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Spectral method for efficient computation of time-dependent phenomena in complex lasers
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Studying time-dependent behavior in lasers is analytically difficult due to the saturating nonlinearity inherent
in the Maxwell-Bloch equations and numerically demanding because of the computational resources needed to
discretize both time and space in conventional finite-difference time-domain approaches. We describe here an
efficient spectral method to overcome these shortcomings in complex lasers of arbitrary shape, gain medium
distribution, and pumping profile. We apply this approach to a quasidegenerate two-mode laser in different
dynamical regimes and compare the results in the long-time limit to the steady-state ab initio laser theory
(SALT), which is also built on a spectral method but makes a more specific ansatz about the long-time dynamical
evolution of the semiclassical laser equations. Analyzing a parameter regime outside the known domain of validity
of the stationary inversion approximation, we find that for only a narrow regime of pump powers the inversion is
not stationary, and that this, as pump power is further increased, triggers a synchronization transition upon which
the inversion becomes stationary again. We provide a detailed analysis of mode synchronization (also known as
cooperative frequency locking), revealing interesting dynamical features of such a laser system in the vicinity of

the synchronization threshold.
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I. INTRODUCTION

Lasers are very rich dynamical systems, which exhibit
various time-dependent phenomena characteristic of nonlinear
systems, such as phase and mode locking, self-pulsing and
breathing, and, generally, spatiotemporal pattern formation
and dynamical chaos. Almost all these effects can be un-
derstood and quantitatively studied using the semiclassical
laser theory in the form of Maxwell-Bloch (MB) equations
[1-3], a set of coupled nonlinear equations for the space-
and time-dependent electric field amplitude E(r,t), and the
polarization and inversion of the gain medium P(r,t) and
D(r,t). Early work made abundant use of spectral methods,
where the field amplitudes entering the MB equations are
expanded in a complete basis of spatial modes, reducing
MB equations to a set of coupled nonlinear ordinary dif-
ferential equations for time-dependent amplitudes. These
early theoretical investigations made a number of simplifying
assumptions on the spatial aspects of the problem. The lasing
modes were assumed to be simple (uniform, trigonometric, or
Gaussian) and unmodified from their passive cavity modes,
and the openness (optical leakage) was taken into account
phenomenologically. While these assumptions are sufficiently
general to reproduce qualitatively almost all features of laser
dynamics in macroscopic cavities, new laser systems have
emerged in the past two decades that raised questions not
easily addressable by these spectral approaches.

Most novel laser systems are motivated by their deployment
as compact and tunable light sources for on-chip applications
[4]. Typically, these lasers feature complex subwavelength
patterning of the cavity volume to employ light-confinement
mechanisms that are based on optical interference (photonic
band gap materials that may or may not include optical defects,
random lasers) and/or total internal reflection (whispering
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gallery lasers, wave-chaotic lasers). Therefore these lasers
feature spatially complex modes, typically in highly open
geometries. In some cases, such as weakly scattering random
lasers, it is not even clear where the boundary of the system
is, and even what a mode means [5]. In addition, many
solid-state lasers are subject to spatially nonuniform pumping
conditions and feature strong modal interactions [6—10]. All
these conditions can be modeled by appropriately setting up the
original Maxwell-Bloch equations and solving the resulting
nonlinear partial differential equations (PDEs) in time-domain
through various finite-difference-based numerical methods
[11-13]. A number of such powerful computational methods
have been developed and employed to investigate the dynamics
of complex laser systems, either solving the full set of MB
equations [14-16], or the parabolic version obtained upon
a slowly varying envelope (SVE) approximation in the time
domain, the so-called Schrodinger-Bloch (SB) equations [17].

A more recent approach, the steady-state ab initio laser
theory (SALT) [18,19], overcomes the rather expensive dis-
cretization of the spatial domain of a complex laser system
in MB/SB-FDTD solvers by taking a spectral approach. The
field amplitudes E(r,t) are expressed in the constant-flux
(CF) basis [18], a set of non-Hermitian modes that exactly
describe the steady-state field distribution in a finite and
open domain under harmonic driving conditions [20]. There
are a number of advantages provided by this approach. (i)
The steady-state multimode solution (to be defined precisely
below) in the asymptotic infinite-time limit is obtained directly,
without resorting to a time-domain simulation. (ii) The exact
solution of the MB equations in the steady-state is obtained
through a modular two-stage procedure: in the first stage
the linear problem corresponding to the determination of a
CF basis is solved, and in the second stage this information
is used to solve a set of algebraic transcendental equations
[20]. This allows the separation of spatial complexity (han-
dled as a linear problem) from the computational nonlinear
problem, and perhaps more importantly obviates the need
for the computational implementation of boundary conditions
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through various PML-variety approaches [21]. (iii) SALT
is also flexible enough to effectively account for spatially
nonuniform pumping conditions [10,19,22,23], and (iv) it can
directly provide the far-field electric field distribution and
spectrum [10]. (v) Furthermore, over the past decade, SALT
has provided unique semianalytic insight to fundamental
problems in laser physics [10,19,23-26] that is harder to attain
through brute-force computational approaches.

