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Cooperative ordering in lattices of interacting two-level dipoles
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We investigate the cooperative behavior of regular monolayers of driven two-level dipoles, using classical
electrodynamics simulations. The dipolar response results from the interference of many cooperative eigenmodes,
each frequency-shifted from the single resonant dipole case, and with a modified lifetime, due to the interactions
between dipoles. Of particular interest is the kagome lattice, where the semiregular geometry permits simultaneous
excitation of two dominant modes, one strongly subradiant, leading to an electromagnetically induced
transparencylike interference in a two-level system. The interfering modes are associated with ferroelectric
and antiferroelectric ordering in alternate lattice rows with long-range interactions.
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I. INTRODUCTION

Coherent emission from an ensemble of scatterers (such
as electric dipoles) can result in the scatterers behaving as a
collective rather than independently [1]. Such “cooperative”
emission can lead to large frequency shifts off-resonance
and to dramatically modified decay rates (superradiance and
subradiance) [2–4]. This has been realized experimentally in a
number of systems, including ions [5–7], nuclei [8], quantum
dots [9], nanoplasmonics [10], Bose-Einstein condensates
[11], and both room-temperature atoms [12] and cold atoms
[13–15]. Other related cooperative phenomena include highly
directional scattering [16], excitation localization [17–19], and
modified optical transmission and scattering [20–22].

Cooperative emission is caused by the interference of
radiation from individual scatterers, and periodic spacing
between neighboring dipoles can therefore lead to a signifi-
cantly enhanced cooperative response [6,17,23–25]. Coherent
scattering between two-level dipoles maps exactly onto a spin
exchange description [26,27]; consequently, there is a unifying
crossover between cooperative light scattering and interacting
spin systems. Spin lattices are a subject of widespread
contemporary interest and manifest in such diverse systems
as quantum degenerate gases [28,29], polar molecules [26,30]
and cold atoms [31,32] in optical lattices, and electric and
magnetic multipoles in plasmonic nanostructures [10,33–35].
An understanding of the cooperative behavior in these driven-
dissipative systems could open the door to a wide range of
applications (e.g., shifts and lifetimes in optical lattice clocks
[36], narrow linewidth superradiant lasers [37,38], subwave-
length light control [17], and many-body spin models [25,26]).

One particular two-dimensional (2D) lattice geometry
associated with a range of exotic spin phenomena is the
trihexagonal (kagome) lattice. Examples include spin ice and
geometric frustration [39,40], photonic flat bands and band
gaps [41], low-loss transmission through hollow-core photonic
crystal fibers [42], and noninteger Mott phases in optical
lattices [43,44]. In this work we show that the semiregular
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geometry of kagome lattices makes it possible to straightfor-
wardly populate cooperative states associated with dramatic
interference line shapes and strongly subradiant modes.

II. INTERACTING DIPOLE MODEL

We calculate the cooperative shifts and decay rates in
periodic 2D monolayers of interacting dipoles, using a model
closely following that of Refs. [17,20,45–47]. We treat each
dipole as a weakly driven damped oscillator, with the electric
dipole moment di = αE(ri) (i ∈ 1, . . . ,N) proportional to the
total incident electric field E(ri) and the polarizability α.
The dipole positions ri form a 2D lattice in the xy plane
with nearest-neighbor spacing a. In this work we treat the
dipoles as two-level atoms. Such atomic lattices could be
realized in a Mott-insulator phase in an optical lattice [29,48]
or dipole trap array [31,49]. Dipolar 2D lattices of polar
molecules [26] and plasmonic nanoresonators [10,33–35] have
also been demonstrated, and in these systems we would expect
qualitative behavior similar to the results in this work. The
effects of finite potential trap depths [17] and imperfect filling
(vacant lattice sites) will be addressed in Sec. VI.

For a two-level J = 0 → J = 1 atomic transition
(e.g., Sr [25,50]), the polarizability takes the form
α = −α0γ0/(� + iγ0), where � = ω − ω0 is the detuning of
the electric field frequency ω from resonance, γ0 is the vacuum
coupling or scattering rate, and α0 = 6πε0/k3

0 (SI units)
quantifies the magnitude of the polarizability on-resonance
(the wave number k0 corresponds to the resonant wavelength
λ0 = 2π/k0, and ε0 is the vacuum permittivity). We take the
driving field E0 to be a plane wave of amplitude E0 propagating
along z and linearly polarized in y. Each dipole also radiates
a secondary electric field; hence the total field felt by the
ith dipole, E(ri) = E0(ri) + ∑

j �=i Ej (ri), is the sum of the
applied driving field E0 and the fields Ej radiated from all other
dipoles. The field radiated by the j th dipole is proportional to
its dipole moment Ej (r) = G(r − rj ) dj , where G is the dipole
propagation tensor (as given in Ref. [51]). The matrix elements
in a Cartesian representation of G are given by

