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Phase-matched second-harmonic generation in slow-light photonic crystal waveguides
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We present an analytical description of phase-matched second-harmonic generation in photonic crystal
waveguides in the presence of loss. In particular, we investigate the case where the second-harmonic modes
suffer from radiative losses. We use the adjoint field formalism to develop a coupled-mode theory that uses
the quasinormal Bloch modes as the basis for modal expansion. To test our analytical description numerically,
we propose a design in a lithium niobate photonic crystal slab waveguide, where a slow-light mode at the
fundamental harmonic frequency is phase matched to a leaky mode at the second-harmonic frequency. The
results of the numerical experiment agree with our analytical predictions.
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I. INTRODUCTION

Photonic crystal (PC) devices are suitable platforms for
fully integrated optical signal processing since they provide
control over the flow of light on the subwavelength scale [1]. In
particular, PC slab waveguides (PCSWs), shown schematically
in Fig. 1, are suitable for achieving strong control over the
dispersion relation of electromagnetic modes since by altering
the dispersion relation of modes and lowering their group
velocity to obtain slow light, smaller photonic devices and
more efficient nonlinear interactions can be obtained [2–4].
The latter is possible since light in a slow mode has, for the
same optical power, a higher intensity than in a regular guided
mode. As a result, nonlinear interactions, which by nature are
intensity dependent, become enhanced and more efficient. This
makes slow light PCSWs particularly interesting for integrated
light sources based on nonlinear parametric processes, such
as second-harmonic generation (SHG) [5,6], third-harmonic
generation (THG) [7,8], and four-wave mixing (FWM) [9].

The first requirement for a parametric process is the
conservation of energy. In terms of this aspect, parametric
processes in PCSWs can be placed in two categories. The
first category includes processes that involve photons with
close frequencies, e.g., a FWM process, where all the four
waves involved in the process are around the frequency of
the slow mode to benefit from its enhancement effect [9]. The
slow-light mode is designed to be under the light line and inside
the band-gap frequency range of the PC slab and therefore
is ideally lossless. Standard coupled-mode theory involving
lossless Bloch modes can be used for analytical investigation
of such a process [10,11]. The second category includes
processes that involve photons of very different frequencies,
such as SHG and THG. To benefit from slow light, the
fundamental-harmonic (FH) frequency is chosen to coincide
with the slow mode. However, the second-harmonic [5,6] (SH)
or the third-harmonic [7,8] frequencies are usually above the
light line. This means that the modes of the waveguide at the
higher-harmonic frequencies couple to the radiation modes,
which leads to energy loss. For such leaky [12] modes the
theories involving lossless modes cannot in general be applied
to analytically investigate light propagation. Although SHG
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has been investigated for two-dimensional (2D) planar PCs
[13], the treatment is not applicable to PCSWs with leaky
modes, as in the 2D case the structure is assumed to be z

invariant, hence the effect of the light line is ignored and
the theory is only developed for the lossless modes of the
z-invariant system.

The second requirement for a parametric process is the
conservation of momentum, i.e., the need for phase matching
between the modes. For the first category of processes where
frequencies of the modes involved are close to each other,
e.g., FWM, achieving phase matching is a relatively simple
task, compared to the second category with SHG and THG.
Especially if there is only one mode of operation in FWM
for all the four waves involved [9], then phase matching
is ensured naturally. However, for the SHG and THG, due
to the strong material and modal dispersion, achieving a
phase-matched interaction is not as simple. Because of the
lack of structure designs for phase-matched processes, in the
experiments done to date on THG and SHG in PCSWs the slow
FH mode generated the higher-harmonic signal directly into
the continuum of the radiation modes, which was detected
from above. In this way, the higher-harmonic field does not
propagate with the guided FH mode and is immediately lost,
which is the main reason that phase matching cannot take
effect [14]. Although the non-phase-matched process allows
for a more wideband nonlinear interaction, it is less efficient
compared to one that is phase matched. For an efficient
phase-matched interaction to take place, the leaky SH mode
has to be concentrated in the waveguide region and have a long
decay length. Finding such modes adds to the complexity of the
design. Once again, designs are available for phase-matched
SHG in planar PCs with finite slab thickness [15], but not for
PCSWs.

Arbitrary phase matching could be achieved by using
the quasi-phase-matching technique [16,17]. However, this
technique has not yet been implemented in PCSWs and is
limited to specific material systems. Our aim is to achieve
modal phase-matching purely through the dispersion of the
guided modes, which does not rely on any additional technol-
ogy besides the structuring necessary to realize the photonic
crystal.

In this work we address the lack of both a phase-matched
design and an analytical description for the specific case
of SHG in PCSWs. It is important for both issues to be
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FIG. 1. (Color online) Schematic of the guided second-harmonic
generation in a photonic crystal slab waveguide, with slab thickness
h, hole radius R, and lattice constant a. Here FH and SH stand for
the fundamental- and the second-harmonic fields, respectively. The
blue lines mark the edges of the supercell, which is the unit cell of
the PCSW structure. It is a volume with the length of one period in
the propagation direction and an infinite cross section.

addressed at the same time because for numerical investigation
of the validity of the analytical description, one requires a
realizable design to perform the rigorous nonlinear simulation
and potentially an experiment. For the analytical description
we use the adjoint reciprocity theorem as a starting point,
which has already been developed as a general formalism and
has been used specifically to describe cross- and self-phase
modulation in metamaterials with material loss or gain [18].
We combine this formalism with the concept of quasinormal
Bloch modes [19] (QNBMs), which is needed for correctly
normalizing the leaky Bloch modes.