Despite the success of SALT in the treatment of complex
laser systems, it has certain well-known limitations. The key
assumption of the theory is the stationarity of the inversion
D(r,t) [27] (or more generally, the level populations [28]).
The inversion is, however, never truly stationary, but in a
certain regime of parameters the nonstationary corrections are
systematically very small and can be neglected. To be more
specific, the nonstationary corrections [27], as discussed in
detail below, are order y; /A where A is the smallest frequency
difference of the lasing modes (typically slightly different
from the free spectral range of the cold cavity) and y is the
inversion relaxation rate. However, A depends on the pump
strength, and at larger powers can become smaller than y
due to nonlinear effects. As a consequence, the corrections to
SALT are not going to be small, and can lead to qualitatively
different behavior. As shown here, such a scenario can take
place under unusual circumstances where the spectrum of the
cavity contains quasidoublets (typically protected through a
discrete spatial symmetry of the cavity) that are spectrally
spaced apart at a distance (A, ) that is larger than the splitting of
the doublets (A), as shown in Fig. 2. Under such circumstances
the lasing modes of the doublet pair most favored by the gain
curve can lock to each other and synchronize as pump power
is increased through an effect called cooperative frequency
locking [29]. Yet, as we will show, the stationary inversion
approximation (SIA) fails only in a very limited pump power
range near the synchronization threshold, and is valid for most
of the pump power range below and above this threshold.

Thus itis of interest not only to understand the validity of the
SIA under various circumstances, but also to develop a spectral
method that is in principle not limited by any approximations
such as the SIA. Such a technique should be able to capture
any intrinsically dynamical behavior of complex lasers. We
present such a technique in this article, and discuss precisely
how SIA and thus SALT may fail in certain limited parameter
regimes.

Just as SALT, the new constant flux time domain (CFTD)
technique presented here provides a versatile tool for calcu-
lating lasing thresholds, spectra, and modal distributions in
the multimode regime for complex lasers including random
[19], semiconductor [30], photonic crystal surface-emitting
[31], and photonic molecule lasers [32]. Unlike SALT, it
can capture transient regimes, locking and synchronization,
various dynamical instabilities [33], as well as dynamical
chaos and, generally, spatiotemporal pattern formation.

In Sec. I we provide an overview of our theoretical ap-
proach, outline key approximations, and establish the CFTD-
SALT correspondence. In Sec. II, we provide a comparative
study of CFTD and SALT for a two-mode quasidegenerate
laser in two different regimes of parameters. Keeping all other
parameters the same, we analyze the steady-state dynamics of
this laser for small y; = 0.001 (y;/A = 0.0038) where the
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SIA is valid, and then for y =1 (y/A = 3.8037) where
SIA can not be guaranteed. Indeed, in the latter regime we
illustrate that the inversion is nonstationary for a narrow range
of pump powers, and show how this destabilizes the stationary
emission and ultimately triggers the synchronization of the
two modes, to return to a dynamical regime where inversion
is again stationary.

II. NON-HERMITIAN SPECTRAL APPROACH
TO LASER DYNAMICS

We start with the following form of the Maxwell-Bloch
equations [2] for the scalar electric field amplitude E(r,t),
polarization P(r,t) and inversion density D(r,t):

2
V2E* — ’Z—2E+ = poP™, (1)
2
Pt = —(iQ0 +y)P" — i%Em, 2)

D = y[Do() — DI +i (B (PHY — (B PTL ()
Here E = ET + E~, P = P™ + P~ and we used the rotating
wave approximation (RWA), valid when the frequencies of
the aforementioned fields (~€2,) are much larger than their
relaxation rates (controlled by y; in Class A and B lasers
[34]), typically well satisfied in the optical regime. The laser
cavity is characterized by the complex-valued refractive index
distribution n(r). We have in mind a quasi-two-dimensional
(quasi-2D) geometry in which case the scalar field E(r,f)
denotes the z component of the electric field for transverse
magnetic (TM) polarization, and n(r) represents the effec-
tive index [35]. In the inversion equation, Dy(r) represents
the possibly spatially inhomogeneous pump distribution. We
note that the description in Egs. (2)—(3) is sufficiently general
to describe the salient features of various gain media char-
acterized by a single dominant optical transition frequency,
including quantum cascade-based lasers (see Supplemental
Material [10]). The remaining parameters are as follows: y|
and yj are the polarization and inversion decay rates, €2, is the
center frequency of the gain curve, g is the dipole moment of
the individual two-level emitters forming the gain medium, pg
is the magnetic permeability, and c is the speed of light.

In the standard spectral approach [36], the electric field
and polarization are expanded in a complete set of states
dn(r), e.g., ET(r,t)y =3, cu(®)dn(r), with ¢, satisfying
V2, (r) = —n*(r) (w2 /c*) ¢ (r) with a boundary condition
at the cavity walls 9 D that gives rise to a Hermitian boundary
value problem, and hence a complete set of orthogonal
states {¢,,} with real-valued frequencies {w,,}. There are two
crucial shortcomings of this approach. The first is that a
phenomenological decay rate has to be added by hand to the
equations [36] in order for a well-defined steady-state to exist.
As an additional consequence, there is no systematic way to
extend the solution to the exterior of the cavity, where the
fields are actually measured. A second shortcoming with this
approach is that spatial hole burning interactions can only be
captured perturbatively in the electric field amplitude, or else
through an adiabatic elimination of the gain medium degrees
of freedom.
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FIG. 1. (Color online) (a) CF eigenvalues and their variation as
a function of the external frequency are shown for a 1D cavity
with n =3, Q, =20, y;, =1, and n2,L/c = 60 (see description
of parameters in text). Closely spaced blue + markers indicate the
variation in eigenvalues within the range Q2 = @, £ y, and the red
x marker indicates the eigenvalue calculated at Q = €2,,. The shift in
the real part of these eigenvalues is negligibly small. Frequencies are
scaled by tgr = nL/c and dimensionless. (b) The variation in the CF
eigenstate associated with the smallest eigenvalue shown in (a). Blue
lines show the eigenstate calculated in the same range as (a) while the
red line shows the eigenstate calculated at Q2 = €2,. The inset zooms
in on the peak enclosed in the dotted rectangle, closely showing the
very small variation in the eigenstates as a function of 2. Length is
scaled by cavity length L.

