α exceeds 2(α > 2), the pulse
peak becomes flattened, compared with the Gaussian pulse.

III. EXPERIMENT

The inset in Fig. 1 shows the experimental setup. Fiber ring
resonators were used for the fast and slow light media, which
offer highly controllable dispersion through cavity loss x and
the coupling strength between the fiber and the ring resonator
y. Note that our interest here lies in the influence of pulse shape
on pulse propagation and not in the dispersion characteristics
of the ring resonators, which have been studied extensively.
The stationary input-output characteristics of the resonator can
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FIG. 1. (Color online) Schematic of the experimental setup (in-
set). In and out correspond to the input and output (transmitted)
pulses, respectively. The blue (a) and red (b) solid curves are exper-
imental observations of the resonance spectra for undercoupling and
overcoupling conditions, i.e., fast and slow light media, respectively.
The resonance widths were 7.6 and 11.4 MHz, respectively.

be analyzed based on directional coupling theory [27,28]. The
transmitted light intensity T (ω), as a function of frequency
ω, shows a periodic dip due to the resonances. The dispersion
relationship depends on the loss x and coupling strength y. For
undercoupling conditions (x < y), the transmission phase as
a function of frequency θ (ω) shows an anomalous dispersion
at the center of the resonance. The group delay is expected to
be negative τg = ∂θ/∂ω < 0, corresponding to superluminal
pulse propagation, i.e., fast light. In contrast, for overcoupling
conditions (x > y), the transmission phase shows normal
dispersion ∂θ/∂ω > 0, and one would expect slow light [28].
In the current study, 90:10 (y2 = 0.90) and 80:20 (y2 = 0.80)
couplers were used to achieve undercoupling and overcoupling
conditions, respectively. We inserted an additional loss element
within the ring resonator to control the loss parameter (x2 =
0.89). The physical length of the ring was LR = 200 cm.
An Er-fiber laser was used as the incident light source.
The spectral width was 1 kHz, and the laser frequency was
tuned by piezoelectric control of the cavity length. A series
of pulses of the temporal functional form of Eq. (1) were
prepared by a computer program. The optical pulses were
then generated using a 240-MHz function generator and a
10-GHz LiNbO3 (LN) modulator. The repetition rate was
100 kHz, and the incident power was 0.1 mW. Transmis-
sion intensity through the system was observed using an
InGaAs photodetector and recorded using a 600-MHz digital
oscilloscope.

The blue and red curves in Fig. 1 are the observed
resonance spectra as a function of the detuning frequency
for undercoupling and overcoupling conditions, respectively.
These spectra were observed in the continuous-wave mode
in which the LN modulator was operated in the open mode.
The transmitted light intensity T (ω) showed a dip due to
the resonance. The resonance widths were δνR = 7.6 and
11.4 MHz, respectively. We systematically examined the
propagation of pulses of different values of α in Eq. (1) under
resonant conditions.

Figure 2 shows the experimentally observed transmitted
temporal pulse profiles through the ring resonators. The
left column shows the input pulses with the pulse shape
controlled through the parameter α. The middle column is the
transmitted temporal pulse profiles through the undercoupling
ring resonator, i.e., the fast light medium. For the pulse with
α = 1 (exponential on both sides), the pulse peak showed
almost no delay and appeared at the same time as under
off-resonance conditions [Fig. 2(a2)]. This indicates that the
pulse peak propagated with luminal velocity as opposed
to group-velocity propagation. The transmitted pulse profile
reshaped and deformed into a characteristic asymmetric profile
with respect to the peak position. The section after the peak
showed a greater reduction compared with the first part of
the pulse. With increasing α, 1 < α < 2, the peak in the input
pulses became smooth. The peak in the output pulses advanced
gradually, and the pulse shape recovered symmetry with
respect to the pulse peak [Figs. 2(b2)–2(d2)]. In the present
experiments, the peak was still sharp, hence the ring resonator
could not respond to the peak. For traditional Gaussian-shaped
pulses, i.e., α = 2, the transmitted pulse was nearly symmetric
with respect to the peak, and the peak advanced by τ = −63 ns,
which is in good agreement with the theoretically expected
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FIG. 2. (Color online) Experimental observations of the trans-
mitted temporal pulse profiles. The left column shows the input
pulses. The middle and right columns are transmitted pulse profiles
through undercoupled and overcoupled resonators, i.e., fast and slow
light media, respectively. The parameter α was (a) 1.0, (b) 1.25,
(c) 1.5, (d) 1.75, and (e) 2.0. The condition α = 1.0 corresponds
to a pulse that is exponential on both sides (light yellow hatching),
and α = 2.0 corresponds to a traditional Gaussian pulse (light green
hatching). The pulse peaks of Gaussian pulses showed negative delays
of (e2) −63 ns and positive delays of (e3) 120 ns with undercoupling
and overcoupling conditions, respectively. The vertical green lines
indicate the peak position. The downward arrow in (a2) shows the
centroid of mass of the transmitted pulse profile. To see the pulse
shape clearly, all intensities were normalized with respect to the
maximum of the pulses.