Gp,q(r) = 1

ε0

[(
∂

∂rp

∂

∂rq

− δp,q∇2

)
eik0r

4πr
− δp,qδ(r)

]
, (1)
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where p,q ∈ {1,2,3}, {r1,r2,r3} are the components of r
directed along the {x̂, ŷ,ẑ} unit vectors, r = |r|, δp,q is a
Kronecker delta, and δ(r) is a Dirac delta function.

Substituting Ej (r) into the expression for di yields a system
of coupled linear equations:

di = αE0(ri) + α
∑
j �=i

G(ri − rj ) dj . (2)

Equation (2) is shown in Ref. [52] to be equivalent to treating
the dipoles both quantum mechanically (assuming weak
excitation) and as classical harmonic oscillators. Following
the method in Ref. [20], we solve Eq. (2) by writing it as
a matrix equation, �E0 = M �d, determining the inverse matrix
M−1 numerically and then solving for �d. Here �E0 and �d are
dimensionless column vectors of E0(λ0r̃i)/E0 and di/α0E0,
respectively (r̃i = ri/λ0 is a dimensionless position vector),
and M is a dimensionless 3N × 3N matrix describing all
the driving and coupling terms, with elements of the form
α0{α−1δp,qδi,j − Gp,q(λ0[r̃i − r̃j ])}.

III. CROSS SECTION AND SCATTERED POWER

It is instructive to decompose the vectors �E0 = ∑
l μlcl �ml

and �d = ∑
l cl �ml in terms of the eigenvectors, �ml , of M (with

corresponding eigenvalues μl) [53]. The coefficients cl can
be calculated by projecting �d onto �ml . Note that, while μl

and cl both depend on the polarizability α (and hence the
detuning �), the products μlcl are independent of α, as are
the eigenvectors �ml [54]. The matrix M is not Hermitian but
rather complex symmetric; such matrices commonly appear
in scattering problems, e.g., in nanoparticle plasmonics [53],
multiphoton ionization [55], and cold atoms [52,56,57]. The

non-Hermiticity results in nonorthogonal eigenvectors and
hence in interference terms appearing in the (dimensionless)
total scattered power P and the extinction cross section σ :

P = �d∗ · �d =
∑

l

⎛
⎝|cl|2 +

∑
k �=l

c∗
l ck �m∗

l · �mk

⎞
⎠, (3)

σ = Im(�E∗
0 · �d) = Im

⎡
⎣∑

l

μ∗
l

⎛
⎝|cl|2 +

∑
k �=l

c∗
l ck �m∗

l · �mk

⎞
⎠

⎤
⎦.

(4)

Each of the direct sum terms in Eq. (4) can be approximated
by a Lorentzian line shape:

|cl|2 Im(μ∗
l ) = −|cl|2 Im(μl) = fl

γ 2
l

(� − �l)2 + γ 2
l

, (5)

where fl is the peak of the line shape (attained when � = �l),
�l/γ0 = Re(μl) is the line center, and γl/γ0 = − Im(μl) is
the half width, relative to the vacuum coupling. Relating the
half width to the characteristic decay lifetime τ ∼ (2γ0)−1, the
imaginary parts of the eigenvalues μl can lead to superradiance
(γl/γ0 > 1) and subradiance (γl/γ0 < 1).

In Figs. 1(a)–1(c) we plot the normalized power
P/N ≡ ∑

i d∗
i · di/Nα2

0E
2
0 (where N is the total number

of dipoles) scattered from square and kagome lattices. We
characterize the relative contribution of each mode by |cl|2
[58]. Highlighting modes with |cl|2 > 0.1 (scatter points), we
see how the overall scattering behavior of the lattice (color
scale) is due to the simultaneous population of several different
eigenmodes, each with its own behavior as determined by
its eigenvalues. In Figs. 1(d)–1(f) we plot the corresponding
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FIG. 1. (Color online) Scattered power and mode eigenvalues for [(a) and (d)] a square lattice with N = 2 × 2 = 4 driven interacting
dipoles, [(b) and (e)] a square lattice with N = 7 × 7 = 49, and [(c) and (f)] a kagome lattice with N = 47. Snapshots of the lattice structure
are shown as insets in panels (d)–(f). (a)–(c) Color scale shows the total scattered power relative to the scattered power from N noninteracting
resonant dipoles, P/N = ∑