Here, we extend this spectral approach to a consistent
mathematical framework, by first expanding the electric and
polarization fields in terms of CF states [18] through the
following ansatz:

E*(r) =) ea(gn(r, Qe “)

Pty =) pu()pn(r,Qa)e " )

n

The biorthogonal set of CF states {¢,,(r,€2)} is the solution to
the Laplace eigenvalue problem V2@, = —n%(r) (wi /¢ Om
with outgoing boundary conditions "()Lr ~i(Q2/c)py as r —
oo. The set of CF states is the exact non-Hermitian basis
to expand the fields in an arbitrary open geometry described
by n(r) that is excited by an arbitrary spatial distribution of
monochromatic sources at frequency €2 [20]. The solution
to this boundary value problem leads to a complex-valued
spectrum w,, and associated eigenmodes ¢,, that parametri-
cally depend on the excitation frequency 2 (see Fig. 1 for an
example of this parametric dependence). The imaginary part of
wy, provides the crucial mode-dependent losses, either through
optical leakage out of d D or the material absorption described
by the imaginary part of n(r).

A crucial computationally important detail here is that the
computational domain of the CF problem can be reduced
to a last scattering surface dD that can be chosen to be
the minimal volume that includes all the relevant scattering
elements. In practice [19], D is chosen to be the minimal
circular boundary (in two dimensions) that includes all the
spatial inhomogeneities of n(r). Therefore, by construction the
relevant open boundary conditions are exactly satisfied through
the use of the CF basis in the expansion Eq. (4). In addition, CF
states can be analytically continued straightforwardly outside
d D and hence the fields, and in particular the electromagnetic
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flux and the measured spectrum, can be calculated exactly in
the far field [10].

In the ansatz (4)—(5) the time-dependence of each field
variable is entirely encapsulated in its respective coefficients
&, and p,. For computational efficiency, we factor out the fast
oscillation at atomic frequency €2,. The spatial dependence is
entirely captured by the CF states, which are calculated, in a
departure from previous applications of the CF basis, only at
Q,. This is a very good and well-controlled approximation,
for the CF states and frequencies {¢,,(r,2),w,,(£2)} typically
change slowly when the excitation frequency €2 is varied, see
for an example Fig. 1. This is in fact one of the crucial factors
in the computational efficiency of SALT [19]. We note that it
is possible to choose an unusual geometry where for a certain
narrow regime of parameters (£2) this assumption may fail, but
generally this should be taken as a hint that some extraordinary
spatial physics is present in the system that may give rise, e.g.,
to an exceptional point [23].

With the above ansatz of Egs. (4)—(5) inserted into
Egs. (1)—(3), we can derive the following equations of motion
fgr the time-dependent dimensionless coefficients &(¢), p(t),
Dy (1):

i, = 2;2 (22— 0o+ i 2 Z Bun G (6)
P ==V = iYL Y Dy &n, (7)
Dunn = 7)(Don = Do)
+ l% Zsj(Ammérﬁ;" — A B)- (8
Here we introduced the inversion matrix D, () =

fcavity drn?(r)@,,(r)D(r,t)p,(r), aset of space-independent co-
efficients describing the mode-projected inversion distribution.
While the inversion D(r,t) itself is real-valued, the coefficients
D,,, are in general complex-valued. All the variables are
rendered dimensionless through &,, = ¢,,/E., pm = Pm/Pe,
and D,,, = Dy /D, using the following scale factors that
contain all the units:

hy/yinL _ E. By

" P g

E.= = —,
‘ 2g oc?

9

Furthermore, time and decay rates are scaled by the effective
cavity round-trip time tg7 = nL/c (n can be taken to be the
spatially averaged effective index, and L = V!/3 for a cavity
with volume V). The key step in obtaining Eqs. (6)—(8) is the
elimination of the spatial dependence of each field vector by
utilizing the biorthogonality of the CF basis vectors. We will
drop the tildes henceforth.

/ drn*(r)gu (1. (r) = Sun. (10)
cavity

In contrast to a Hermitian orthogonality relation, this inner
product does not contain a complex conjugation. This is
a consequence of the dual modes (left eigenvectors) {@,,}
satisfying the relationship @,, = ¢;; [18,20].
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This step produces the following unitless complex-valued
parameters appearing in the above equations,

Apran = L / dr (e el e (), (1)
cavity

Aprsn = L / drn?(r)en (e (e (rea(r),  (12)
cavity

Bun = [ dron(ren (13)
cavity

Do = [ drwign ) Du(rie . (14)
cavity

Here, A,,;, and A) . can be seen as a generalization of
the inverse mode volume in the Hermitian version of the
single-mode laser problem. Interestingly, B,,, is not diagonal
unless the index is uniform across the cavity. The effective
mode-projected pump parameter is given by Dy, and is
the most critical parameter here. These overlap integrals
Egs. (11)—(14) are calculated prior to numerically solving the
time-dependent system of coupled equations in Egs. (6)—(8)
and they encapsulate the impact of the resonator modal
structure on modal interactions.