For the structure design, we choose lithium niobate
(LiNbO3) as the material because of its strong second-order
nonlinearity, wide transparency window, and the possibility
of periodic poling, which makes LiNbO3 PCs an ideal
platform for integrated optical devices. Recent advances in
LiNbO3 nanostructuring technologies [20,21] have already
allowed for the realization of PC cavities [22] and integrated
nanowaveguides [23,24] for SHG. Henceforth, realizing a
slow-light PCSW with the required nanostructuring precision
is not out of reach. In our design, a leaky SH mode of the
PCSW is phase matched to a dispersion engineered slow FH
mode.

Our analytical model allows us to quantitatively study the
effects from phase matching, leakage, and group index on
the efficiency of SHG involving a leaky Bloch mode. Most
notably, we find that for the leaky mode the efficiency depends
on the absolute value of the complex group index of the mode.
Furthermore, the proposed design is shown to result in a narrow
phase-matching bandwidth due to the strong wavelength
dependence of the wave number of the slow-light mode.
Finally, a nonlinear finite-difference time-domain (FDTD)
simulation is performed and its result is compared with the
analytical prediction. A comparison shows that the analytical
description is accurate and since it only requires numerical
data that are computationally more efficient to acquire than
performing the rigorous nonlinear simulation, it can serve as
the main method for future designs for any parametric process
involving leaky Bloch modes.

The paper is structured as follows. Section II is dedicated
to a rigorous theoretical formulation of the SHG process in
a PCSW involving leaky SH modes. In Sec. III we present
a design for phase matching a lossless slow-light mode at
the FH frequency to a leaky mode at the SH frequency in
a LiNbO3 PCSW and the SH power is calculated using the
analytical formulas. Section IV presents the result of the
nonlinear FDTD simulation for this design and its comparison
with the analytical prediction. Section V includes a summary
and a discussion regarding further implications of the results.
In the Appendix we present some details of our numerical
calculations.

II. THEORY

In this section we analytically describe phase-matched SHG
in PCSWs between a lossless FH mode and leaky SH modes.
Although we target slow-light modes, we make no specific
assumption regarding the magnitude of the group velocities
of the modes involved. Therefore, our analysis can be used
for any periodic structure with slow or fast modes. For a
nonlinear process involving only lossless Bloch modes, one
can use the coupled-mode theory based on the conjugated
Lorentz reciprocity theorem [10,13]. However, a lossy mode
no longer exhibits orthogonality with its conjugate, preventing
us from using the conjugated reciprocity theorem. A lossy
mode is biorthogonal to a set of modes called the adjoint
modes [25–27]. The Lorentz reciprocity theorem has already
been reformulated using these adjoint modes to develop a
nonlinear coupled-mode theory for lossy periodic structures
[18]. For reciprocal materials, the adjoint modes are the
same modes of the structure, which means that the adjoint
reciprocity theorem for reciprocal materials coincides with the
unconjugated reciprocity theorem [12,19,28]. Consequently,
the biorthogonality condition will simplify to an unconjugated
orthogonality relation between the Bloch modes of the
structure [19], which only gives a nonzero value when a
mode is mixed with its backward-propagating counterpart.
For our reciprocal structure, we use the adjoint formalism
and adapt it to the case of phase-matched SHG involving
lossy Bloch modes, where the adjoint of a lossy mode is its
backward-propagating counterpart.

We used the general term lossy instead of leaky, as the type
of loss in the adjoint formalism is not restricted to the leakage
loss and could also include material absorption when needed.
However, leaky modes offer an extra subtlety. Although
the leaky mode of a waveguide is mainly concentrated in
the waveguide region, it has an almost exponentially rising
radiation tail in the direction transverse to the waveguide [12].
In evaluating integrals over infinite dimensions involving leaky
modes, one has to be aware of this rising tail. Such integrals
usually appear in the form of overlap integrals in the efficiency
of the SHG process. This problem especially has attracted
much attention in recent years in the field of nano-optics in
studying the dynamics of open nanoresonators and cavities
[29–33]. Quasinormal modes (QNMs), introduced by Leung
et al. [34], are used as the basis for modal expansion in open
resonators, where eigenmodes have complex frequencies as
the eigenvalue, are mainly concentrated in and around the
resonator area, and have rising radiation tails away from the

063821-2



PHASE-MATCHED SECOND-HARMONIC GENERATION IN . . . PHYSICAL REVIEW A 92, 063821 (2015)

resonator. This formalism was extended to periodic guiding
structures [19], introducing QNBMs as the eigenmodes of the
system with complex wave vectors, which solves both the
theoretical and numerical problems of using leaky modes for
modal expansion. In the work by Lecamp et al. [19], QNBMs
refer to all the eigenmodes of a periodic structure that are
surrounded by a specific choice of the perfectly-matched-
layer (PML) boundary condition. These eigenmodes can be
classified based on how the specific choice of PML properties
affects them. One category consists of the continuum of the
radiation modes that is discretized in the presence of PMLs.
These modes strongly depend on the PML properties. The
other category is the modes that are not sensitive to the choice
of PML and can be thought of as the true modes of the
waveguide structure. These modes can be bound or leaky with
a small imaginary part of the complex wave vector. In our work
we use the term QNBM to refer only to this second category
of modes. This is analogous to the QNM of a cavity, where
the QNM with a complex frequency is a leaky mode that is
mainly concentrated in the cavity region and the QNBM with
a complex wave vector is a leaky mode that is concentrated in
the waveguide region.

