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The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote
speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a
machine you could in principle “imitate any quantum system, including the physical world.” With that in mind,
we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential
speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering
amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer.
Building on this, we give an experimental implementation based on continuous-variable states that is feasible
with today’s technology.
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I. INTRODUCTION

Quantum field theory (QFT) [1] unites the discipline of
quantum mechanics with special relativity to provide us with
our best understanding of the world around us and what it
is made of, notwithstanding that it has yet to be reconciled
with general relativity. Typically, the best-known algorithms
for calculations in field theories are very difficult on classical
computers. One method is lattice field theory [2], which
discretizes space into a finite set of points. Unfortunately,
classical computations on the lattice increase exponentially
with the number of sites, making it unfeasible. Quantum
algorithms [3] have been proposed to accomplish a variety
of fundamental tasks more quickly than any known classical
counterpart, most famously Shor’s factoring algorithm [4]
and Grover’s searching algorithm [5]. When Feynman first
proposed the notion of quantum computing [6], he had a
different idea in mind, namely, the ability of one quantum
system to simulate another [7].

In this paper, we keep true to the spirit of Feynman’s vision
by presenting a method of calculating scattering amplitudes
in a scalar bosonic QFT with a quartic self-interaction on
a quantum computing substrate that faithfully encodes the
field, i.e., a continuous-variable (CV) quantum computer. In
fact, we show one can obtain an exponential speedup over
the best-known classical algorithms. A discrete version of
this algorithm was originally shown in Refs. [8,9] for a
quantum computer based on qubits. Further work extended
this result to fermionic QFTs [10], as well as using wavelets
for multiscale simulations [11]. Quantum simulators open the
door to addressing challenging problems in field theories that
would otherwise be impossible with classical methods [12]
and this paper presents an important step in that direction.

The field of quantum computing [13] using CVs [14,15]
has also progressed significantly in the past few years. From its
original conception in 1999 [14], progress began to accelerate
after a cluster state [16] version was established in 2006
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[17,18], leading to something significantly more tangible for
experimentalists. This resulted in numerous proof-of-principle
demonstrations [19–22], currently culminating in an extremely
large 10 000-node cluster [23] created “on the go” along
with a 60-node cluster created simultaneously [24]. From a
theoretical perspective, much progress has been made [25–34].
However, one area that is significantly underdeveloped is that
of algorithms for a CV quantum computer. Thus far there
only exists CV versions of quantum searching [36] and the
Deutsch-Jozsa algorithm [37–40].

Typically, q and p are the CVs spreading across all real
numbers. To encode them in qubits, one needs a whole register
of qubits at each point in space. However, with CVs, there is
a one-to-one mapping to qumodes (the CV equivalent of a
qubit). In fact it is arguable that a CV quantum computer
is the natural choice for such a QFT problem given that the
fields are continuous variables. Thus, the value of the field
at a given point in space can be mapped onto a qumode
naturally. If qubits are used instead, the qumode needs to be
replaced by a register of M qubits which only allows the
field to take on 2M discrete values. Brennen et al. describe
both possibilities in Ref. [11], although they do not explain
how to implement the quartic phase gate with CVs, which we
do here. Furthermore, the quartic vertex in wavelets becomes
very complicated. Implementing it would require gates acting
on more than two modes (resulting in logarithmic overhead in
complexity).

Another benefit to our approach is in the development of
the initial state. Here we show how to create the initial CV
state as well as suggesting an experimental implementation
based on standard linear optics.

Our paper is structured in the following way. In Sec. II,
we discretize space for a one-dimensional scalar bosonic QFT
while leaving the field and time as continuous parameters.
Next, we show how to generate the initial cluster state
using only Gaussian operations in Sec. III. In Sec. IV we
outline the steps necessary to compute a scattering amplitude
including the required measurement. We provide an explicit
experimental implementation in Sec. V. Finally, the benefits of
our approach over classical methods are discussed in Sec. VI.
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II. DISCRETIZATION IN ONE DIMENSION

We consider a relativistic scalar field φ in one spatial
dimension including a quartic self-interaction. We outline the
discretization specifically in the one-dimensional case so as
not to clutter the notation unnecessarily, but generalization
to higher dimensions is straightforward and is discussed in
Appendix D. We note that the field φ is a function of x and
t (time), φ(x,t). All three parameters are continuous. In our
approach, we discretize x, but not φ or t . In the case of qubits,
one would discretize x and φ, but not t . In classical lattice
calculations, one discretizes all three, φ, x, and t .