An important aspect of the above spectral formulation of
semiclassical laser equations is that it takes into account modal
interactions through spatial hole burning exactly. Majority
of the past spectral methods (with the exception of SALT),
account for interactions only perturbatively and generally to
third order in the electric field amplitude. This approximation,
as pointed out first in Ref. [37] and later in quantitative detail
discussed in Ref. [27], is only valid near the lowest laser
threshold, and generally severely underestimates the number
of lasing modes at higher pump powers.

As long as the parametric variations of the CF basis is small
within a window y, of Q,, the Egs. (6)—(8) are exact up to
the slowly varying envelope approximation used in Eq. (6) to
remove second-order time derivatives in &, and p,,. The impact
of the latter in SALT has been quantified previously [27] and
was shown to introduce small inaccuracies in the calculation
of steady-state lasing characteristics, but was not found to lead
to any qualitative differences even in the case of a complex
two-dimensional random laser. As discussed in Ref. [27], the
inaccuracies due to the SVE approximation increase for modes
that lie further away from the atomic (envelope) frequency,
modifying the threshold and slope efficiency of the affected
mode. The full nonlinear form of the SALT equation remains
unchanged, however, and any additional terms appearing
due to the the time-dependent treatment in CFTD appear as
corrections to the polarization and are not especially affected
by this approximation. Therefore, while this approximation
may fail to predict the actual modal geometry at higher powers,
it is not critical to the success of this method in qualitatively
describing a range of time-dynamical effects as discussed
below, and it can easily be undone at the expense of introducing
additional fields.

In the next section, our goal is twofold. We would first
like to benchmark SALT against the CF-projected time-
dependent laser equations Eqgs. (6)—(8) (CFTD) in the regime
of parameters where SALT is known to be accurate. Next,
we investigate a regime accessed by the change of a single
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FIG. 2. (Color online) (a) The refractive index distribution of the
cavity described in the text is shown as a function of space (r), scaled
by cavity length L. The CF eigenvectors color-matched with the CF
eigenvalues marked in (b) are plotted inside and outside the cavity;
dashed gray lines on each end mark the cavity faces. Note that the CF
mode with an antinode in the low refractive index region shows the
expected large amplitude due to reduced index. (b) The 10 eigenvalues
closest to gain center are shown for the cavity shown in (a); filled
red/blue circles mark the two eigenvalues used in the calculations
in this section: w; = 20.3764-0.0970i and w, = 20.6393-0.0957i.
The spacing between them is A = Re[w, — w;] = 0.2629 and their
spacing from the adjacent eigenvalue pairs is A, ~ 0.7.

parameter, y|, to a regime where the validity of the SIA is not
guaranteed, leaving all other parameters the same. Here we
encounter a narrow regime of pump powers where the system
is critical and unstable towards a synchronized oscillation
regime. In this regime that, for the special cavity configuration
of Fig. 2, occurs at extremely high pump power (about 25 times
the lowest threshold), SALT fails to capture the underlying
dynamics qualitatively. Interestingly, below and above this
narrow regime of pump powers, the SIA is valid and SALT is
accurate.

A second aim of the following discussion is to present an
accurate picture of the synchronization transition, known as
cooperative frequency locking [29]. Our theoretical result is
able to accurately capture the interesting dynamical regime
around the critical pump power for locking, experimentally
observed for the first time in 1988 [38].

III. BENCHMARKING SALT AGAINST CFTD:
THE TWO-MODE QUASIDEGENERATE LASER

In this section, laser dynamics is investigated for a
quasidegenerate 1D cavity. It consists of a dielectric slab with
refractive index n = 3.3, which sandwiches symmetrically a
layer of index n = 1.5 of thickness §L (see Fig. 2). The gain
curve is centered at 2, = 20.5, y; =8, and nQ2,L/c ~ 135.
This particular choice of y, ensures a flat gain experienced
by both of the cavity resonances included in the calculations
below, significantly reducing the effect of gain pulling in the
time-dynamical scenario where lasing mode frequencies shift
strongly with the pump power.

Choosing § L /L = 1/40, the resonances of the cavity come
in quasidoublets, which are separated from each other by a
relatively large spectral range (see Fig. 2). These conditions
are ideal to consider two regimes, one in which the SIA is
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valid (Regime A) and another where it cannot be guaranteed
(Regime B), by changing the value of a single parameter, yj,
and leaving all other parameters identical.

In Regime A (y; € A < y.), the assumptions underlying
SIA are valid and SALT and CFTD results should agree
quantitatively [27]. We will first set up the correspondence
between SALT and CFTD variables in the steady state and then
demonstrate excellent agreement between the two methods
using the two-mode quasidegenerate laser as an example.