We start by defining the QNBMs at the FH and SH
frequencies in the complex representation

{EF ,HF }(r) = {eF ,hF }(r)eikF x, (1a){
ESn

,HSn

}
(r) = {

eSn
,hSn

}
(r)eikSn x−αnx, (1b)

whereby{
eF,Sn

,hF,Sn

}
(r) = {

eF,Sn
,hF,Sn

}
(r + a x̂). (2)

The indices F and S correspond to the time-harmonic fields
(time dependence of e−iωt ) at the FH frequency ωF and the
SH frequency ωS . A single mode is assumed for the FH and
the index n runs over the QNBMs present at the SH frequency.
Further, E(r) is the electric field, H(r) is the magnetic field,
and e(r) and h(r) are their corresponding Bloch mode profiles.
The propagation direction is x, as shown in Fig. 1. Here r is
the position vector, a is the lattice constant or period, x̂ is the
unit vector in the x direction, and k is the wave number in the
propagation direction. For the lossy SH modes, we express
the complex wave numbers as k = kS + iα, where 1/α is
the decay length of the SH mode. The electric and magnetic
fields of the unperturbed system are related by the source-free
Maxwell’s equations

∇ × EF,Sn
= iωF,Sμ0 HF,Sn

, (3a)

∇ × HF,Sn
= −iωF,Sε0ε̄F,S EF,Sn

. (3b)

Here ε̄F,S(r) = ε̄F,S(r + a x̂) are the relative permittivity
tensors of the structure at FH and SH frequencies. This is a
symmetric tensor that could be complex valued, meaning that
the material is reciprocal but could be anisotropic and lossy.

In the perturbed case, the perturbation is caused by the
nonlinearity. The undepleted pump approximation (UPA) is
assumed for the FH mode, which is a reasonable approximation
for experimentally realizable situations. The UPA requires
the amplitude of the FH mode to stay the same as in the
unperturbed case in Eq. (1a). The perturbed SH field consists
of all the QNBMs present at the SH frequency, each with an

amplitude ASn
(x) to be found:

{E′
S,H ′

S}(r) ≈
∑

n

ASn
(x)

{
ESn

,HSn

}
(r). (4)

Equation (4) is an approximation. To be exact, in addition to the
sum over the QNBMs, the right-hand side of Eq. (4) should also
include an integral over the continuum of the radiation modes.
In the case of a PCSW, where the FH pump is concentrated
around the waveguide region and we are only interested in
the generated SH around this waveguide region, Eq. (4) is a
good approximation. We make this approximation following
that made for QNMs of a resonant structure [29,30], where
the QNM expansion without the radiation modes is a good
approximation for describing the light dynamics in regions
inside and close to the resonator.

The perturbed Maxwell’s equations for the SH frequency
include the nonlinear polarization Pnl:

∇ × E′
S = iωSμ0 H ′

S, (5a)

∇ × H ′
S = −iωSε0ε̄S E′

S − iωS Pnl, (5b)

where Pnl for a SHG process can be formulated using
contracted notation [35]

Pnl = 2ε0e
i2kF x pnl = 2ε0e

i2kF x d̄(r)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2
xF

e2
yF

e2
zF

2eyF
ezF

2exF
ezF

2exF
eyF

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Here d̄(r) = d̄(r + a x̂) is the nonlinear susceptibility tensor of
the material and has to be arranged in a way that the choice of
crystallographic basis matches the choice of the coordinate
axis. We use the periodicity of Bloch modes to introduce
the periodic variable pnl(r) = pnl(r + a x̂). To find ASn

(x) for
each QNBM, we use the adjoint reciprocity theorem [18]

∇ · (
E†

Sn
× H ′

S − E′
S × H†

Sn

) = iωS PNL · E†
Sn

, (7)

where the adjoint to each QNBM mode is its backward-
propagating counterpart{

E†
Sn

,H†
Sn

}
(r) = {

e†Sn
,h†

Sn

}
(r)e−ikSn x+αnx. (8)

If the structure possesses a mirror symmetry with respect
to the propagation direction, the Bloch mode profile of the
forward- and backward-propagating modes can be connected
to each other [18]. In the specific case of the PCSW shown in
Fig. 1, the supercell of the structure is inversion symmetric
with respect to the point at the center of the supercell,
which simplifies the relation for deriving the adjoint mode
profiles to e†S(r) = −eS(−r) and h†

S(r) = hS(−r) [27]. The
biorthogonality relation between QNBMs and their adjoints is
[19]∫∫ +∞

−∞

(
e†Sm

× hSn
− eSn

× h†
Sm

) · x dy dz = δnmFn, (9)

where Fn is referred to as the adjoint flux [27] and is a finite
x-independent quantity.

To find ASn
(x) from Eq. (7), we take the volume integral of

both sides of Eq. (7) over a supercell and use the divergence
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theorem on the left-hand side, which turns the volume integral
into a surface integral over the supercell. We use a supercell
volume because it allows us to find a closed-form expression
for A using the periodicity of the modes. Together, by using
Eqs. (1b), (4), (6), and (8) with Eq. (7) we get

∑
m

∮
S

ASm
(x)

(
e†Sn

× hSm
− eSm

× h†
Sn

) · dS

= i2ωSε0

∫
�

exp(2ikF x − ikSn
x + αx) pnl · e†Sn

dV, (10)

where � is the volume of one supercell, shown in Fig. 1,
and S is the closed surface surrounding it. When the guiding
structure is surrounded by an outgoing boundary condition, the
four surfaces closing the supercell in the transverse directions
will not contribute to the surface integral on the left-hand side
of Eq. (10) [19]. As a result, the closed surface integral will
turn into two surface integrals over the cross sections of the
supercell that are perpendicular to the propagation direction,
for which we use the biorthogonality relation of Eq. (9). This
simplifies Eq. (10) to

ASn
(x + a) − ASn

(x) = i2ωSε0

Fn

∫
�

exp(2ikF x−ikSn
x+αx)

× pnl · e†Sn
dV . (11)

This equation gives the change in ASn
(x) over the length of

a. In principle, ASn
(x = x1) can be calculated for any value

of x1, given that we have its initial value at some other point,
e.g., ASn

(x0). Then we only need to take the integral on the
right-hand side of Eq. (11) over a volume starting from x0 and
ending at x1.