value of the group delay for the undercoupled ring resonator
τg = −64 ns [Fig. 2(e2)].

The right column in Fig. 2 shows the transmitted temporal
pulse profiles in the overcoupled ring resonator, i.e., the slow
light medium. In this case, in contrast to the results from
the undercoupled ring resonator [Fig. 2(a2)], the transmitted
pulse from the overcoupled ring resonator was accompanied
by a relatively smooth pulse peak with a large delay time of
τ = 67 ns, even with the sharp input pulse defined by α = 1
[Fig. 2(a3)]. It is also notable that a bending point appeared
at t = 0. This bending point is related to the sharp peak in
the input pulse. As α increased over the range of 1 < α <

2, the delay time increased, and the bending point at t = 0
weakened. For the traditional Gaussian-shaped pulse, i.e., α =
2, the pulse was nearly symmetric, and the pulse peak showed
a delay of τg = 120 ns [Fig. 2(e3)]. Comparing Figs. 2(e2) and
2(e3), we see that the behaviors of the transmitted pulses were
symmetric with respect to the fast and slow light media; the
delay times were negative [Fig. 2(e2)] and positive [Fig. 2(e3)],
respectively, and the pulse shape was unchanged. The observed
delay times of the pulse peak as a function of the parameter
α are summarized in Fig. 3. The blue closed and red open
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FIG. 3. (Color online) Delay time of the pulse peak as a function
of the parameter α. The blue solid and red open circles are
experimentally observed delay times. The red and blue curves are
the calculated delay times given undercoupling and overcoupling
conditions, respectively.

circles represent the delay times for the undercoupled and
overcoupled ring resonators, respectively.

IV. SIMULATION

To analyze the results of the experiments, we simulated the
propagation of pulses of different shapes. Figure 4 shows the
calculated curves of transmitted pulse profiles with different
values of α. In addition to the experimental values of α,
regions where α < 1 and α > 2 were also investigated. The
middle and right columns in Fig. 4 show calculated curves
for the transmitted pulses for undercoupling and overcoupling
conditions, i.e., fast and slow light media, respectively. Simu-
lation results correlated well with experimental observations.
In the fast light system, for α = 1, the pulse peak appeared
immediately as the pulse entered the system [Fig. 4(b2)].
The transmitted pulse profile reshaped and deformed into the
characteristic asymmetric shape. For α = 1, the pulse peak is
mathematically a nonanalytical point. The peak could carry
information [12,20,21] and, hence, should propagate with a
velocity slower than c, in accordance with the requirement
of relativistic causality. With increasing α from 1 to 2, the
peak gradually advanced, and the transmitted pulse profile
recovered symmetry. For a traditional Gaussian pulse, i.e.,
α = 2, the transmitted pulse profile was perfectly symmetric,
and the pulse peak showed a negative delay of τg = −64 ns
[Fig. 4(f2)]. For the slow light system, the simulation results
also correlated with the main features of the experimental
results. Even with a sharp pulse of α = 1, a smooth pulse peak
appeared with a positive delay. The input pulse peak acted as
a nonanalytical point, generating a bending point and a steep
rise at t = 0 in the transmitted pulse [Fig. 4(b3)].