In regime B (A < y; < y1) however, accessed here by
changing y, the stationary inversion approximation can not
be guaranteed. Indeed, while at low powers the laser oscillates
in two frequencies (two-mode lasing), above a critical pump
power Dy = D:‘;HC corresponding to the threshold for synchro-
nization, these two frequencies lock and a single frequency
remains. Just prior to synchronization, a close up at the
power spectrum of various dynamical variables of CFTD in
Egs. (6)—(8) reveals that close to the synchronization threshold
the SIA breaks down. The SIA remains valid generally,
however, breaking down in a very interesting way but only
within a narrow range of pump powers.

A. SALT-CFTD correspondence

The strength of a steady-state approach like SALT [18] is
that it directly delivers the frequencies as well as the intracavity
and extracavity field amplitudes as functions of the pump
power Dy. As such, it is not immediately clear how the SALT
variables are related to the CFTD variables ¢,,, p,, and D,,,.
In this section, we will set up this correspondence when this
correspondence exists, and then compare SALT and CFTD
results in the following section.

SALT is obtained by making a more specific ansatz for the
long-time solution of MB equations than that for CFTD:

EX(rn =) wi(re ", (15)
"

Prray = pire ™", (16)
n

The crucial point here is the assumption of a specific form
for the exact time dependence once steady state is reached
[compare Eq. (15) to Eq. (4)]. The fields are assumed to
be expandable in a discrete Fourier series with a finite
number of laser frequencies QW which are unknown and
to be determined. W)(r) are the spatial field amplitudes
corresponding to the exact (nonlinear) lasing modes, also to
be determined through the SALT equations:

[V2 + (ec(F) + (P, | W, (F) = 0, F € cavity  (17)

YL Dy(7)
Qu—watiyi 1+ YN T,

€,(r) = (18)
Here I, = y7/[y? + (2, — Q,)*]. Note that the polarization
spatial amplitudes p“(r) can be directly related to W (r)
and do not show up in the final set of equations to be solved.
Also note that in contrast to CFTD, the index p specifically
identifies lasing modes oscillating at distinct frequencies
(as opposed to spatial modes). The time-independent SALT
equations Eq. (17) are then solved by projecting each lasing
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mode W (r) into a set of CF states for the associated
frequency of oscillation QUV:

qj(u)(r) — Za,(l/t)q)n(r’gz(u))_ (19)

The SALT-CFTD correspondence is unveiled by assuming
0. (r, QW) ~ ¢,(r,Q,), which as discussed before, is gener-
ally a good approximation. In that case,

en(t) = &1 )" g i (20)
i

where the coefficients on the left- and right-hand side are the
CFTD and SALT variables, respectively.

Additional insight is obtained by asking what assump-
tions SALT makes about the solution of CFTD equations
Egs. (6)—(8), which are more general. SALT corresponds to
specific long-time solutions of the CFTD equations for which
eu(t) = ZM Sil'tieiigutv on(t) = ZM p#eiiﬂut and D,,, = 0.
The last assumption is the mode-projected version of the
SIA and one of the consequences is that y; drops out of the
equations. That does not, however, mean that SALT solutions
do not depend on y, but rather that the entire y; dependence
of SALT solutions is contained in the particular scaling of
the electric field Eq. (9). Of course, being exactly equivalent
to MBE equations up to the aforementioned approximations,
the CFTD equations permit far more general solutions, one of
which we will encounter further below.

For an N-mode CFTD calculation where N is the number
of modes, a CF basis of equivalent dimension must be
constructed, and N2 + 2N equations must be solved. For a
two-mode calculation, this amounts to two equations each for
the electric and polarization fields, and a total of four equations
for the diagonal and off-diagonal elements of inversion. Below
we will discuss the two-mode regime for the quasidegenerate
1D laser we introduced before (Fig. 2).

B. Regime A: Stationary inversion

We use the parameters quoted at the beginning of Sec. II
and take y; = 0.001. Right at the onset of the second mode
this gives y;/A = 0.0038. A only slightly changes in the
calculated interval of pump powers [see Fig. 4(b)] and the
assumptions underlying the SIA remain rigorously valid
throughout. In the figures below, we use a normalized pump
B = Do/ Dy, where Dy, is the lasing threshold.

CFTD calculations show that both |&;(t)]? and |&»(¢)|?
reach steady state after initial transients die out. Some sample
time series are shown in Figs. 3(a), 3(b) for two different
pump powers 8 = 1.16 and g = 2. These findings indicate
that there is a single frequency in both e1(¢) and &,(¢), as
confirmed in the respective power spectra shown in Fig. 3(c).
Shown in Fig. 3(d), | D,,,(w)|* is the power spectral density
(PSD) of D,,,(t) (itself not shown). Here we plot | D;;(w)|?
and |Dj>(w)|> only. Further detail is shown in the inset,
which zooms out and shows in logarithmic scale that the
nonstationary components in Dy, (red peaks) are suppressed
by more than three orders of magnitude with respect to the
static component of Dy (black peak). The smallness of these
side peaks indicates that the SIA is an excellent approximation
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FIG. 3. (Color online) (a) The time-domain behavior of |e;(¢)|?
(blue) at B = 1.16 in the single-mode lasing regime. (b) The time-
domain behavior of |¢;(¢)|? (blue) and |&,()|? (red) in the multimode
regime. Their approximate steady-state values are labeled. Time (¢) is
scaled by the cavity round-trip time fgr = nL/c and is dimensionless.
(c) The PSDs of €(¢) (blue) and &,(¢) (red) at the same S values as
above; the labeled values compare well to those marked in (a) and
(b) and in Fig. 4(a). (d) The spectral content of the diagonal inversion
element Dj; (black peak); inset log-plot also plots the off-diagonal
element D, (smaller red side-peaks) and shows that it is nearly three
orders of magnitude smaller than Dy;.

and the SALT-CFTD correspondence should be possible,
which is what we do next.