i d∗
i · di/Nα2

0E
2
0 [unitless, see Eq. (3)]. Dipoles are positioned in the xy plane with nearest-neighbor spacing a and

irradiated by a y linearly polarized, uniform light beam, propagating in z and detuned from the dipole transition frequency by �. In addition,
we plot the real eigenvalue components (shifts) for all modes with |cl |2 > 0.1 (marker size ∝ |cl |2). (d)–(f) Imaginary eigenvalue components
(decay rates, γl) for all eigenmodes (gray lines); as in panels (a)–(c), those eigenmodes with |cl |2 > 0.1 are highlighted with scatter points.
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widths γl for all eigenmodes of M (gray lines). Looking
at the general behavior of these eigenmodes as well as the
selection of modes populated by our choice of driving field,
we observe certain similarities between these lattices (as well
as with similarly sized triangular and hexagonal lattices not
shown here). In all three lattices, we highlight a similar-looking
mode (yellow squares) which at small a is superradiant and
red-shifted. This is the spin analog of the Dicke symmetric state
[1] with γl/γ0 � N , which we will later show corresponds to
having all spins aligned with the field, i.e., a ferroelectriclike
state. Similarly, each lattice exhibits strongly subradiant modes
(blue circles) which, like the “yellow squares” mode, are
shifted off-resonance as a → 0, due to the 1/r3 small r

behavior of Re(G) in Eq. (1) [51]. Comparing Figs. 1(a)
and 1(b) we see that the overall behavior of the square lattices
is broadly similar, barring the introduction of more modes
in Fig. 1(b). In contrast, with a kagome lattice [Fig. 1(c)] a
pronounced new structure appears (pink triangles). We devote
the rest of this paper to explaining this structure and how it
combines aspects of cooperative electromagnetically induced
transparency (EIT) in two-level systems with combined ferro-
electric and antiferroelectric responses in spin systems.

IV. SQUARE- AND KAGOME-LATTICE CROSS SECTIONS

In Fig. 2 we plot the normalized extinction cross section
σ/N ≡ ∑

i Im[E∗
0(ri) · di]/Nα0E

2
0 through the same N = 4

and N = 49 square lattices as in Figs. 1(a) and 1(b), with
lattice spacing a = 0.2λ0. For the small N = 4 lattice (a), we
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FIG. 2. (Color online) Fano resonances and interferences in the
extinction cross section, through square dipolar lattices with (a) N =
4 and (b) N = 49, and with lattice spacing a = 0.2λ0. The thick
red (gray) lines show the extinction cross section σ/N [unitless, see
Eq. (4)] as a function of the detuning of the driving light relative to the
scattering rate �. The thin gray lines are the calculated direct terms
Im(μ∗

l )|cl |2/N in Eq. (4) associated with each eigenmode. These can
be well approximated as Lorentzian line shapes [Eq. (5)]. Narrower
weak modes are highlighted in black for clarity and are typically
associated with small Fano-resonance-like features in the extinction
cross section σ .

observe one strong broad red-shifted mode and one strong
narrow blue-shifted mode (as well as a few much weaker
modes). Where the two modes overlap there is a strong
asymmetric resonance in the cross-section line shape. This
Fano-like resonance is due to the interference terms that appear
in Eq. (4) and is a direct consequence of the nonzero overlap
between mode vectors (the eigenvector nonorthogonality). In
the power spectrum for N = 49 [Fig. 1(b)], we observe that
adding more dipoles to the square lattice results in many strong
narrow modes appearing at small lattice spacings. These modes
are also visible in the extinction cross section [Fig. 2(b)],
however their relative contribution to the total line-shape
is much weaker. As in the N = 4 case, the line shape for
σ/N when N = 49 is dominated by one broad mode, but the
asymmetric Fano resonances resulting from overlap with the
narrower modes are much smaller. In a real experiment, with
associated lattice imperfections or noise, these weak narrow
modes will wash out (see Sec. VI).