In the continuum, the one-dimensional free-scalar QFT is
given by the Hamiltonian

H0 = 1

2

∫ L

0
dx

[
π2 +

(
∂φ

∂x

)2

+ m2φ2

]
, (1)

where φ is the scalar field and π the conjugate momentum field.
They obey commutation relations [φ(x),π (x ′)] = iδ(x − x ′),
where we choose units in which � = 1.

We discretize space by letting x = na, n = 0,1, . . . ,N − 1,
where a is the lattice spacing and L = Na is the finite length
of the spatial dimension (L � a). We choose units in which
a = 1, for simplicity, and denote Qn = φ(x), Pn = π (x).
The discretized variables obey standard commutator relations,
[Qn,Pm] = iδnm. The Hamiltonian becomes

H0 =
N−1∑
n=0

P 2
n + m2Q2

n

2
+ 1

2

N−1∑
n=0

(Qn − Qn+1)2, (2)

where we employed periodic boundary conditions and defined
QN ≡ Q0.

We can write this Hamiltonian as

H0 = 1
2 PT P + 1

2 QT VQ, (3)

where P ≡ [P0,P1, . . . ,PN−1]T and Q ≡ [Q0,Q1, . . . ,

QN−1]T . The eigenvalues of the matrix V and the components
of the corresponding normalized eigenvectors en are, re-
spectively, ω2

n = m2 + 4 sin2 nπ
N

and en
k = 1√

N
e2πikn/N ,k = 0,

. . . ,N − 1. Notice that the massless case is special because it
contains a zero mode (for m = 0, ω0 = 0), so the matrix V is
not invertible. To avoid the problems that arise, we can shift
the mass by a small amount ∼ 1/N , which vanishes in the
continuum limit (N → ∞).

We also wish to add a quartic interaction, Hint =
λ
4!

∫ L

0 dxφ4 → λ
4!

∑
n Q4

n, which necessitates the addition of

a mass counter term Hc.t. = δm

2

∫ L

0 dxφ2 → δm

2

∑
n Q2

n due to
renormalization, as explained in Appendix A. We find that,
for weak coupling, the physically interesting case is stable for
λ > 0.

To diagonalize the Hamiltonian, we introduce new creation
and annihilation operators, a

†
k and ak , respectively, defined by

ak =
√

ωk

2 (e†Q)k + i√
2ωk

(e†P)k , where e is the matrix of the

eigenvectors. Notice that e is unitary: e†e = I. These operators
obey standard commutation relations, [ak,a

†
l ] = δkl , and the

free Hamiltonian reads

H0 =
N−1∑
k=0

ωk

(
a
†
kak + 1

2

)
. (4)

In this form, it is straightforward to construct the states in the
Hilbert space.

III. INITIAL-STATE PREPARATION

For the initial state, in Refs. [8,11] the excited state was
created after creating the ground state. This is difficult because
it involves manipulating a large number of qubits. In our
approach, we create a single photon state in a single mode
before creating the initial state. This is more accessible, as it
involves creating the state |1〉 for a single mode. It can be done
in a variety of ways, via a heralded single photon source, for
instance. At the end of the computation, the field modes are all
measured and the distribution of single photons across them
determines the result.

To begin with, we build the system with N oscillators rep-
resenting the variables (Qn,Pn), n = 0,1,2, . . . . It is useful to
define creation and annihilation operators, A

†
n and An, respec-

tively, by An = (Qn + iPn)/
√

2. They obey the commutation
relations [An,A

†
m] = δnm. The nth oscillator has a Hilbert space

constructed by successive application of the creation operator
A

†
n on the vacuum |0〉n, which is annihilated by An. Here |0〉n

is shorthand for a product state of vacuum fields,

|0〉 = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉N−1, (5)

with An|0〉 = 0. For a scattering process, we are given
an initial state typically consisting of a fixed number of
particles, usually two, which undergoes evolution and then a
measurement is performed (detection of particles) on the final
state. Both initial and final states asymptote to eigenstates of
the free Hamiltonian H0. Thus, quantum computation starts
with preparation of an eigenstate of H0.