The SALT calculation containing two lasing modes ex-
panded into a basis of two CF eigenvectors will contain four
coefficients (agl), aél) , aﬁz), aéz)) and two lasing frequencies
(QWM, Q@) As discussed in the previous section, in the steady
state, the information contained in these SALT variables can
be retrieved from the two time-dependent CFTD variables
(e1, &2). To do so, we simply expand and rearrange the SALT
ansatz for two lasing modes,

E*(r,n) = (aPe " 4 aPe )0 (r,Q,) 1)
+ (@ 4+ ale M par ) (22)
= e1(D@1(r,L24) + e2()a(r, Q). (23)

The CFTD results imply that ,(f) & ae~'"", in other
words @™ ~ 0 for n # m. In SALT language, this means
that the single-pole approximation is valid throughout the
calculated regime—the CF eigenvectors calculated for a cold
cavity very closely represent the two lasing modes W =12 (r),
and a single CF component is sufficient to represent each
mode. For CFTD-SALT comparison, in Fig. 4(a) we plot

the intensity, ), |a,(1” )|2 from SALT, and compare it to

T .
I, = —— 7 dr |em(®))?, calculated for a sufficiently long

sampliTrzlg]gime after the steady state is reached in CFTD.

The threshold of the first mode as calculated by SALT
and our time-dynamical method is almost the same, and
the emission intensities also coincide up to the point where

a second mode begins to lase in the SALT calculation
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FIG. 4. (Color online) (a) The steady-state emission intensity of
the two lasing modes as calculated by SALT (red), SVE-SALT
(dashed blue), and CFTD (solid blue). The values shown here are
a time average (details in text) of the steady-state time-domain
behavior at each pump step; the time-domain behavior is shown in
Figs. 3(a)-3(b) for selected values of 8 = 1.16 and 8 = 2 (marked in
this plot). (b) The steady-state center frequency for both lasing modes
for SALT (red) and CFTD (blue).

[see Fig. 4(a)]. Shortly thereafter, the second mode begins to
lase in the time-dynamical calculation as well and both modes
progress with comparable slope efficiencies up to high pump
powers. The steady-state frequencies [Fig. 4(b)] confirm the
expected steady-state behavior. The small offset between the
CFTD and SALT solutions stems from the use of the SVE
approximation in CFTD. Making the same approximation in
SALT (dashed lines in Fig. 4) shows excellent agreement
between the steady-state and time-dynamical calculations in
this regime.

C. Regime B: Nonstationary inversion

Keeping all other parameters, we now choose y; = 1. Atthe
onset of the second mode, this gives y /A = 5.61. We will find
that A will change dramatically in this case, essentially going
to zero as the pump power is increased. This phenomenon is
known as cooperative frequency locking [29], and has been
experimentally studied for quasidegenerate transverse modes
of a laser in Ref. [38].

In Fig. 5, CFTD reveals that while the first mode starts
lasing at the same threshold as before, with a nominally
identical lasing frequency €2; = 20.3762, the second mode
lases at a threshold nearly 10 times larger with frequency
Q, = 20.5426. However, immediately after the turn on of the
second mode, |&,(t)|*> ceases to reach a stationary value [see
Fig. 5(b)], implying the existence of multiple frequencies in
the respective spectra g,(w). In lieu of intensities, we plot
in Fig. 5(a) the time-averaged quantities I,,, and indicate the
size of oscillations, §, around the mean by shaded regions. As
the pump approaches the synchronization threshold D;l;nc, the
oscillations in the intensities grow (for the second mode, the
oscillation magnitude remains always of the order of the mean,
implying a clear limit cycle solution). For Dy > D;}y‘nc the
oscillations in the intensities abruptly disappear, and all field
amplitudes oscillate at a single, synchronized frequency. The
synchronization threshold is clearly defined and corresponds
to B = 22.98.

A close look at the dynamical behavior of the system near
the synchronization threshold is provided in Fig. 6. We follow
here the PSDs of [Fig. 6(a)] the electric field and [Fig. 6(b)]
the Dy, and Dj, components of inversion as a function of
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FIG. 5. (Color online) (a) The steady-state emission intensity of
the two lasing modes. The first mode (red) reaches threshold at the
same pump power as Fig. 4 while the second mode (blue) reaches
threshold at more than ten times the threshold of the first mode. At
B = 21.91 the two modes begin to converge, leading to a sharp rise
(decline) in the blue (red) mode accompanied by oscillations steadily
increasing in amplitude § (shown by the light red and blue shaded
triangular regions). After synchronizing, the modal intensities of the
two modes are comparable and they increase linearly. (b) The top
figure shows the large oscillations in time in each mode, immediately
before synchronization; the straight lines identify the time average of
the oscillating signal and correspond to the values marked in (a). The
bottom figure shows the absolute absence of these oscillations and a
return to a steady-state after synchronization.