For a kagome lattice geometry [59], however, we observe
two very strong modes at lattice spacing a = 0.4λ0. As in
the 2 × 2 structure in Fig. 2(a), these result in a distinctive

(c)II
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(a)
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FIG. 3. (Color online) Two-level cooperative EIT in the kagome
lattice. (a) As in Fig. 2, we plot the extinction cross section σ/N

[Eq. (4), unitless] as a function of detuning, now through a kagome
lattice with N = 47 and lattice spacing a = 0.4λ0 (thick red line).
The thin gray lines are the calculated direct terms Im(μ∗

l )|cl |2/N in
Eq. (4) associated with each eigenmode. Some of these are highlighted
black to stand out. We label two particular modes (I and II), which
correspond to the modes plotted in panels (b) and (c), respectively.
The inset highlights the weak mode causing the interference labeled
“*”. Panels (b) and (c) show the (x,y) vector components of the
eigenmodes highlighted in yellow (squares) and pink (triangles),
respectively, in Figs. 1(c) and 1(f) and also correspond to the modes
labeled I and II in panel (a), respectively. We plot the real, in-phase
components of the eigenmodes at each lattice point on the kagome
lattice. Panel (b) highlights the ferroelectric mode and panel (c)
highlights the mixed-behavior strong subradiant mode. The lattice
sites labeled 1, 2, and 3 are discussed in the text.
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interference line shape in the extinction cross section σ

[Fig. 3(a)]. Similar to the 7 × 7 square lattice case, most of
the narrow modes prominent in the power spectrum [Fig. 1(c)]
are relatively weak in the extinction. The separate mode
highlighted in Figs. 1(c) and 1(f) with triangular pink markers
remains significant, however, and interference between this
mode (labeled II) and the broader strong mode (labeled I)
results in a line shape similar in appearance to those of
cooperative and dipole EIT [33,60–63]. In these systems,
interferences between different excitation modes (typically
one narrow and one broad) result in transparency where
otherwise extinction would be expected. This is analogous to
conventional EIT, but here the excited states are the cooperative
states of an ensemble of two-level scatterers, as opposed to
multiple states in a single scatterer. Compared to the square
lattice in Fig. 2(b), the strength of the two modes producing
this transparency feature means it should be significantly more
robust to experimental limitations and noise (see Sec. VI).

V. EIGENMODE BEHAVIOR

To better understand the origin of these modes and why
they are populated in the kagome lattice and not the square,
triangular, or hexagonal lattices, we analyze the eigenvectors
themselves. In Figs. 3(b) and 3(c) we plot the real x and y

vector components of two important kagome eigenmodes (the
imaginary components are much weaker). As in Fig. 3(a) we
consider the lattice spacing a = 0.4λ0; however, the change
in these eigenvectors over the parameter range of interest
(0.3 < a/λ0 < 0.5) is negligible. The behavior of each mode is
dependent only on the matrix M and contains no information
about the driving-field polarization or geometry (except for
the detuning � which appears in α). The choice of driving
field simply determines which modes are populated [64]. In
Fig. 3(b), the strong broader mode [I: the yellow squares
mode in Fig. 1(c)] behaves ferroelectrically, with all vectors
tending to align with the driving field along y (cf. the
ferrimagnetic modes in Ref. [40]). A similar mode exists with
all vectors aligned along x, but this doesn’t couple with the
chosen driving-field polarization. As already mentioned, this
is analogous to the symmetric Dicke state and appears in all the
other lattices we have mentioned as well (square, triangular,
and hexagonal).

Figure 3(c) shows the mode responsible for the strong
interference line shape [II: the pink triangles mode in Fig. 1(c)].
In this mode we observe alternating rows of ferroelectric
dipoles aligned with the driving field along y (lattice site 1) and
antiferroelectric dipoles perpendicular to the driving field and
antialigned with their nearest neighbors (sites 2 and 3). The
long-range nature of the dipole-dipole interaction combined
with the nontrivial kagome geometry makes unraveling the
origin of this mode behavior a complicated task. We can,
however, gain insight through considering the individual
contributions of different dipoles. Considering first the dipole
at lattice site 1, the dipole vectors of the nearest neighbors at
sites 2 and 3 are symmetric in x, meaning the sum of the electric
fields they radiate onto site 1 has only a y component (the x

components cancel). The same is true for the remaining dipoles
along rows 2 and 3 and other rows of that type: for every dipole
there is an equal and opposite mirror dipole along the same row

canceling all the x field components felt at site 1. The dipoles
along the same row as dipole 1 contribute fields along y as
does the driving field, resulting in an overall dipole orientation
along y for dipole 1. Similar symmetries can be used to
explain the behavior of the dipoles at sites 2 and 3; however,
what is striking is the stripelike behavior of these alternating
rows. The kagome lattice can be constructed by removing a
triangular lattice with lattice period 2a from a triangular lattice
with period a [65] and this double periodicity is manifest
in mode II (a spacing between antiferroelectric dipoles; 2a

