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Spin squeezing a cold molecule
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In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic
molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider
a single, noninteracting molecule with angular momentum greater than 1/2. Starting from an experimentally
relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and
magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa
and M. Ueda, Phys. Rev. A 47, 5138 (1993)], the uniform field Hamiltonian proposed by Law et al. [C. K. Law,
H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001)], and a model of field propagation in a Kerr medium
considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989)]. We then consider
the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports
spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including
optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences
for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects
such as the orientation-to-alignment transition.
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I. INTRODUCTION

The cold OH molecule is a versatile platform for precision
measurements. Its experimental appeal lies in the fact that
its ground X 2�3/2 state is polar as well as paramagnetic
and is therefore readily manipulated in the laboratory with
the use of electric and magnetic fields [1–5]. Applications
explored thus far include precision spectroscopy [6,7] and
quantum information processing [8], in addition to studies
of cold chemistry [9–13] and quantum degeneracy [14].

In this article, we consider spin squeezing of the OH
molecule. Our discussion occurs in the context of the Heisen-
berg uncertainty relation [15]

�Jx�Jy � |〈Jz〉|/2, (1)

between the three components of the angular momentum
operator J . Spin squeezing refers to a situation where the
fluctuation in one of the components, say �Jx , is reduced
to below the standard quantum limit

√|〈Jz〉|/2. Of course,
the fluctuations in Jy increase correspondingly, in order to
maintain the relation of Eq. (1).

Spin squeezing constitutes a technique of interest at the
frontiers of precision measurement and has applications
in spectroscopy, magnetometry, metrology, the detection of
particle correlation and entanglement, and quantum compu-
tation and simulation ([15,16] and references therein). The
pioneering start to spin squeezing was provided by the work
of Kitagawa and Ueda [17,18] and Wineland et al. [19,20],
who considered the squeezing of collective atomic spins, and
was followed by many investigations ([21–59], for example).
We emphasize that all of this work relates to ensembles of
correlated (pseudo)spins, represented by atoms (in a thermal
vapor or a degenerate gas), nuclei [60], or molecules [61],
where the collective spin can assume a high value [62].

More recently, squeezing has also been considered for
single (atomic or nuclear) spins or, equivalently, for an
uncorrelated ensemble of such spins. Experiments have been
carried out, using spin-3 [63] and spin- 7

2 [64] states of cesium

atoms. Possibilities also exist for dysprosium which offers
states with spins from 8 up to 12.5. Theoretical calculations of
single-spin squeezing have been presented as well [65]. The
squeezing in this case is limited by the much smaller angular
momentum available. Nonetheless, some effects can be ex-
perimentally relevant, for example, for precision spectroscopy
[20]. Motivated by such a consideration, we consider spin
squeezing of a single OH molecule. Interesting applications
to the measurement of magnetic fields also seem possible
[66–70], especially following recent discussions of magne-
tometry using single SiC spins with angular momentum 3

2
[71]; ground-state cold OH also carries rotational angular
momentum 3

2 and is sensitive to magnetic fields via the Zeeman
shift. Also, spin squeezing is related to the alignment-to-
orientation transition [65], and we expect this perspective
will be of relevance to our work, given the recent interest
in the stereochemical properties of the OH molecule [72].
We emphasize that compared to previous proposals for spin
squeezing molecules [61], which employ spin- 1

2 interacting
molecules squeezed collectively, we consider a single nonin-
teracting molecule with angular momentum 3

2 .
In present-day laboratories, cold OH molecules are typ-

ically confined in magnetoelectrostatic traps [3,4,14,73,74].
We therefore consider spin squeezing enabled by these readily
available static electric and magnetic fields. The advantage of
using static, rather than optical or microwave [15], fields for
squeezing is that damping and decoherence due to spontaneous
emission can be avoided. Our starting point will be an effective
eight-dimensional matrix Hamiltonian that has been shown to
model recent OH experiments quite well [14,73,74] and has
also been diagonalized analytically [75,76]. To obtain some
physical intuition into this Hamiltonian, we first consider the
regime in which Zeeman and Stark shifts are small compared to
the �-doublet splitting of the OH ground state. We show that in
this case an adiabatic Hamiltonian can be derived, which yields
spin squeezing of the types considered earlier by Kitagawa
and Ueda [18], Law et al. [30], and Agarwal and Puri [21].
Subsequently, we show that spin squeezing survives even in
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the presence of large nonadiabatic effects implied by currently
available experimental parameters. In fact, in some cases,
the presence of nonadiabaticity introduces spin squeezing not
present in the adiabatic model. We provide analytic and nu-
merical results, discuss the optimization of the field strengths,
and include the effects of field misalignment in our treatment.