the pump. Note that these spectra are shown for only a small
range of pump powers around the synchronization threshold
at B = 22.98. The largest peak in Fig. 6(a) belongs to the
dominant mode, shown in red in Fig. 5(a), and the subdominant

O

20.15

-0.2

FIG. 6. (Color online) (a) All red (blue) peaks belong to the
spectrum of & (&;). All peaks are seen to draw closer and converge at
B = 22.64 (marked by a star) and a single purple peak representing the
nearly identical spectra of ¢; and &, can be seen at 8 = 22.98 = D;‘;m
(marked by a pentagon) and beyond. (b) The red (blue) peaks belong
to the Dy (D) component of inversion. Compared to the inset in
Fig. 3(d), the peaks of D;, are comparable in magnitude to the dc
peak from Dy, representing the significant effect of time-dynamical
behavior in this calculation. Similar to (a), all peaks converge upon
synchronization and only a dc component (purple) remains from Dy,
and DlZ-
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peak belongs to the mode shown in blue in Fig. 5(a). As pump
power is increased, A decreases, and additional peaks enter the
monitored frequency window, separated by integer multiples
of A (with respect to the original laser frequencies €2;). These
are the sharp beat frequencies observed in Ref. [38]. Note that
the highly nonlinear sawtoothlike oscillations in the intensities
seen in Fig. 5(b) are closely linked with this proliferation
of frequencies in the power spectrum (also observed in
experiment [38]). As the pump power is increased further,
all these peaks approach each other in a dramatic manner and
at B = 22.64, recollect into the single peak shown (in purple)
at B = 22.98 and beyond. This peak is seen to be shifted from
the point of convergence and from both primary frequency
components, and it is pulled towards the gain center. A slightly
different perspective is offered by the evolution of the power
spectrum of the inversion [Fig. 6(b)], which also shows that the
off-diagonal frequency components (blue) converge into the dc
component (red) as they must if there is to remain only one
mode. The new mode that emerges beyond synchronization is
comprised of nearly equal contributions from both CF states,
which can be seen directly from the coming together of |g;|?
and |e,|? in Fig. 5(a). The new mode has a nontrivial spatial
pattern, which is embodied in a nonlinearly generated phase
between the two CF states composing the new laser mode.
More detail on this point is provided in the Appendix.

It is interesting to see how all this looks from the
perspective of SALT. We provide a comparative study in
Fig. 7. The SIA appears to be valid everywhere outside the
comparatively narrow range of pump powers 15 < 8 < 22.64
and the SALT-CFTD correspondence should in principle be
possible. Comparing the intensities in Fig. 7(a), however, we
see what is a strikingly large discrepancy between SALT and
CFTD for g &~ 15. While SALT finds two modes that turn
on relatively close to each other (DI &~ 1.3D'"), CFTD shows
that the second mode does not turn on before § = 12.86. These
seemingly disparate results should, however, be taken with
a grain of SALT. We first point out that the two thresholds
found by SALT are identical to those found for y; = 0.001
shown in Fig. 4. This is of course expected because SALT
equations do not depend on ) when expressed in scaled
variables [Eq. (9)], which is what is plotted in the vertical axis.
The large discrepancy (despite SIA appearing to be valid)
is simply because SALT predicts the turn on of the second
mode incorrectly, by a large margin. The consequence is
that the change in slope of the intensity of the first mode
that happens when the second mode turns on is incorrectly
predicted by SALT as well. The seemingly large discrepancy
between intensities by the time the second mode turns on in
CFTD at B8 = 12.86 is thus simply due to the incorrect slope.
We note that the pump range we are comparing is extremely
large (and could well be inaccessibly large for certain gain
media)—the synchronization threshold found is about 22 times
larger than the (lowest) laser threshold.

The culprit for the incorrect prediction by SALT of the
threshold of the second mode is interestingly still due to
the breakdown of SIA, but in a nontrivial manner. While
the oscillating corrections to the inversion are still small for
B < 15, they generate a polarization component oscillating at
Q) + A, ie., Q,, that is proportional to the intensity of the
first mode ~| W (r)|? that does become large as pump power
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FIG. 7. (Color online) SALT and CFTD calculations are com-
pared for the same two-mode calculation as above both before and
after synchronization (y; = 1). (a) A comparison of the intensities as
a function of pump. CFTD calculation for intensities of the two lasing
modes is shown in red/blue circles while the SALT result is shown in
red/blue crosses. Purple triangles represent the sum of the intensities
of the two modes in the time-dependent calculation. The shaded green
(white) region marks the pump range before (after) synchronization.
Black squares show the SALT calculation after synchronization. (b) A
comparison of the frequencies as a function of pump. Again, red/blue
circles mark the time-dependent calculation and red/blue crosses
mark the SALT calculation. Purple triangles (black squares) show
the time-dependent (SALT) synchronized solution. The two smaller
plots zoom in on regions of interest.

is increased. It can be shown that the threshold condition
of the second mode is changed by a term proportional to
i/ M) WD (r)|2. An appropriately modified set of two-mode
SALT equations can be found [27], and its implementation
under the SVE approximation would correctly reproduce the
behavior seen in CFTD for 8 < 15.

However, SALT will have nothing to say and will fail
qualitatively in capturing the physics in the range of pump
powers plotted in Fig. 6 very near the synchronization
threshold. This is directly linked with the appearance of
oscillating terms in the inversion [see Fig. 6(b)] that are
comparable in magnitude to the static terms. Note that very
interestingly the oscillations only appear in the off-diagonal
elements, while diagonal elements mostly remain stationary.
An analytic understanding of these features are a subject for
future work.