To find a closed-form expression for A, we make the
slowly varying envelope approximation (SVEA) for a periodic
structure [10]. In this case, the SVEA is only valid when the
SH mode has a wave number close to the phase-matching
condition and a decay length Ldecay ≡ 1/α much longer than
a period. We assume that only one SH mode satisfies the
phase-matching condition, which is a reasonable assumption
for the SHG application. Hence, we drop the index n for the
rest of the calculation. The phase-matching condition for a
periodic structure is [36]

�k = kS − 2kF − 2π�q

a
= 0, �q = 0,1,2, . . . . (12)

If the system is close to this condition such that �k � 1/a,
then exp(−i�kx) can be approximated as a constant function
over the length of a supercell and can be pulled out of the
volume integral on the right-hand side of Eq. (11). Moreover,
if the decay length of the SH mode is much longer than
one period, exp(+αx) can also be pulled out of the integral.
The remaining functions present in the volume integral are
periodic. Now we can make the SVEA AS(X + a) − AS(X) ≈
a∂AS/∂X, where X is a discrete coordinate referring to the
start of every supercell. Consequently, Eq. (11) results in

∂AS

∂X
= i2ωSε0

a
e(−i�k+α)X V

F , (13)

where

V ≡
∫

�

exp

(
− i

2π�q

a
x

)
pnl · e†SdV (14)

is the overlap integral and determines the efficiency of the SHG
process. Equation (13) is a first-order differential equation and
can be solved using the initial condition AS(X = 0) = 0:

AS(X) = i2ωSε0

a

e(−i�k+α)X − 1

−i�k + α

V
F . (15)

With A at hand, we can find the generated SH power as a
function of the input FH power. The starting point is to integrate
the component of the Poynting vector in the propagation
direction over the yz plane for both modes:

PF = 1

2

∫∫ +∞

−∞
Re[eF × h∗

F ] · x̂ dy dz, (16)

PS (X) = |e−αXAS(X)|2
2

∫ +H/2

−H/2

∫ +W/2

−W/2

× Re[eS × h∗
S] · x̂ dy dz. (17)

Here W and H specify the width and height of an arbitrary
rectangle around the waveguide, defined to avoid the infinite
value of the Poynting vector integral of the leaky QNBM. As
stated by Snyder and Love [12], the power of a leaky mode is
rather an intuitive concept for understanding leaky modes. In
our case, this is not as arbitrary of a choice because we have to
choose W and H in a way to correspond to regions close to the
waveguide, where the QNBM expansion is valid. Moreover,
the assumption that only one SH mode is phase matched and is
dominantly contributing to the SHG process has a theoretical
convenience in determining the total SH power in Eq. (17).
Because modes of a leaky system are not power orthogonal
to each other, the total power in general can no longer be
presented as the sum of the powers in each mode, but should
include some cross terms between the modes [37]. The single-
mode approximation avoids this complication. We discuss the
effect of this approximation when comparing our analytical
result with the rigorous nonlinear simulation.

To normalize the calculated power and make it independent
of the absolute value of the Bloch mode profiles, we insert
the group velocities of the modes into Eq. (17). As a result,
one can utilize the field profiles of Bloch modes found from
any numerical method in the analytical calculations. For a
lossy Bloch mode, the group velocity is no longer equal to
the energy velocity and simply is a relation that connects the
complex-valued derivative dω/dk to the field profiles of the
mode [27]. This relation for the complex group velocity of
the SH mode is [19,27]

vgS
= c

ngS

=
a

∫∫ +∞

−∞
(e†S × hS − eS × h†

S) · x dy dz

2
∫

�

dS · e†SdV

, (18)

where ng is the complex group index and d = ε0ε̄e is the
displacement field profile of the Bloch mode. For a lossless FH
mode, the adjoint fields can be related to the conjugated fields
through e†F (r) = e∗

F (r) and h†
F (r) = −h∗

F (r) [19,27]. Using
these relations, Eq. (18) can be simplified to the real-valued
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group-velocity relation for a lossless Bloch mode [36]:

vgF
= c

ngF

= 2aPF∫
�

dF · e∗
F dV

. (19)

It should be noted that both Eqs. (18) and (19) neglect the
dispersion in the material permittivity around each of the
FH and SH frequencies. This is a justified approximation in
periodic structures made of transparent dielectric materials,
where the modal dispersion induced by the structuring is far
stronger than the material dispersion. However, in plasmonic
structures the material dispersion must be included [29,30].
The exact relation for the group velocity including material
dispersion can be found in Ref. [27].

Finally, using Eq. (16)–(19) in combination with Eq. (15),
after some rearrangement we get

PS(X) = P2
F

Peff
Rn2

gF
|ngS

|
∣∣∣∣e

−αX − e−i�kX

a(−i�k + α)

∣∣∣∣
2

, (20)

where we have defined variables R and Peff as follows:

R ≡
2
∫ +H/2
−H/2

∫ +W/2
−W/2 Re[eS × h∗

S] · x dy dz∣∣ ∫∫ +∞
−∞ (e†S × hS − eS × h†

S) · x dy dz
∣∣ , (21)

1

Peff
≡

2ω2
Sa3

c3

∣∣ ∫
�

e−i
2π�q

a
xε0 pnl · e†SdV

∣∣2

∣∣ ∫
�

dS · e†SdV
∣∣( ∫

�
dF · e∗

F dV
)2 . (22)