The remainder of this article is arranged as follows.
Section II presents the derivation of the adiabatic Hamiltonian,
Sec. III discusses the dynamics of the squeezing parameter,
Sec. IV addresses the detection of the proposed squeezing,
and Sec. V supplies a conclusion.

II. DERIVATION OF THE ADIABATIC HAMILTONIAN

A. The eight-dimensional effective Hamiltonian

Several experiments on cold OH molecules in crossed
electric and magnetic fields (see Fig. 1) have been successfully
modeled using an effective Hamiltonian involving only eight
quantum states [73,74]. The domain of validity of this
Hamiltonian and the details of the states involved can be found
in several articles [4,14,74,76] and are not repeated here. This
effective Hamiltonian was recently diagonalized analytically
following the detection of an underlying chiral symmetry [75].
In the process of identifying that symmetry, it was found that
the OH matrix Hamiltonian could be reexpressed in terms of
two interacting spins (to avoid notational clutter we set � = 1;
to make contact with laboratory parameters, requisite factors
of � can be supplied to any formula in this article by inspection,
see the example supplied below),

HM = −�̃σz − B̃Jz + Ẽσx(Jz cos θ − Jx sin θ ), (2)

where the constants are given by

�̃ = �

2
, B̃ = 4μBB

5
, Ẽ = 2μeE

5
, (3)

� being the �-doublet splitting, B and E the uniform magnetic
and electric fields, respectively, μB the Bohr magneton, and
μe the electric dipole moment of the OH molecule. In Eq. (2),

FIG. 1. (Color online) Schematic of the diatomic OH molecule
in electric, E, and magnetic, B, fields crossed at the angle θ .

θ is the angle between the electric and magnetic fields (see
Fig. 1), and σ = 1

2 and J = 3
2 are the two interacting spins.

The spin σ is a pseudospin, with the projections σz = −1 and
σz = 1 corresponding to the two �-doublet manifolds of parity
e and f , respectively. On the other hand, J corresponds to the
rotation of the molecular axis, and the values Jz = ± 1

2 and ± 3
2

indicate the various projections of J on the laboratory z axis,
which is chosen for convenience and without loss of generality
to be along the magnetic field. The matrix representation of
HM is reproduced in the appendix for the reader’s convenience
[see Eq. (A1)].

At this point the insertion of factors of � in Eq. (2) may be
considered as a useful exercise. We begin with the observation
that HM has units of energy. Since the Pauli matrix σx is
dimensionless, �̃ needs to have units of energy and thus must
be multiplied by �. On the other hand, Jz has units of �.
Therefore B̃ needs to have units of frequency, and thus the
right-hand side of the corresponding expression in Eq. (3)
must be divided by an �. Other formulas in this article can be
handled in a similar manner.

B. The four-dimensional adiabatic Hamiltonian

The generation of spin squeezing requires the presence of
a nonlinearity, represented to lowest order by a term quadratic
in one of the spin operators in the relevant Hamiltonian [18].
However, Eq. (2) is linear in each of the spin operators. It may
not be readily obvious that the coupled dynamics of the two
spins can lead to squeezing, and it would assist our intuition
if HM could be reduced, even if in some restricted regime,
to the form of a spin-squeezing Hamiltonian familiar from
the literature. In order to effect such a reduction, we proceed
by identifying a regime in which the pseudospin- 1

2 can be
eliminated adiabatically. As we show below, this results in an
effective spin-squeezing Hamiltonian for the spin- 3

2 degree of
freedom. A similar procedure has been used earlier in the case
of nuclear spin squeezing; in that case, however, the eliminated
spin is real [60].