spacing between ferroelectric dipoles). This suggests the mode
is related to this double periodicity, which does not exist in
the regular lattices. Furthermore, the kagome lattice can be
classed as “semiregular,” in that its tiling consists of triangular
and hexagonal tiles surrounding common vertices, and so
even though it shares the same common base unit tiles as
the triangular and hexagonal lattices individually, its behavior
is still significantly different. It will be interesting to model
the cooperative behavior of other semiregular geometries
searching for similar features, as well as investigating the
links between our kagome spin lattices and other semiregular
lattice phenomena such as photonic flat bands [41,66,67] and
geometric frustration [39,40].

Note that we have been describing the bulk mode behavior.
The dipole orientations differ at the lattice edges since the
contributions from nearby neighbors are different. However it
is the bulk behavior that is characteristic of the modes in this
paper and moving to larger lattices simply extends the region
over which the bulk behavior manifests without significant
changes to the behavior itself.

VI. LATTICE IMPERFECTIONS

Finally, we consider the effect of experimental imperfec-
tions on the observed line shapes. So far we have considered
perfect systems where every lattice site is occupied by one
atom centered exactly on that lattice site (assuming an infinite
trapping potential). Here we calculate how some of the effects
presented in this paper deteriorate if the lattice filling is not
perfect (not all of the lattice sites are occupied) and the
trapping depth confining the atoms to the lattice is of finite
magnitude (introducing uncertainty in the atomic positions).
To model the finite trap depth, we assume the trapping
potential is a standing wave of amplitude V0 (considered to
be approximately harmonic at the minima). The atomic wave
functions are assumed to be those of ground-state harmonic
oscillators, centered on each lattice site. Each realization of the
position is therefore determined according to a Gaussian prob-
ability distribution, ρi ∝ exp{−[(x − xi)2 + (y − yi)2]/�2},
where � = (a/π )(ER/V0)1/4 and ER is the lattice recoil
energy (see Supplemental Materials in Refs. [17,68] for further
details). For relatively high filling factors (90% occupation)
and significant trap depths V0 = 750ER , we see in Fig. 4(a)
that the narrow subradiant modes responsible for the weak
Fano resonances are washed out, leaving contributions from
the broader, stronger modes only. Using the same lattice
parameters in the kagome lattice however [Fig. 4(b)], the
interference line shape is still very clear to see. Ninety percent
filling has recently been realized for a 2 × 2 array [49] and
trap depths of 103ER are possible in, e.g., optical lattices [28]
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FIG. 4. (Color online) The effect of experimental imperfections
on the extinction cross section, σ/N [Eq. (4), unitless], through (a)
a square lattice with N = 49 sites and lattice spacing a = 0.2λ0 and
(b) a kagome lattice with N = 47 sites and lattice spacing a = 0.4λ0.
These correspond to the same lattice parameters as in Figs. 2(b) and
3(a), respectively. The thick red (gray) lines show the average over
several hundred realizations; the black solid lines bounding the shaded
areas represent the standard deviation. In each realization (and at each
detuning), we remove at random five atoms from both lattices and
sample the individual atom positions using a Gaussian distribution,
modeling the effect of finite trap depth (V0 = 750ER , where ER is
the lattice recoil energy).

where high filling factors are possible via the Mott-insulator
phase and algorithmic cooling [69].

VII. CONCLUSIONS

In conclusion, we have shown that dipoles arranged in
a periodic 2D lattice with spacing of order of the driving
wavelength respond cooperatively rather than independently.
We observe cooperative decays and shifts akin to those
predicted for pairs [70,71] and 1D chains [23,25] of atomic
dipoles, with different superradiant and subradiant cooperative
modes being populated. The interference of these modes
produces nontrivial asymmetric line shapes. A particularly
striking example is shown in the kagome lattice where we
observe cooperative EIT in a system with only two levels.
This two-level cooperative EIT corresponds to interlaced
ferroelectric and antiferroelectric phases of the coupled spin
system. These 2D lattices provide us with an exciting means
to explore interesting many-body spin models as a test bed
for driven dissipative nonequilibrium systems, including in
the quantum regime [72], and may have direct applications in,
e.g., narrow linewidth optical lattice clocks [36] and subradiant
quantum information storage [25].

The data presented in this paper are available. See Ref. [73].
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[8] R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer,
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