The features observed in the simulations were confirmed in
the Fourier spectra of the input pulses used in the simulation
(Fig. 5). The spectra consisted of a main part associated with
the main body of the pulse and broadband wings related to
the sharp peak. We denote the width of these components as
δνmain and δνp, respectively. For α = 1, the broadband wing
frequency components lay outside the resonance δνp � δνR

[Fig. 5(b)]; the resonator could not respond to these broadband
frequencies. As a result, the pulse propagated through the
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FIG. 4. (Color online) Calculated curves for the transmitted
pulse profiles. The left column shows the input pulses. The middle
and right columns show the transmitted pulse profiles for undercou-
pling and overcoupling conditions, i.e., fast and slow light media,
respectively. The parameters α were (a) 0.50, (b) 1.0, (c) 1.25, (d)
1.5, (e) 1.75, (f) 2.0, and (g) 3.0.

system as if the medium was empty. In the fast light medium,
the peak propagated with luminal velocity. In the slow light
medium, the broadband components produced a bending
point at t = 0. As α increased and the pulse peak gradually
became smooth, the frequency wings of the spectrum shrank
[Fig. 5(c)]. In the region 1 < α < 2. The spectral tail related
to the peak was still broad as δνp � δνR , and the delay time
was smaller than τg . When α = 2, the spectrum resided in
the anomalous region of the undercoupled ring resonator. The
smooth Gaussian pulse peak propagated with superluminal
group velocity without significant deformation. As α increased
further beyond α > 2, the transmitted pulse profile suffered
serious deformation [Figs. 4(g2)] and 4(g3)]. In this region, the
pulse peak became flattened [Fig. 4(g1)]. Figure 5(d) shows
the Fourier spectrum of the pulse formed at α = 3; the main
body of this pulse had a broader spectral width δνmain � δνR ,
and the pulse shape showed significant deformation.

Our simulation results correlated well with experimental
observations; however, several differences were evident. In
the experimental results shown in Fig. 2(a2), the pulse peak
showed a slight negative delay (−2 ns), even with the pulse
formed at α = 1. In contrast, the simulation showed a zero
delay time τ = 0 in accordance with the fact that the pulse

peak was a nonanalytical point. The slight negative delay
observed in our experiments could be attributed to the finite
time resolution of the experimental system. A mathematical
or ideal nonanalytical point localizes at an infinitesimal time
point, hence, requires an infinite bandwidth. In this case,
the point acts nonanalytically for any dispersive system.
However, physical systems have finite bandwidths; therefore,
the experimental nonanalytical point has a finite time duration.
The experimental time resolution of our pulse generation
system, including the function generator and LN modulator,
was δνgen ∼ 240 MHz. The time resolution of the observation
system, including the detector and digital oscilloscope, was
up to δνobs ∼ 600 MHz. The resonance width of the resonator
was δνR ∼ 6 MHz. Therefore, the present input pulse peak
emulated a nonanalytical point fairly well for the resonator;
however, the pulse sharpness was insufficient to be recognized
as a perfect nonanalytical point δνobs � δνgen � δνR .