The derivation begins with the Heisenberg equations
implied by Eq. (2) for the system variables:

σ̇x = 2�̃σy, (4)

σ̇y = −2�̃σx − 2Ẽσz(Jz cos θ − Jx sin θ ), (5)

σ̇z = 2Ẽσy(Jz cos θ − Jx sin θ ), (6)

J̇x = B̃Jy − Ẽ cos θσxJy, (7)

J̇y = −B̃Jx + Ẽσx(Jx cos θ + Jz sin θ ), (8)

J̇z = −Ẽ sin θσxJy. (9)

We now consider the regime

�̃ > Ẽ,B̃, (10)

i.e., such that the �-doublet splitting is larger than the Stark as
well as the Zeeman shifts. In the regime indicated by Eq. (10),
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σx and σy will vary at the high rate ∼2�̃ and may be thought of
as the “fast” variables of our problem. We see below that with
this assumption σz ceases to be a dynamical variable, i.e., takes
on a constant value. On the other hand, Jx , Jy , and Jz, varying
at the low rates ∼B̃ and ∼Ẽ (to first order), may be thought of
as the “slow” variables of the problem. We now adiabatically
eliminate the fast spin variables σx and σy in Eqs. (4) and (5)
by setting the time derivatives in those equations equal to zero.
The resulting solutions are

σx = − ẼC

�̃
(Jz cos θ − Jx sin θ ), (11)

σy = 0, (12)

σz = C, (13)

where C can take the values ±1. Note that the adiabatic
solution σy = 0 forces σz to be a constant [see Eq. (6)], as
mentioned above. We now use the solutions of Eqs. (11)–(13)
to adiabatically eliminate the fast spin 1/2 degrees of freedom
from Eq. (2). Dropping a constant term proportional to �̃, we
obtain the adiabatic Hamiltonian for the spin- 3

2 variables

Ha = −B̃Jz − CẼ2

�̃
(Jz cos θ − Jx sin θ )2, (14)

which clearly contains terms nonlinear in the angular momen-
tum components and can therefore enforce squeezing.

We note that the separation of variables into slow and
fast groups becomes more rigorous as (Ẽ/�̃,B̃/�̃) → 0. In
our calculations below we work with Ẽ/�̃ � 0.25, which
corresponds to an electric field of 100 V/cm, the lower
bound stipulated by the value of stray fields currently
affecting experiments [74]. We also consider B̃/�̃ � 0.1,
corresponding to a magnetic field of 20 G, which can easily be
achieved experimentally. These parameter values place us in
the adiabatic, but not deep adiabatic, regime. However, such
a distinction is not critical, since as we show later in this
article, spin squeezing exists in OH even in the presence of
quite large nonadiabatic effects, which can, in fact, in some
cases introduce squeezing not anticipated by the adiabatic
approximation. The derivation of the adiabatic Hamiltonian
of Eq. (14) serves the purpose of providing some intuition for
the existence of spin squeezing in the system and provides a
benchmark for determining how large the nonadiabatic effects
are in the spin-squeezing dynamics. Of course, future OH
experiments can be designed with even smaller fields for
which the adiabatic approximation improves. See, for example,
compensation techniques that have been used to limit stray
electric fields to about 1 V/cm already in other systems
[77].

Below, we show that some standard squeezing Hamilto-
nians can be recovered from Eq. (14) and also explore the
squeezing effects of this Hamiltonian for arbitrary B̃, Ẽ,
and θ , within the limits prescribed by the validity of the
effective Hamiltonian [Eq. (2)]. Subsequently, we compare
these results with numerical calculations based on the full
eight-dimensional Hamiltonian of Eq. (2), which accounts for
nonadiabatic effects. We note that Eq. (10) does not stipulate
any relationship between Ẽ and B̃, other than that they both

have to be smaller than �̃. We use this flexibility below to
adjust the field magnitudes to optimize squeezing.

III. SPIN-SQUEEZING DYNAMICS

A. Spin squeezing using the four-dimensional adiabatic
Hamiltonian Ha

In this section we consider spin squeezing using the four-
dimensional adiabatic Hamiltonian of Eq. (14). We provide
analytic and numerical results, as appropriate.