First, we consider the ground state of H0. It is the state |�〉
annihilated by all ak; i.e., ak|�〉 = 0 for k = 0,1, . . . ,N − 1.
It can be constructed from the vacuum state (5) by acting
with the Gaussian unitary U †, where an = U †AnU . Noticing
the relationship between the operators ak and Ak we can use
the Bloch-Messiah reduction [41] to determine U = V SW †

as a decomposition involving a multiport interferometer (V )
followed by single mode squeezing (S) followed by a final
multiport interferometer (W ). These unitary operators can be
realized with O(N2) quantum gates [42], although computing
the form of these gates requires O(N3) classical arithmetic
operations arising from Gaussian elimination.

To implement U we first perform the rotation

A0 → A′
0 =

N−1∑
k=0

Ak,

An → A′
n =

N−1∑
k=0

cos
2πnk

N
Ak, (6)

AN−n → A′
N−n =

N−1∑
k=0

sin
2πnk

N
Ak,
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where 1 � n � N/2. This rotation can be expressed as
rotations each involving only two oscillators at a time and
this fact can lend itself well to the CV cluster state framework
[15]. In fact, one could reimagine the algorithm in a cluster
state formalism, as all of the requisite interference, squeezing,
and nondemolition are present in the state preparation stage.
Notice that if N is even, AN/2 does not have a partner;
we obtain AN/2 → ∑

k(−)kAk . Next, we squeeze each mode
as A′

n → A′′
n = cosh rnA

′
n + sinh rnA

′
n
†, where e2rn = ωn for

n � N/2, and e−2rn = ωn for n > N/2. Finally, we untangle
the pairs by rotating them, A′′

k → ak where a0 = A′′
0, an =

(A′′
n + iA′′

N−n)/
√

2, and aN−n = (iA′′
n + A′′

N−n)/
√

2. Excited
states can be constructed with the same number of gates; e.g.,
the single-particle state |k〉 ≡ a

†
k|�〉 can be constructed by

acting upon the vacuum with A
†
k . This turns the initial state

of the kth mode into a one-photon state, A
†
k|0〉k , which can

be accomplished in a variety of ways; see Appendix C. For
scattering, we need to create wave packets. For a single-particle
wave packet characterized by a profile fk , which is sharply
peaked around some k = k0, we need to create the state∑

k fkA
†
k|0〉. This is an entangled state and can be created

with standard techniques. Having engineered the entangled
state

∑
k fkA

†
k|0〉k , we then apply the Gaussian unitary U †, to

obtain the one-particle wave packet∑
k

fka
†
k|�〉 = U †

∑
k

fkA
†
k|0〉. (7)

Extending the above to the engineering of multiparticle states,
which are wave packets constructed from the free Hamiltonian
eigenstates |k1,k2, . . . 〉 ∝ ak1

†ak2
† · · · |0〉, is a straightforward

extension of the procedure outlined above.

IV. QUANTUM COMPUTATION

We wish to calculate a general scattering amplitude, which
can be written as

A = 〈out|T exp

{
i

∫ T

−T

dt[Hint(t) + Hc.t.(t)]

}
|in〉 (8)

in the limit T → ∞, where time evolution is defined with
respect to the noninteracting Hamiltonian.

We start by preparing the initial state |in〉 as in the previous
section and define initial time as t = −T . Then we act
successively with evolution operators of the form

U (t) = exp {iδt[Hint(t) + Hc.t.(t)]}. (9)

Time dependence is obtained via the free Hamiltonian,

Qi(t) = eitH0Qi(0)e−itH0 . (10)

Therefore, the evolution (9) can be implemented as

U (t) = eitH0eiδt(Hint+Hc.t.)e−itH0 . (11)

We deduce

A = 〈out|[eiδtH0eiδt(Hint+Hc.t.)]N |in〉, (12)

where we divided the time interval into N = 2T
δt

segments.
The coupling constants in Eq. (9) are turned on and off

adiabatically. This is achieved by splitting the time interval
[−T ,T ] into three segments, [−T , − T1], [−T1,T1], and

[T1,T ]. For t ∈ [−T , − T1], we turn the coupling constants
on by replacing λ → λ(t), δm → δm(t), so that λ(−T ) =
δm(−T ) = 0, and λ(−T1) = λ, δm(−T1) = δm. Then for
t ∈ [−T1,T1] the coupling constants are held fixed. Finally,
for t ∈ [T1,T ], they are turned off adiabatically by reversing
the process in the first time interval. In the case of small λ,
the time dependence of the coupling constants can be chosen
efficiently by making use of perturbative renormalization.
Renormalization informs the choice (see Appendix A) λ(t) =
T +t
T −T1

λ, δm(t) = λ(t)
8π

log 64
m2 , for −T � t � −T1.