Equations (20)–(22) are the main results of the analytical
calculation and represent the power of the generated SH signal.
Equation (20) reproduces the general expected effects for SHG
in the presence of loss, which is the existence of a saturation
length for the generated SH power, equal to the decay length
of the SH mode [38]. This means that the generated SH power
gradually balances with the radiating SH power, resulting in a
constant level of SH power in the waveguide. A different result
of this calculation is that it reveals the group index dependence
of a parametric process involving lossy modes. For a SHG
process in a 2D PC involving only lossless modes, it has been
shown that the generated SH power enhances quadratically and
linearly with respect to ngF

and ngS
, respectively [13], where

both group indices are real numbers. However, when a mode is
lossy, it has a complex group index [27] and as derived in Eq.
(20) it is the absolute value of this complex group index that
affects the efficiency of the process. Equation (21) defines R
as a dimensionless parameter and its value is dependent on the
choice of W and H . This factor appears as the result of trying
to define a power for the leaky mode. A closer look atR reveals
that it is the power of the SH Bloch mode profile divided by
its adjoint flux and it is exactly equal to 1 for a lossless mode
with an infinite W and H . Equation (22) defines Peff as an
effective power. The nominator of Eq. (22) includes the overlap
integral between the backward-propagating SH mode and the
nonlinear polarization that is generated by the FH mode. To
have an efficient nonlinear interaction, this overlap has to be
maximized by the proper choice of crystal orientation and the
symmetry of the dominant components of the electric field
profile of the modes involved. The denominator includes the
energy density integral for the FH mode, whereas for the SH
mode the integral is no longer the energy density, but rather an

adjoint density [27]. These integrals in the denominator serve
to normalize Peff so that it is independent of the choice of the
absolute value of the Bloch mode profiles.

Finally, we investigate the phase-matching part of Eq. (20)
in more detail. For this we define the phase-matching function
PM as

PM(ωF ,L) ≡
∣∣∣∣ e−αL − e−i�k(ωF )L

a[−i�k(ωF ) + α]

∣∣∣∣
2

, (23)

where L is the length of the structure and the phase mismatch
�k is a function of the frequency (or the wavelength) of
the input FH pump. In a lossless system, the phase-matching
function is of the form sinc2(�kL/2) [35], which gets narrower
as L is increased. In the presence of loss, for L → ∞, PM
approaches a Lorentzian function of the form 1/(�k2 + α2),
independent of L. Consequently, there is a lower limit to
the k bandwidth of the phase-matching function, set by the
amount of loss: The longer the decay length of the SH mode is,
the narrower the k bandwidth of the phase-matching function
becomes. However, this bandwidth can get even narrower with
respect to ωF , when dk/dω is large in the presence of slow
light. This is because when ωF of the pump is detuned from
the phase-matching frequency, �k grows faster proportional to
ngF

. Consequently, with a slow mode involved in a parametric
process, narrower frequency bandwidths can be achieved with
shorter structures, compared to the cases involving nonslow
modes.

To check the validity of the analytical description through
comparison with a nonlinear numerical calculation, a specific
design is needed. As can be seen, to evaluate the generated
SH power through Eqs. (20)–(22), we need to know the linear
properties of the Bloch modes involved in the interaction.
This includes the Bloch mode profiles, group indices, and the
real- or complex-valued wave vectors. In the next section we
propose a design, investigate its linear properties that concern
the nonlinear interaction, and implement these numerical data
in Eqs. (20)–(22) to find PS(X).

III. LINEAR SIMULATION

In this section we propose a design for phase-matched SHG
in a LiNbO3 PCSW. As was discussed in the previous section,
we want the FH mode to be slow for better SHG efficiency
and a narrower phase-matching bandwidth. We need to phase
match this slow mode to a leaky SH mode to exhibit the phase-
matching effects. The process of the design involves only linear
simulations to find the properties of the Bloch modes, such as
the band diagram and field profiles. By implementing these
linear data in Eqs. (20)–(22), we find the generated SH power
as a function of the length of the structure.

We have performed all of our FDTD simulations with a
resolution of a/40, using the freely available software package
MEEP [39]. We use two different sets of refractive indices
of LiNbO3 [40] in our FDTD simulations. One is for the
FH simulations at the wavelength of λFH = 1550 nm with
ne = 2.1376 and no = 2.2111, where indices e and o stand for
the extraordinary and ordinary components of refractive index
tensor. The other is for the SH simulations at the wavelength
of λSH = 775 nm with ne = 2.1784 and no = 2.2587. For
finding the dispersion relation of the modes around each of
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FIG. 2. (Color online) (a) Dispersion engineering design for low
dispersion slow light, where the first and second rows of holes are
shifted outward and inward, respectively. The c axis of the LiNbO3

crystal is along the y direction. (b) and (c) Absolute value of the Ey

field component for the TE02 SH field (top) and of the slow FH mode
(bottom) at (b) the z = 0 plane and (c) the y = 0 plane. (d) Band
diagram of the TE02 mode around the SH frequency. The blue closed
circles (left axis) are the normalized frequencies and the red closed
squares (right axis) are the decay lengths. (e) On the left the solid
line is the band diagram of the slow-light mode. The closed circles
(with a dashed line passing through it) are the band of the SH mode
translated using the phase-matching condition. Shown in the middle
is the group index of the FH slow mode. On the right is the phase-
matching function. (f) Generated SH power PS(X) along the PCSW
using Eqs. (20)–(22), assuming an input FH power of 1 mW.

these wavelengths, we neglect the dispersion of the material in
our FDTD simulations. For a monochromatic excitation of the
FH wave at λFH = 1550 nm the phase matching is still exact.
The only quantities that will be slightly affected through this
approximation, as was discussed after Eqs. (18) and (19), are
the group velocities of the modes that are derived from each
of the calculated band diagrams.