1. One-axis twisting

For B̃ = 0, θ = 0, and C = 1, Eq. (14) gives the Kitagawa-
Ueda Hamiltonian [18],

HKU = κ̃J 2
z , (15)

where

κ̃ = − Ẽ2

�̃
. (16)

The theoretical analysis for spin squeezing using HKU was
first provided by Kitagawa and Ueda [18] and more recently
by Rochester et al. [65]. Nonetheless, we restate the procedure
here, in order to compare with fully numerical calculations to
be presented later. The recipe for the analysis is as follows.
Using the four-dimensional matrix for the J = 3

2 operator Jz

[78], we write the matrix form for HKU. We then obtain the
time evolution operator

UKU = e−iHKUt , (17)

which is also a four-dimensional matrix. We can then obtain
the time evolution of any observable O by using the relation
O(t) = U−1

KUOUKU. In this way we find the matrix forms of the
observables Jx(t) and Jy(t). In order to find the most suitable
axis for spin squeezing, it is convenient to consider a further
rotation by an angle, n, about the x axis [18], i.e.,

Jy,n(t) = einJx (t)Jy(t)e−inJx (t), (18)

and so on for other observables. The operators Jx(t) and J 2
x (t)

are unaffected by this rotation, of course.
For our initial state, we choose, following Kitagawa and

Ueda, the (coherent) stretched state along the x axis [18],

|i〉KU =
∣∣∣∣J = 3

2
,M = 3

2

〉
x̂

= 2−3/2
3∑

k=0

(
3

k

)∣∣∣∣3

2
,
3

2
− k

〉
,

(19)
which we have expanded in the z basis on the right-hand side.
We note that the current level of control over the OH ground-
state manifold should readily allow this state to be prepared
[74]. Using the initial state |i〉KU we find the expectation values
〈Jy,n(t)〉,〈J 2

y,n(t)〉, etc., and thence the variances such as

[�Jy,n(t)]2 = 〈
J 2

y,n(t)
〉 − 〈Jy,n(t)〉2. (20)
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This procedure yields the relevant quantities [65]

〈Jx(t)〉 = 3

2
cos2 κ̃ t, (21)

[�Jy,n(t)]2 = 3

4

[
1 + M

2
+

√
M2 + N2

2
cos (2n + 2δ)

]
,

[�Jz,n(t)]2 = 3

4

[
1 + M

2
−

√
M2 + N2

2
cos (2n + 2δ)

]
,

(22)

where

M = 1 − cos 2κ̃ t, N = 2 sin 2κ̃ t, δ = 1

2
tan−1

(
N

M

)
. (23)

As pointed out earlier [18,65], the y quadrature is maximally
squeezed for cos (2nopt + 2δ) = −1, i.e., along the axis

nopt = π

2
− δ, (24)

in the y-z plane. The amount of squeezing is quantified by the
parameter introduced by Wineland et al. [20],

ξy,n =
√

3
〈(�Jy,n(t))〉

|〈Jx(t)〉| , (25)

and, analogously,

ξz,n =
√

3
〈(�Jz,n(t))〉

|〈Jx(t)〉| . (26)

Squeezing occurs when either ξy,n or ξz,n is less than one. We
have shown a plot of ξy,nopt in Fig. 2. The blue (dashed) line
is the analytical prediction of Eq. (25) and shows that the y

quadrature is squeezed periodically. As found by Rochester
et al. [65], for J = 3/2 the minimum value of the squeezing
parameter is ξmin

y,nopt
� 0.75, consistent with Fig. 2.

FIG. 2. (Color online) Plot of ξy,nopt as a function of the dimen-
sionless time κ̃ t , where κ̃ is defined in Eq. (16). The parameters are
� = 1.66 GHz, E = 100 V/cm, and B = 0, implying κ̃ = 48 MHz.
Squeezing occurs when ξy,nopt < 1. The blue (dashed) curve is the
analytical prediction from Eqs. (24) and (25) based on the adiabatic
approximation of Eq. (10), with Ẽ/�̃ � 0.25. The red (solid) curve
is the numerical calculation using the eight-dimensional effective
Hamiltonian of Eq. (2). As can be seen, nonadiabatic effects are quite
large and significantly change the magnitude and periodicity of the
squeezing, which is nonetheless present.

FIG. 3. (Color online) Plot of ξz,nopt as a function of the dimen-
sionless time κ̃ t , where κ̃ is defined in Eq. (16). The parameters are
� = 1.66 GHz, E = 100 V/cm, and B = 0, implying κ̃ = 48 MHz.
Squeezing occurs when ξz,nopt < 1. The blue (dashed) curve is the
analytical prediction from Eqs. (24) and (26) based on the adiabatic
approximation of Eq. (10), with Ẽ/�̃ � 0.25. The red (solid) curve
is the numerical calculation using the eight-dimensional effective
Hamiltonian of Eq. (2). As can be seen, nonadiabatic effects are
noticeable and actually introduce some squeezing into the otherwise
“antisqueezed” quadrature.