The unitary operators eiδtH0 and eiδtHc.t. are Gaussian and
can be implemented with second-order nonlinear optical
interactions and linear optics beam-splitter networks. The
interaction is implemented through a quartic phase gate for
each mode,

eiδtHint =
∏
n

eiγQ4
n , γ = δt

λ

4!
. (13)

The quartic phase gate may be implemented in a similar
manner to the cubic phase gate previously proposed [25].

After evolution, we must measure the system in a basis
containing the projection corresponding to the state |out〉. This
is similar to the state |in〉, and its construction depends on the
number of desired particles. The latter are excitations created
with a

†
n, so in general,

|out〉 = a†
n1

a†
n2

· · · |�〉 = U †A†
n1

A†
n2

· · · |0〉. (14)

It follows that the next step is to uncompute by applying the
Gaussian unitary U (which is the inverse operation to the
preparation of the initial state) and then measure the number
of photons in each mode. The final uncompute step projects
the set of output modes onto the Fock basis which we then
sample from. Thus, the scattering amplitude calculation is a
mapping from one set of field modes on the input to a separate
set of field modes on the output, as expected. That is, for each
click on the photodetector for mode n, there is an operator a

†
n

present in the final state (14). If the QFT calculation involved
an initial input state with two excitations spread across 100
field modes, say, then the entire calculation would involve
two photons, for instance. We note that the calculation has
made use of a quartic phase gate up to this point, and thus
technically speaking a non-Gaussian operation would not be
necessary during this measurement step in order to achieve
an exponential speedup over the classical QFT algorithm.
However, in order to achieve high accuracy in the final result,
photon-number-resolving detectors with high efficiency [43]
would be desirable for the measurement phase.

V. EXPERIMENTAL IMPLEMENTATION

An example of the experimental implementation is given
in Fig. 1. For brevity the setup for calculating four space-time
points is given. For the electromagnetic field, the initial unitary
rotation involves weighted beam splitters with the appropriate
splitting to achieve the desired sums over the field operators
(see Appendix B). A swap gate is involved in the input
state preparation stage. We note that a swap gate contains
essentially the CV version of the controlled-NOT operator
along with parity operators [44], but in some cases the gate
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FIG. 1. (Color online) Sketch of an experimental setup for electromagnetic field modes used as qudits in a QFT calculation involving four
field modes. The modes are encoded into electric field modes (red, blue, yellow, and green), which are then prepared via beam splitters, swap
gates, and squeezers for the compute stage. The compute stage consists of an interferometer, a quartic phase gate (black box; see Ref. [25]), and
free propagation. An uncompute stage, which is the inverse of the preparation stage, and a detection stage in the Fock basis yield the scattering
amplitudes into the four QFT field modes.

can be simplified to a beam-splitter interaction [45] such
as for the electromagnetic field. Here we use a mode label
swap operator, which is possible in systems with movable
qubits, such as CV optical fields. Next, Hc.t. is quadratic
in position quadrature operators, which can be implemented
with a series of phase shifts [45]. The non-Gaussian piece
of the computation is then the quartic phase gate contained
in Hint, which can be implemented via repeated application
of the photon-number-dependent phase gate [25]. Lastly, the
free propagation H0 can be implemented by a calibrated
free propagation before the uncompute stage. We note that
the QFT field modes are encoded into the qudits which are
themselves electromagnetic field modes, meaning that the free
propagation contained in H0 is not arbitrary. It must conform
to the calculated QFT free propagation distance, and phase
stability must be maintained throughout.

VI. CONCLUSION

In conclusion, we developed an algorithm for a continuous-
variable quantum computer which gave an exponential
speedup over the best-known classical algorithms. This algo-
rithm was the calculation of the scattering amplitudes in scalar
bosonic quantum field theory, and, as previously mentioned,
arguably a natural choice for a continuous-variable quantum
computer to solve. At weak coupling, analytic calculations are
possible; however, at strong coupling no such calculations
are generally available, and one has to rely on numerical
techniques. A widely used framework is lattice field theory
which is based on the discretization of space into a finite set of
points. The complexity of classical computations on a lattice
increases exponentially with the number of lattice sites [2].