After synchronization, as seen in Fig. 7 for g > D;‘;nc, a
properly conditioned SALT (discussed in the Appendix) very
precisely predicts the synchronized mode, both its oscillation
frequency and the spatial composition. This again is not
surprising because now the SIA is valid to an excellent
approximation in a single-frequency regime of lasing. We note

PHYSICAL REVIEW A 92, 063829 (2015)

2055y 900 Y
20.5 800
20.515 >
=
7
3 20.45 20.51 S 700
f=
20.505 =
20.4 47.5 49 600
20.35 500
40 45 50
B
20 0
10 20
5 &
£° E°
10 / 20
® ® o © ®
20 oo e -40
-20 10 0 10 20 240 -20 0 20 40
Relg,] Relg]
20 3 20
10 10 P
) ) o
E ; £°
10 . 10 -
o, L.
20 2o o 20
-20 -10 0 10 20 20 -10 0 10 20
Re[g;] Relg,]

FIG. 8. (Color online) (a) Frequencies as a function of the pump
are shown for the seed (black triangles), and the three SALT solutions:
the single-mode solution near the cavity frequency (blue circles), the
synchronized solution (green diamonds), and the unstable solution
(red squares). (b) Intensities are shown as a function of pump for the
same color scheme as (a). (c) and (e) The distribution of seeds in
phase space is shown for ¢ and &;; inset in (¢) zooms in a region near
the real axis where the synchronized and unstable solutions are found.
(d) SALT solutions for &1, which lie on the real line due to the SALT
gauge condition. (f) SALT solutions for &, and their distribution in
phase space.

however that SALT is unable to capture the synchronization
threshold accurately.

IV. CONCLUSION

Here we have presented a computationally and conceptually
efficient approach to isolating and studying time-dependent
effects in lasers. Using a spectral approach, we fully treat
the open nature of lasers and integrate out the spatial vari-
ables, obtaining dynamical equations for the time-dependent
coefficients describing the electric and polarization fields
and the inversion. This delivers a highly scalable multimode
framework for analyzing intrinsically nonstationary phenom-
ena in open resonators of arbitrary spatial complexity, gain
medium distribution, and pump profile. The simplest of such
effects, mode synchronization, is studied here in a simple
1D cavity featuring pairs of closely spaced quasidegenerate
modes (small A). With small enough y;, we obtain a stationary
behavior once the transients die out, as postulated at the outset.
At larger y), nonstationary behavior is demonstrated in a
narrow range of pump powers. We find that the stationary
inversion approximation is largely valid in the parameter
regimes investigated here, failing only in a narrow range
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of pump powers, for very large y;/A, and for a special
choice of the resonator structure. We expect that CFTD will
find application in particular in modeling time-dependent
phenomena in quasi-2D and 3D laser structures, because of
its efficient spectral decomposition method that takes into
account the openness of the underlying resonator structure
in essentially an exact manner.
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APPENDIX

In this Appendix, our goal is to provide more detail on
the SALT-CFTD correspondence in Regime B. The SIA is
valid to a good approximation for 8 < 15 and 8 > 22.98,
and a SALT-CFTD correspondence in these power ranges is
therefore possible.

As discussed in Regime B and Fig. 7 above, in the
presynchronization regime the apparent sizable discrepancy
between SALT and CFTD solution is understood, and can be
accounted for by a modified version of SALT [27]. We focus
here on the SALT-CFTD correspondence in the synchronized
regime, where it is important to properly condition SALT.

PHYSICAL REVIEW A 92, 063829 (2015)

The standard SALT algorithm uses an adiabatic sweep of
pump power (not in the dynamical but computational sense).
In other words, the solution in the previous step of pump
power Dy is fed as a seed for the nonlinear solver for the
next pump power. This practical procedure speeds up the
computation in a dramatic way. If this were done blindly, then
the two SALT solutions found in Fig. 6 for 8 < D;';HC would
simply extend without any apparent discontinuity to larger
values of pump power, missing the synchronized solution.
In fact, SALT has multiple single-frequency fixed points for
B> Dg’,m, two of these are composed of a single CF mode
(i.e., single pole) and the other two are composed of a particular
balanced superposition of two CF modes (multipole solution).
Interestingly, one of the latter is the synchronized solution
found in the long-time limit of CFTD (shown using green
markers in Fig. 8). This indicates that SALT does capture
the fact that there is a single stable oscillation frequency and
that the spatial structure of this laser mode is such that it
is a particular superposition of the two spatial modes that
were oscillating independently at lower powers. Figures 8(d)
and 8(f) indicate that three of these fixed points are stable,
and one is unstable, as revealed with different initializations
of the SALT nonlinear solver [Figs. 8(c) and 8(e)]. The
unstable solution is a synchronized solution that is orthogonal
to the stable synchronized solution. The stability of the two
single-pole solutions (only one shown in the frequency window
plotted) from the point of view of SALT is a perceived one, and
is due to the neglect of the nonstationary terms in the inversion
that in turn changes the stability structure of the solutions. We
conclude that care must be exercised when conditioning SALT
solutions for regimes outside its stated validity, even when the
SIA appears to be a good approximation.
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