V. DISCUSSION

A. Causal symmetry breaking

For the traditional Gaussian pulses (α = 2), the transmitted
pulses were symmetrically formed with respect to fast and
slow light; i.e., the delay times were negative [Figs. 2(e2) and
4(f2)] and positive [Figs. 2(e3) and 4(f3)], respectively, and
the pulse shapes were symmetric with respect to the peak.
This symmetry broke down in the sharp pulses formed when
α = 1. For fast light, the pulse peak showed no delay, and
the transmitted pulse profile deformed into an asymmetric
shape [Figs. 2(a2) and 4(b2)]. In contrast, for slow light, a
relatively smooth pulse peak appeared with a large positive
delay with a bending point at t = 0 [Figs. 2(a3) and 4(b3)].
The behaviors of the fast and slow light could be a universal
characteristic of real causal dispersive systems. To confirm
this universality, we also calculated propagation of pulses
in which both sides were exponential, i.e., α = 1, through a
Lorentz medium. The spectral form was assumed to be g(ω) =
β/[(ω − ω0) − iγ ], where ω0 is the resonant frequency,β is
a constant that reflects the light-matter interaction. β > 0
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FIG. 5. (Color online) Absolute values of the amplitudes of the
Fourier components of the input pulses for different values of α:
(a) 0.5, (b) 1.0, (c) 2.0, and (e) 3.0. The spectra consist of a main
section associated with the main body of the pulse δνmain, and the
broadband wings are related to the sharp pulse peak δνp . Amplitudes
are normalized with respect to the height of the α = 0.5 spectrum.
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FIG. 6. (Color online) Calculated curves for the transmitted
pulse profiles. The input pulse is the same as that shown in Fig. 4(b1),
i.e., exponential on both sides. The left and right columns correspond
to fast and slow light media. (a1) and (a2) are the transmitted pulse
profiles through Lorentz-shaped absorbing and amplifying media
under resonant conditions, respectively, where ω0 = 2.0 × 1014,β =
5.0 × 103, and γ = 3.0 × 107 Hz and the propagation distance z =
0.03 m. (b1) and (b2) are the transmitted pulse profiles through
the virtual dispersive system. The transmitted pulse profiles are
symmetric with respect to the fast and slow light systems.

and β < 0 correspond to absorbing and amplifying media
[29], which show anomalous and normal dispersions at the
resonance frequency ω = ω0, respectively. Figures 6(a1) and
(a2) show the transmitted pulse profile for the absorbing and
amplifying Lorentz media, respectively. Given that the incident
pulse was exponential on both sides through the absorbing
and amplifying media, the transmitted pulse exhibited similar
behaviors as observed via the undercoupled and overcoupled
ring resonators, respectively. This supports the hypothesis
that the symmetry breaking observed when α = 1 in the fast
[Figs. 4(b2) and 4(b3)] and slow [Figs. 4(f2) and 4(f3)] light
media is an intrinsic feature of causal dispersive systems. In
the amplifying Lorentz line, the normal dispersion delays the
pulse. Simultaneously, from the Kramers-Kronig relation, this
normal dispersion should be accompanied by amplification;
hence, the delayed part of the pulse would be strongly
enhanced. In this case, a delayed isolated smooth pulse peak
appeared in the transmitted pulse profile [Fig. 4(f3)].

We also used a virtual dispersive system in which the imag-
inary part of the response function was set to 1, whereas for
the real part of the response function that of the undercoupled
and overcoupled ring resonators were used. Although such
a system does not satisfy the Kramers-Kronig relation and
hence cannot be realized in a real system, it is instructive
to examine pulse propagation through this noncausal system.
Figures 6(b1) and 6(b2) show the transmitted pulse profiles
for the virtual fast and slow light media, respectively. In this
case, the transmitted pulse shapes were symmetric with respect
to the fast and slow light, both having pulse peaks at t = 0.
Causal symmetry breaking does not take place. These results
are in good agreement with the idea that the symmetry breaking
observed for α = 1 with respect to fast and slow light is a
consequence of the causal nature of real systems.