Quantum computations offer a distinct advantage (first
shown in Ref. [9] for qubits, and here for qumodes), since
complexity only grows polynomially. Finally, we also gave an
example of an experimental implementation on a continuous-
variable quantum computer that calculated four space-time

points. We noted that such a scheme is feasible with current
linear optical technology and consisted of a set of Gaussian
operations along with the non-Gaussian quartic phase gate.
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APPENDIX A: RENORMALIZATION

Define the Green’s function G(t1,t2) as

Gij (t1,t2) = 〈0|T (Qi(t1)Qj (t2))|0〉, (A1)

where T denotes the time-ordering operator. It obeys[
∂2
t1

+ V
]
G(t1,t2) = −iIδ(t1 − t2). (A2)

Using the Fourier transform,

G(t1,t2) =
∫

dω

2π
eiω(t1−t2)G̃(ω), (A3)

we obtain

G̃(ω) = i[−ω2I + V]−1 =
∑

n

−i

ω2 − ω2
n

ene†n, (A4)

exhibiting poles at ω2 = ω2
n.

When we switch on the interaction term,

Hint = λ

4!

∫ L

0
dxφ4 → λ

4!

∑
n

Q4
n, (A5)

we have that at O(λ) the Green’s function is corrected by

δGij (t1,t2) = 〈0|T
[
Qi(t1)Qj (t2)

∫
dtHint(t)

]
|0〉. (A6)
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For the Fourier transform, we obtain

δG̃(ω) = λ[G̃(ω)]2
∫

dω′

2π
Tr G̃(ω′), (A7)

which leads to a shift of the poles,

G̃(ω) + δG̃(ω) =
∑

n

−i

ω2 − ω2
n − 


ene†n + O(λ2), (A8)

where


 = λ

2N

∫
dω′

2π

∑
n

−i

ω′2 − ω2
i

= λ

4N

∑
n

1

ωn

. (A9)

The shift can be corrected by the addition of the counter term

Hc.t. = δm

2

∫ L

0
dxφ2 → δm

2

∑
n

Q2
n, (A10)

with δm = −
 + O(λ2), i.e., the mass parameter in the
Hamiltonian is not physical, but bare:

m2
0 = m2 + δm = m2 − λ

4N

∑
n

1

ωn

+ O(λ2). (A11)

For large N , the sum can be approximated by an integral,


 = λ

4

∫ 1

0

dk√
m2 + 4 sin2 kπ

, (A12)

which has a logarithmic divergence at small m2 (i.e., length
scale 1/m large in units of lattice spacing, which is the
physically interesting limit). We easily obtain


 = λ

8π
log

64

m2
+ O(m2). (A13)

The bare mass is

m2
0 = m2 − 
 + O(λ2) = m2 − λ

8π
log

64

m2
+ O(λ2,m2).

(A14)

Notice that for weak coupling (small λ), the physically
interesting case has m2

0 < 0 (a stable system, as long as λ > 0).

APPENDIX B: GROUND-STATE CONSTRUCTION

To find the required transformation U , we work as follows.
Notice that for n = 0,

a0 = 1

2
√

N

N−1∑
k=0

[(√
m + 1√

m

)
Ak +

(√
m − 1√

m

)
A

†
k

]
,

(B1)

where we used ω0 = m. For n �= 0, we consider pairs
(an,aN−n). We have

an + aN−n = 1

2
√

N

N−1∑
k=0

cos
2πnk

N

[(√
ωn + 1√

ωn

)
Ak +

(√
ωn − 1√

ωn

)
A

†
k

]
,

(B2)

an − aN−n = i

2
√

N

N−1∑
k=0

sin
2πnk

N

[(√
ωn + 1√

ωn

)
Ak −

(√
ωn − 1√

ωn

)
A

†
k

]
,

where we used ωn = ωN−n.
The above expressions suggest that we transform An into

an in three steps, as shown in the main text.

Example: N = 4

To illustrate the above algorithm, we consider the case in
which space has been discretized to four points. The rotation
(A′ = OA) is described by the orthogonal matrix

O = 1

2

⎡
⎢⎢⎢⎣

1 1 1 1√
2 0 −√

2 0
1 −1 1 −1

0
√

2 0 −√
2

⎤
⎥⎥⎥⎦. (B3)

We have

O = R02

(π

4

)
S01R13

(π

4

)
R02

(π

4

)
, (B4)

where Rij (θ ) is a rotation in the ij plane of angle θ and Sij is
the swap i ↔ j . Therefore, the rotation O can be implemented
with four two-mode unitaries.