The red (solid) curve in Fig. 2 corresponds to a numerical
calculation of squeezing using the full effective Hamiltonian of
Eq. (2), which incorporates the effects of nonadiabaticity (see
Sec. III B below). As can be seen, although there are qualitative
similarities between the solid and dashed curves (such as the
periodic presence of minima), the adiabatic approximation is
not very good, and nonadiabatic effects change the magnitude
and periodicity of squeezing quite significantly. This may be
expected, as our adiabaticity parameter Ẽ/�̃ ∼ 0.25 is not
very small. However, as mentioned above, the badness of the
adiabatic approximation is not a matter of concern, since our
aim is rather to locate spin squeezing of OH, which indeed
persists even in the presence of large nonadiabaticity.

A plot of ξz,nopt has been shown in Fig. 3. The analytical
prediction of Eq. (26), represented by the blue (dashed)
curve, implies that the shown z quadrature is never squeezed.
Interestingly, the proper inclusion of nonadiabatic effects,
shown by the red (solid) curve, introduces some squeezing
of this quadrature.

2. Uniform field Hamiltonian

In this section we consider spin squeezing in the presence
of a magnetic field. For B̃ �= 0, and θ = π

2 , Eq. (14) takes the
form

HLNL = −B̃Jz + κ̃J 2
x . (27)

This Hamiltonian is, to within a unitary anticlockwise ro-
tation of π

2 around the y axis, the same as that proposed
earlier by Law, Ng, and Leung [30,79–81]. These authors
suggested adding the uniform field term to the Kitagawa-Ueda
Hamiltonian as it yielded greater squeezing for longer times.
Analytic solutions to the spin-squeezing dynamics of Eq. (27)
are not available for arbitrary spin J . Generally, analytic results
can be found only for J � 2, since the eigenvalues of the
Hamiltonian are required for the calculation, which can be
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FIG. 4. (Color online) Plots of ξx,y as functions of the dimensionless time P t , where P is defined in Eq. (33). The parameters are � = 1.66
GHz, E = 100 V/cm, B = 20 G, implying P = 144 MHz and (a) θ = 90◦, (b) θ = 85◦, (c) θ = 80◦, and (d) θ = 75◦. Squeezing occurs when
ξx,y < 1. The dashed curves are the analytical predictions for ξx [Eq. (34)] (blue) and ξy [Eq. (35)] (red). The solid curves represent numerical
calculations carried out using the eight-dimensional effective Hamiltonian of Eq. (2). As can be seen by comparing with Fig. 2, the presence
of squeezing is quite robust to nonadiabatic effects. Also, deviations of about 5◦ away from the nominal value of 90◦ for field alignment do not
affect the squeezing greatly.

found in closed form only for matrices of dimension 5 or
lower. Some results for the case where J = 3

2 is a collective
spin have been published in the literature [81,82]. We provide
additional expressions in order to discuss the details of our
problem.

To determine the squeezing, we follow a procedure similar
to that of Sec. III A 1, but consider the initial stretched state
along the z direction,

|i〉LNL = |0,0,0,1〉, (28)

and determine the squeezing about the x and y axes. We find

〈Jx(t)〉 = 〈Jy(t)〉 = 0, (29)

〈Jz(t)〉 = 3

2

[
1 −

(
κ̃

P
sin P t

)2
]
, (30)

〈[�Jx(t)]〉2 = 3

4

[
1 + 2κ̃B̃

(
sin P t

P

)2
]
, (31)

〈[�Jy(t)]〉2 = 3

4

[
1 − 2κ̃

(
B̃ − κ̃

)( sin P t

P

)2
]
, (32)

where

P =
√

B̃2 − B̃κ̃ + κ̃2. (33)

Using Eqs. (29)–(32), we can find the squeezing parameters

ξx =
√

3
〈[�Jx(t)]〉
|〈Jz(t)〉| (34)

and

ξy =
√

3
〈[�Jy(t)]〉
|〈Jz(t)〉| . (35)