The final design is shown in Fig. 2(a). We use a hexagonal
lattice to create a frequency band gap for the TE-like (z-even
[1]) FH mode. A waveguide is created by removing a row of
holes. We choose the crystal to have its c axis (extraordinary
axis) along the y direction. This choice is made to make
use of the strongest component of the nonlinearity tensor
d33 that most efficiently mediates the nonlinear interaction
between TE-like modes, which have their dominant electric
field in the y direction. We engineer the FH mode to achieve
a low-dispersion slow-light mode, i.e., in a certain range of

frequencies the group index of the mode is nearly constant.
This reduces the sensitivity of the group index of the FH mode
at the point of phase matching with respect to the frequency
shifts of the band that could be caused by inaccuracy in a
possible fabrication. Low-dispersion slow light in PCSWs can
be achieved by altering the geometry of the structure near
the waveguiding region and different approaches for such
dispersion engineering exist [41–44]. In our design we use
transversal shifting of the first and second rows of holes
adjacent to the waveguide [42], as shown in Fig. 2(a). We
choose this method as it seems most feasible to realize in
a potential fabrication of the device. The parameters of the
structure are as follows: the radius of holes R/a = 0.3, the
thickness of the slab h/a = 1.2, and the transversal shifts of
rows S1/a = 0.1 and S2/a = 0.05.

The choice for the FH mode is dictated by the availability
of a lossless slow-light mode that is susceptible to dispersion
engineering. This is the mode with a z-even–y-odd symmetry
and a dominant electric-field component Ey that looks even
across the z = 0 and y = 0 planes. For getting the highest
overlap integral for the nonlinear process, we choose a SH
mode of the same symmetry. The absolute value of the Ey

component for both modes is shown in Figs. 2(b) and 2(c) in
a supercell. As far as the waveguide region is concerned, we
can approximately think of the FH and the SH modes as a
TE00 and a TE02 mode, respectively. The reason for choosing
this particular leaky SH mode is as follows. First, it has no
nodes in its dominant field profile in the y direction, giving
it a confined field profile and hence low interactions with the
adjacent rows of holes. This eventually results in low leakage
losses. Second, it has two nodes in its dominant field profile
in the z direction, making it more sensitive than the FH mode
to a change of the thickness of the slab. This property of the
mode is of main importance for reaching and tuning the modal
phase matching. By increasing (decreasing) the thickness of
the slab, the frequency of the SH band shifts down (up) in the
band diagram with respect to the frequency of the FH band.
We have used this tuning property in the design process to
reach modal phase matching at a point where the SH mode has
a low loss and the FH mode has a low group velocity.

The band diagram for the SH mode is shown in
Fig. 2(d), along with its decay length. The decay length of
a mode is defined as the inverse of the imaginary part of
its wave number Ldecay ≡ 1/α. Both the decay length and
the real-valued frequency are plotted as a function of the
real part of the wave number. We have found the band in
the region 0.11 < Re[kx]a/2π < 0.15, which is around the
phase-matching condition. In Fig. 2(e) the slow FH band is
shown along with its corresponding group index. The band
of the slow mode is shown in the negative part of the first
Brillouin zone (BZ), as the forward-propagating slow mode
has a negative k-value in the first BZ. This can also be seen
from the positive slope of the band diagram, which indicates
a positive group velocity and forward propagation in the x

direction. The region of low group index variation can be
seen around ngF

≈ 24. The dashed line in the left figure of
Fig. 2(e), passing through the closed circles, represents the SH
band, translated according to the phase-matching condition.
For this translation, the frequency of each point in the SH
band is divided by 2 and its k vector is translated using
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( kSa

2π
− 1)/2, following Eq. (12) with �q = 1. The crossing

is at kF a
2π

= −0.4364 and ωF a
2πc

= 0.359 44 for FH, which
corresponds to kSa

2π
= 0.1272 and ωSa

2πc
= 0.718 89 for SH.

At the phase-matching point, the group indices can be found
from the band diagram and are ngF

= 28 and ngS
= 2.67 +

i1.26. The decay length of the SH mode at the point of phase
matching is about 67 periods. At the end of the design, we
set the lattice constant to a = 0.557 μm, which fixes the FH
wavelength at λFH = 1550 nm.

To find the generated SH power, we need to evaluate R
and Peff from Eqs. (21) and (22). For this we use the Bloch
mode profile of both modes, such as the ones shown in
Figs. 2(b) and 2(c) (along with the other components of the
field). However, with the rising radiation tail of leaky modes,
it is not obvious that the integrals in the denominators of
Eqs. (21) and (22) result in a finite value. The finiteness of such
integrals was mathematically proven for specific geometries
[34,45] by performing a complex-coordinate transformation
that causes the exponential tails of the leaky mode to decay,
but preserves the total value of the integral. This was later
generalized [19,29] through the use of the PML boundary
condition, which acts as a numerical equivalent of a complex-
coordinate transformation for any structure with an outgoing
boundary condition. In this way, the fields inside the PMLs
can be used for the integration and because the fields in this
region go to zero, the integrals are convergent. We use this
property of the PMLs for correct evaluation of our integrals.
The details of the numerical procedure are outlined in the
Appendix. Moreover, for finding the generated SH power
in physical units, we need to fix some variables. We set
W = H = 2a, which is not a strict choice, but it is important
to keep it consistent for the power calculation in the next
section using the rigorous nonlinear calculation so that they
are comparable. We choose the forward-propagating power in
the FH mode to be 1 mW. We only consider the d33 coefficient
of the d tensor in the calculation, as it later on simplifies our
rigorous nonlinear simulation. It is also a good approximation
if the LiNbO3 crystal has its extraordinary axis in the y

direction and both FH and SH modes are TE-like. We set d33 =
−20.6 pm/V [46].