Next, we squeeze each mode as A′
n → A′′

n = cosh rnA
′
n +

sinh rnA
′
n
†, where e2r0 = ω0, e2r1 = ω1, e2r2 = ω2, and e−2r3 =

ω3. Notice that r3 = −r1, because ω3 = ω1.
Finally, we perform the rotation, A′′

1 → 1√
2
(A′′

1 + iA′′
3),

A′′
3 → 1√

2
(iA′′

1 + A′′
3), to arrive at the desired modes,

a0 = 1

2

∑
n

[
cosh r0An + sinh r0

∑
n

A†
n

]
,

a1 = 1

2

∑
n

in

[
cosh r1An + sinh r1

∑
n

A†
n

]
,

(B5)

a2 = 1

2

∑
n

(−1)n
[

cosh r2An + sinh r2

∑
n

A†
n

]
,

a3 = 1

2

∑
n

(−i)n
[

cosh r3An + sinh r3

∑
n

A†
n

]
.

Each of the above steps is implemented with a Gaussian unitary
involving at most two modes.
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APPENDIX C: EXCITED STATES

To generate the required one-photon state, two methods can
be used. One can first squeeze the vacuum of the kth mode with
an optical parametric amplifier to

Sk(s)|0〉k, Sk(s) = e
s
2 (A†2

k −A2
k). (C1)

Then pass the squeezed state through a (highly transmitting)
beam splitter of transmittance T , and place a photodetector
on the auxiliary output port. A click of the detector heralds
a successful photon subtraction, which is described by the
nonunitary operator

√
1 − T T A

†
kAk/2Ak. (C2)

The transmittance has to be high so that the probability of
detecting two or more photons is negligible. If no photon is
detected, the process is repeated until a photon is detected.
Finally, apply antisqueezing S

†
k(s ′).

We obtain the state (unnormalized)

S
†
k(s ′)T A

†
kAk/2AkSk(s)|0〉k. (C3)

If the squeezing parameters are chosen so that

T = tanh s ′

tanh s
, (C4)

then it is straightforward to show that (C3) is the desired state,

S
†
k(s ′)T A

†
kAk/2AkSk(s)|0〉k ∝ A

†
k|0〉k. (C5)

Optionally, one may also use a heralded single photon source.
Such a source would consist of a parametric down-converter
with a high-efficiency heralding detector. To obtain exactly one
photon when operating the source with high brightness (but
on average less than one pair per pulse), the heralding detector
would consist of a high-efficiency photon-number-resolving
detector, such as a transition edge sensor.

APPENDIX D: GENERALIZATION TO ARBITRARY
DIMENSIONS

Generalization to arbitrary spatial dimension d is straight-
forward. The free-scalar Hamiltonian in the continuum reads

H0 = 1

2

∫
ddx[π2 + (∇φ)2 + m2φ2], (D1)

where x ∈ [0,L]d , with the fields obeying standard commuta-
tion relations,

[φ(x), π (x′)] = iδd (x − x′). (D2)

Each coordinate xi (i = 1, . . . ,d) is discretized as before, xi =
nia, ni = 0,1, . . . ,N − 1, and we define Qn ≡ φ(x), Pn ≡
π (x), and An = 1√

2
(Qn + iPn), where n ∈ Zd

N .
The Hamiltonian (D1) can then be rendered in the form

H0 = 1
2 PT P + 1

2 QT VQ, (D3)

where V has eigenvalues and corresponding normalized
eigenvectors,

ω2
k = m2 + 4

d∑
i=1

sin2 ki

2
,

(D4)

en
k = 1

Nd/2
eik·n,

where k ∈ 2π
N
Zd

N (the dual lattice). The eigenvectors form a
unitary matrix.

The discretized Hamiltonian is diagonalized as

H0 =
∑
k∈�

ωk

(
a
†
kak + 1

2

)
, (D5)

where ak is the annihilation operator (extended to d dimensions
in an obvious way).

Introducing an interaction term, Hint = λ
4!

∑
n Q4

n, and the
attendant counter term, Hc.t. = δm

2

∑
n Q2

n, and working as in
the one-dimensional case, we obtain a shift in the poles of the
Green’s function,


 = λ

4

∑
k∈�

1

ωk
+ O(λ2), (D6)

which is related to the counter-term parameter δm via δm =
−
 + O(λ2). For large N , the sum is approximated by an
integral over the hypercube [0,2π ]d . For d = 1, it reduces to
the previous result, whereas for d > 1, we obtain at lowest
order in m and λ,


 = Cdλ + · · · . (D7)

Numerically, C2 ≈ 0.16, and C3 ≈ 0.11.
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