B. Superluminal centroid velocity

The sharp pulse peak with α = 1 propagates with luminal
velocity even in the fast medium. There is another definition
of propagation velocity, which describes the motion of the
pulse based on the centroid of mass [30,31]. The centroid
of mass is defined as the time expectation integral over the
Poynting vector. It has been suggested that the interval of
the time expectations integral calculated at the starting and
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FIG. 7. (Color online) Transmitted pulse profile through the un-
dercoupled ring resonator (fast light) obtained using the peak-
truncated input pulses. The input pulses were truncated at tR =
−6 ns before the peak of the original pulses. (a)–(c) Experimental
observations. (d)–(f) Calculated curves corresponding to the graphs
in (a)–(c), respectively. The solid black curves in the left columns
are peak-truncated input pulses. The solid blue curves in the right
columns are the output pulses through the ring resonator that
correspond to the truncated input in the left column. The parameter
α is (a) 1.0, (b) 1.5, and (c) 2.0. For comparison, the dashed-black
curves in (d)–(f) represent the original input and output pulses without
pulse peak truncation.
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arrival points can be separated into the sum of the net group
delay and the reshaping delay. Net group delay is given by
the spectral superposition of the group delay. The reshaping
delay is the difference in arrival time at the initial point without
and with the spectral amplitude that is attenuated or amplified
during propagation. The propagation velocity, in terms of
the net group and reshaping delays, is always significant,
even in cases of strong distortion [31]. In our experiments,
we prepared input pulses by slicing out the pulse envelope
from a coherent continuous wave; hence, the pulses had no
initial phase modulation. In this case, the reshaping delay
was negligible, and only the net group delay was relevant for
describing the propagation velocity. The arrow in Fig. 2(a2)
shows the centroid of mass of the transmitted pulse, which
shows a negative delay of τc = −18 ns. Although the Fourier
spectrum of the sharp pulse with α = 1 had broadly spread tails
δνp > δνR , the main components of the frequency lay within
the anomalous dispersion region δνmain < δνR; hence, the net
delay had a negative value. Although the centroid of mass
velocity can be superluminal or negative, it is apparent that the
centroid of mass cannot transfer information superluminally
because the position of the centroid can be calculated only
after the entire pulse has arrived.

C. Peak-truncation experiments

The peak of Gaussian-shaped pulses is an analytic con-
tinuation over time of the earlier portion of the input pulse
envelope. The superluminal pulse peak in the fast light medium
is not information. It was experimentally demonstrated that
a Gaussian-shaped peak α = 2 exited from the far side of a
superluminal group-velocity medium, even though the incident
pulse was terminated before its peak [11]. We performed
similar experiments using truncated pulses of different values
of α. First, we review the results with peak-truncated Gaussian
pulses. The solid blue line in Fig. 7(c2) shows the experimental
results obtained with traditional Gaussian pulses after being
injected with the input pulse truncated at τR = −6 ns. A
smooth peak emerged at the output. The output peak for the
truncated pulse has the same advancement τg as the original
Gaussian pulse. Figure 7(a2) shows a similar experiment for
the case where α = 1. In this case, a large kick was observed at

the truncating point, similar to that observed with a Gaussian
pulse. The pulse peak, however, did not appear in the output
because the arrival of the sharp pulse peak cannot be predicted
by the analytic continuation of the leading part of the pulse. It
is interesting to examine whether we could observe the peak in
the output pulse for the pulses where α = 1.5, which showed
a rather small advancement compared with Gaussian pulses.
The experimental results in Fig. 7(b2) indicate that the pulse
peak can be observed, insofar as the truncating point lies in
the region of τ < tR � 0, even though the pulse shape was not
Gaussian. These experimental results are in good agreement
with the causal principle of information transfer in fast light
systems [8,9,11,12].

VI. SUMMARY

We investigated the propagation of differently shaped
pulses, controlling the sharpness of the pulse peak. For
traditional Gaussian pulses, the transmitted pulses were sym-
metrically formed with respect to fast and slow light. When
the pulse peak was sharpened, this symmetry broke down.
Specifically, in the fast medium, the pulse peak propagated, not
with the group velocity, but with luminal velocity, exhibiting
an asymmetric shape. In contrast, in the slow light medium, a
time-delayed smooth pulse peak appeared. The experimental
results indicate that when the pulse has a sufficiently sharp
peak, the pulse peak should be recognized as a nonanalytical
point. The sharp pulse peak could carry information in the same
way as the pulse front. The sharply peaked pulse may also be
useful in applications requiring precise optical measurement
to avoid higher-order dispersions or complicated spectral
structures in the system through which the pulse propagates. It
may be interesting to investigate the operational information
velocity defined relevant to the sharp pulse peak and the
retardation of the signal in the presence of detector noise
or quantum fluctuations. Although we utilized the functional
form of Eq. (1) for the purpose of extension of the traditional
Gaussian-shaped pulses, other shapes may also be of interest.
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