With these at hand, we have all the numerical data
to evaluate Eqs. (20)–(22). The calculated PS(X) for this
particular design is shown in Fig. 2(f). We see the quadratic rise
of power at the beginning of the structure, which saturates for
propagation lengths greater than 120 μm. This is the signature
of a SHG process with a lossy SH mode. This also means that
structure lengths more than about 120 μm are not of much
benefit for enhanced efficiency. At this length, the generated
SH is about 80 pW. This limits the total efficiency of this
specific design to about 8 × 10−5 W−1. Furthermore, we can
calculate the phase-matching function of Eq. (23) using the
band diagram of the modes and this structure length to show
the narrow-band property in the presence of slow light. This
is shown in Fig. 2(e). In physical units, this results in a
bandwidth of less than 1 nm. This narrow bandwidth for such
a short structure is caused by the large angle between the
crossing of the band diagram of the FH and the SH modes in
Fig. 2(e) and illustrates the benefit of slow light in achieving
narrow-band interactions. To test the validity of the analytical
model, in the next section we perform a rigorous nonlinear

FDTD simulation and compare the results for the generated SH
power.

IV. NONLINEAR SIMULATION

In this section we perform a rigorous nonlinear FDTD
simulation in the UPA for the design of the previous section to
approve the validity of the analytical prediction. The FH field
induces the nonlinear polarization, which acts as a source to
excite the SH mode, as is evident from Eq. (5b). In the UPA this
source term does not change along the propagation direction.
We generate this source of nonlinear polarization by using
the Bloch mode profile of the FH mode and by reproducing
a purely-forward-propagating slow mode in a structure with
a length of 235 periods. This corresponds to 131 μm, which,
as seen before, is long enough to exhibit the saturation effect.
Afterward, we extract the complex-valued Ey component of
the FH field, square it, and multiply it by the spatial function
that represents the nonlinearity profile. This gives us Pnl of
Eq. (5b), given the reasonable approximation that only the d33

component of the nonlinearity tensor is taking part in SHG,
which is the same approximation we made for the analytical
prediction shown in Fig. 2(f). The SHG simulation is then
performed by using this Pnl as a complex-valued source in
the same geometry to run the FDTD simulation at the SH
frequency. The results of this simulation are shown in Fig. 3.
In Fig. 3(a) the absolute value of the Ey component of the
generated SH field can be seen around the region where the
spatial nonlinear source ends. For finding the generated SH
power, we use Eq. (17) with the same W = H = 2a that we
used in the previous section. The result for the generated SH
power is shown in Fig. 3(b), where the analytical prediction of
Fig. 2(f) is also included.

We first investigate the field profile of the generated
SH, shown in Fig. 3(a). We see that the generated field
resembles that of the TE02 mode in Fig. 2, but only in the
waveguide region, which is the region over which the QNBM
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FIG. 3. (Color online) (a) Absolute value of the Ey component
of the generated SH field at the end region of the structure at the
z = 0 (top) and y = 0 (bottom) planes. (b) Generated SH power
PS(X) along the PCSW using the nonlinear FDTD (blue curve) and
the analytical prediction (red curve), assuming an input FH power of
1 mW.
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is a good approximation for modal expansion. Outside the
waveguide region, especially around the first and second rows
of holes adjacent to the waveguide, we see a strong field that
corresponds to the part of the nonlinear polarization that is
not concentrated in the waveguide and overlaps best with the
radiation modes of the PC slab, which are not of interest
for guided and phase-matched SHG. The main comparison
is between the generated SH powers in Fig. 3(b). Overall, the
analytical result agrees well with that of the nonlinear FDTD
simulation. A distortion in the power can be observed for the
nonlinear FDTD at the beginning and the end of the simulation
domain, caused by the abrupt starting and ending of the source
of nonlinear polarization. Furthermore, the generated power in
the nonlinear simulation has an additional oscillation of about
±8 pW, whereas the analytical result is a smooth curve. This
extra oscillation is caused by the out-of-phase generation of the
SH power in the other QNBMs present at the SH frequency,
including forward- and backward-propagating ones. This is
why the generated SH field profile in the line defect is not
exactly the same as the field profile of the QNBM shown in
Fig. 2, but only resembles that mode profile, as the TE02 is
the dominant mode contributing to the SHG process. In this
case, out of all the out-of-phase SH modes, the ones with the
largest overlap integral with the nonlinear polarization are the
forward- and backward-propagating TE00 modes, contributing
dominantly to this power oscillation. Although the analytical
formulation can include multiple modes for the SH frequency,
we have written the final power assuming only one dominant
SH mode. We see from the comparison that this is a good
approximation and the phase-matched TE02 mode indeed
has the dominant role over the other out-of-phase generated
modes. Finally, our initial SVEA that was made to get a
closed-form differential equation only predicts the amplitude
of the generated SH at the beginning of each supercell. This
means that the final theoretical formula only describes SHG
at the beginning of each supercell. As a result, the theory
with the SVEA predicts a smooth monotonic transition of the
generated SH power from one supercell to the next. The exact
case without the SVEA will still show this monotonic power
transition, but additionally some periodic dynamic within the
supercell.