Plots of the squeezing dynamics are shown in Fig. 4(a) for
the same parameters as in Fig. (2) but with B = 20 G. The
dashed curves represent the analytical results for ξx [Eqs.
(34)] (blue) and ξy [Eq. (35)] (red). The solid curves are the
corresponding numerical calculations using HM from Eq. (2).
It can be seen by comparing Fig. 4(a) to Figs. 2 and 3 that
the Law-Ng-Leung approach is more robust to nonadiabatic
effects than the Kitagawa-Ueda model. More specifically, as
can be seen from Figs. 2 and 3, the presence of nonadiabatic
effects (solid line) changes the spin-squeezing dynamics from
the predictions of the adiabatic Hamiltonian (dashed line)
quite considerably. These changes involve both the magnitude
and the periodicity of the squeezing; in fact the squeezing
becomes rather erratic in the presence of nonadiabatic effects.
In contrast, the presence of nonadiabatic effects (solid lines)
does not make the squeezing very erratic in Fig. 4(a), although
the adiabatic approximation is still not very good. In that
figure, the nonadiabatic squeezing has an amplitude similar
to the adiabatic prediction (dashed lines), especially for ξy .
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FIG. 5. (Color online) Plot of ξy(t = tS) [Eq. (37)] versus r

[Eq. (38)]. The vertical line corresponds to r � 3.3, at which
ξy(t = tS) has a minimum, corresponding to maximum squeezing.

The time period is also quite regular and close to that of the
adiabatic case. The main difference from the adiabatic case is
the presence of fast modulations appearing due to the presence
of nonadiabatic effects.

In Fig. 4 we have chosen a magnetic field optimized using
the following procedure. From the analytic result of Eq. (35),
it can be seen that at multiples of the time tS ,

tS = π

4P
, (36)

the squeezing parameter for the y quadrature attains an
extremum value given by

ξy(t = tS) = 2
√

(r2 − r + 1)(r2 − 2r + 2)

2r2 − 2r + 1
, (37)

where the dimensionless ratio

r = B̃

|κ̃| . (38)

The denominator of ξy(t = tS) vanishes only for the complex
values r = (1 ± i)/2, which are excluded by experiment.
Thus, ξmin

y stays finite as r varies, as can be seen from
Fig. 5.

Differentiation of Eq. (37) readily yields a minimum value,
ξmin
y (t = tS) � 0.8, which occurs at r � 3.3, indicated by the

vertical line in Fig. 5. This optimized value of r corresponds
to the magnetic field 20 G used in Fig. 4(a). For simplicity,
unlike in Ref. [81], we have not found the time-dependent axis
of optimum squeezing, which can lead to even better squeezing
than we have presented.

3. General case

In this section we consider spin squeezing as a function
of the angle between the electric and magnetic fields. The
interest in this degree of freedom arises from the necessity of
accounting for possible misalignments between the electric
and magnetic fields in the laboratory, e.g., away from the
nominal value of θ = π

2 for HLNL (see Sec. III A 2). While
this case can be solved analytically as well, the expressions
are lengthy and we provide numerical solutions instead. The

Hamiltonian is

Hg = −B̃Jz + κ̃(Jz cos θ − Jx sin θ )2. (39)

Before we proceed further, we mention that this Hamiltonian,
when rotated anticlockwise by an angle θ about the y axis
yields

H ′
g = eiθJy Hge

−iθJy = −B̃(Jz cos θ − Jx sin θ ) + κ̃J 2
z ,

(40)
which is of the form considered earlier by Agarwal and Puri
for arbitrary J [21].

Numerical plots are presented in Fig. 4 for (b) θ = 85◦, (c)
θ = 80◦, and (d) θ = 75◦, respectively. The dashed curves are
the numerical implications of Eq. (39) for ξx [Eq. (34)] (blue)
and ξy [Eq. (35)] (red). The solid curves are the corresponding
numerical calculations starting from Eq. (2). As can be seen,
the squeezing is quite robust to field misalignment, meaning
that Figs. 4(b) and 4(c) do not vary too much from Fig. 4(a).
Only at about θ = 75◦ does the pattern change noticeably from
that at θ = 90◦. Interestingly, while misalignment degrades
squeezing in the y quadrature, it does not correspondingly
introduce squeezing in the x quadrature.

B. Spin squeezing using the eight-dimensional effective
Hamiltonian HM

In this section we give the details of our spin-squeezing
calculations using the full eight-dimensional Hamiltonian
HM of Eq. (2). We begin with the eight-dimensional matrix
representation of HM from Eq. (A1). Although the treatment
can be carried out analytically, the expressions are very
long, and we calculate instead numerically the time-evolution
operator

UM = e−iHMt , (41)

which is also an eight-dimensional matrix. Starting from
the initial state |ψ(0)〉, represented by an eight-dimensional
column matrix, the state vector |ψ(t)〉 at any later time t is

|ψ(t)〉 = UM |ψ(0)〉. (42)

The density matrix of the full system can then be easily found:

ρ(t) = |ψ(t)〉 〈ψ(t)| . (43)

The reduced density matrix of the spin- 3
2 system can then be

found by tracing over the spin- 1
2 degrees of freedom, i.e.,

ρ3/2(t) = Tr1/2[ρ(t)]. (44)

From here the expectation values of the relevant operators can
be calculated, such as

〈Jx(t)〉 = Tr3/2[Jxρ3/2(t)], (45)

and therefore also the squeezing parameters, as for example in
Eq. (34). It may be useful to mention that for Sec. III A 1 the
initial state is now written as

|i〉KU = 1

2
√

2
|0,0,0,0,1,

√
3,

√
3,1〉 , (46)

and for Secs. III A 2 and III A 3 it is written as

|i〉LNL = |0,0,0,0,0,0,0,1〉 . (47)
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IV. DETECTION OF SPIN SQUEEZING

The proposed spin squeezing may be detected by perform-
ing quantum tomography on the OH ground-state manifold,
which would yield the density matrix, from which squeezing
information can readily be extracted. Such procedures can be
carried out for OH in analogy to experiments performed earlier
on atomic [63] and nuclear [64] systems. In the laboratory,
the predicted squeezing will be degraded by damping and
noise, due to molecular collisions and trap loss. In the present
work, we have justifiably neglected these effects, since they
occur at typical rates of Hz (collisions) [3,4,9] or kHz (trap
loss) [74], while squeezing is generated at frequencies of MHz
(see Fig. 2).

V. CONCLUSION

We have proposed a scheme for spin squeezing the cold OH
molecule in the context of ongoing experiments. Production
of such nonclassical states is expected to be useful for
spectroscopy, magnetometry, and stereochemistry. We have
identified a regime of adiabaticity where some intuition
regarding spin squeezing in the system can be gathered. We
have then shown that spin squeezing can be found even when
nonadiabatic effects are large. Since we do not propose to

use optical or microwave fields, our scheme is free from
damping and decoherence due to spontaneous emission and
optical pumping. In our analysis, we have shown how to
optimize the field values and have also investigated the effect of
field misalignment on the squeezing. Our work is a concrete
proposal for spin squeezing single noninteracting molecules
with angular momentum greater than 1

2 . We note that with
the use of additional electric and magnetic fields, other
spin-squeezing Hamiltonians may also be realized using OH,
such as the one proposed by Raghavan et al. [31]. Also, a more
accurate description of the OH ground state can be reached by
including more states in the Hamiltonian, accounting for fine
and hyperfine structure and electric quadrupole interactions
[4,83]. It would be interesting to investigate the effect of
these additions on our results. Finally, our scheme can also
be extended to the ground states of other polar paramagnetic
molecules such as 2�3/2 LiO and 3
2 CeO.
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APPENDIX

In this Appendix we provide, for the reader’s convenience,
the matrix representation of HM from Eq. (2) [73,75]:

HM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ��
2 − 6

5 μBB 0 0 0 3
5 μeE cos θ −

√
3

5 μeE sin θ 0 0

0 − ��
2 − 2

5 μBB 0 0 −
√

3
5 μeE sin θ 1

5 μeE cos θ − 2
5 μeE sin θ 0

0 0 − ��
2 + 2

5 μBB 0 0 − 2
5 μeE sin θ − 1

5 μeE cos θ −
√

3
5 μeE sin θ

0 0 0 − ��
2 + 6

5 μBB 0 0 −
√

3
5 μeE sin θ − 3

5 μeE cos θ

3
5 μeE cos θ −

√
3

5 μeE sin θ 0 0 ��
2 − 6

5 μBB 0 0 0

−
√

3
5 μeE sin θ 1

5 μeE cos θ − 2
5 μeE sin θ 0 0 ��

2 − 2
5 μBB 0 0

0 − 2
5 μeE sin θ − 1

5 μeE cos θ −
√

3
5 μeE sin θ 0 0 ��

2 + 2
5 μBB 0

0 0 −
√

3
5 μeE sin θ − 3

5 μeE cos θ 0 0 0 ��
2 + 6

5 μBB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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