V. CONCLUSION

We have analytically described SHG involving lossy Bloch
modes in photonic crystal waveguides. The theory was rigor-
ously formulated using an adjoint formalism and quasinormal
Bloch modes as the basis for the modal expansion to take
into account the loss of the leaky SH modes. We presented
a design for phase-matched and guided SHG in a photonic
crystal slab waveguide made of lithium niobate, where the
FH mode is operating in a slow-light regime. Using this
design, we have found good agreement between the result
of a rigorous nonlinear FDTD simulation and the prediction
of our analytical calculation. The analytical description only
requires calculation of the band diagram and the Bloch mode
profiles, which needs much less computational resources and
can be performed with a much higher resolution, compared
to the rigorous nonlinear FDTD simulation. This makes the
analytical approach a more efficient method for calculating

the SHG efficiency. It is important to note that, although
we do our numerical investigation for a specific design and
nonlinear process, the theory and numerical methods are
equally applicable for any other periodic structures designed
for a phase-matched nonlinear process involving lossy Bloch
modes.

Having an analytical understanding along with structure
designs for phase-matched parametric processes is especially
of importance for narrow-band interactions that require control
over the spectrum of the generated harmonics. An example
is the spontaneous parametric down-conversion (SPDC), in
which the second-harmonic mode acts as the pump for the
process and a phase-matched interaction is required to control
the generation of photon pairs with certain spectral properties
[47]. The SHG study in this work is a first step towards the
study of photon-pair generation through SPDC in photonic
crystal slab waveguides, where dispersion engineering of the
slow-light mode can provide possibilities in manipulating the
two-photon wave function.

It should be mentioned that, although the quadratic en-
hancement of the SH power with respect to ngF

is the main
reason to use slow light for the FH mode, in a realistic
situation, the group index of a mode cannot be increased
indefinitely. This is due to the unavoidable presence of loss
caused by material absorption and fabrication disorder, which
no matter how small will prevent the group velocity of the
modes from reaching absolute zero [48,49]. Moreover, such
losses themselves are enhanced in the presence of slow light
[50]. This means that there should exist an optimum value for
the group index of the FH mode to maximize the generated SH
power, which could be found, based on the specific amount of
loss [51,52], using our analytical formalism.
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APPENDIX: DETAILS OF THE NUMERICAL METHODS

Since we are dealing with a leaky mode at the SH frequency,
for the numerical simulations it is essential to use the PML
boundary condition on the transverse surfaces of the simulation
domain to absorb the radiation fields. Correct use of the PMLs
also allows the normalization of the leaky modes, as explained
before. However, it is known that PMLs do not work properly
when a periodic structure is entering them [53]. Consequently,
instead of using an infinite number of rows in the transverse
direction that makes the rows of holes enter the PMLs, we
use a finite number of eight rows in the transverse direction.
The finite number of rows is also the case in any realistic
experimental scheme. In our case, eight rows of holes is more
than enough to confine the FH mode in the transverse direction
through the PC band-gap effect. After these eight rows, the
slab will have no inhomogeneity and PMLs can be safely put
around the structure.

Two different methods are used in our linear FDTD
calculations. We need to find the band diagram of the leaky
modes with a real frequency ω = ωR and a complex wave
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FIG. 4. (Color online) Absolute value of the Ey field component
at the z = 0 (top) and y = 0 (bottom) planes, in a linear FDTD
simulation, when the structure is excited from the left side with a cw
source at the frequency of ωSa

2πc
= 0.718 89, where the source profile

is chosen so that the leaky TE02 is dominantly excited.

vector k = kR + ikI . To do this with FDTD, the PCSW
structure is excited from one end with a continuous-wave
(cw) source of frequency ωR . The excitation profile is chosen
such that it dominantly excites the mode of interest. The
resulting field looks like the one shown in Fig. 4. Here kR

of the mode excited can then be found by taking a Fourier
transform from the field along the propagation direction. To
find the decay length of the mode, and hence kI = 1/Ldecay,
we fit an exponential to the decaying power in the propagation
direction. We refer to this method as the complex-k method.
This method is used to find the band diagram of the leaky SH
mode in Fig. 2(d). For finding the band diagram of the FH
mode, we use a computationally more efficient method, which
is implemented in MEEP. In this method, a pulse is excited
inside a supercell. The supercell has Floquet-Bloch boundary
conditions on its boundaries along the propagation direction,
set by k = kR . As this method only uses a supercell as the
computational domain, it is more efficient than the complex-k
method. The pulse excites the modes of interest inside the
supercell. The system evolves for some time after the pulse
is stopped. The complex-valued frequencies ω = ωR + iωI

of the modes evolving in the supercell are then extracted by
analyzing the time evolution of the fields. We refer to this
method as the complex-ω method. It is important to note
that the results of complex-k and complex-ω methods refer
to two different physical situations, which only have exactly
equivalent results for lossless bound modes [54,55]. This is
why we can use the more efficient complex-ω method for
finding the band diagram of the FH mode that has real-valued
k and ω.

For finding the field profiles of Bloch modes with a real
frequency and complex wave vector, frequency domain solvers
can be used [56]. With the FDTD, which is a time-domain
solver, we can employ fields such as in Fig. 4 and use
a Bloch-mode-extraction algorithm [57] to extract the field
profile of the complex-k Bloch modes. This, however, will not
be numerically efficient, especially if we are trying to find and
study the field profile of leaky modes over a large transverse
cross section. Instead, we make an approximation and use the
complex-ω method. The complex-ω and complex-k methods
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of the TE02 mode, found from the complex-k and the complex-ω
methods.

give exactly the same results for bound and lossless modes and
similar results for modes with small losses [55]. We take this to
be a good approximation in finding the field profile of our leaky
modes of interest since they only have weak losses. To find the
ranges where this is a good approximation, we find the band
diagram for the leaky TE02 using both methods. Results are
shown in Fig. 5. The real and imaginary parts of the frequency
found from the complex-ω method are shown in Figs. 5(a)
and 5(b), respectively. One could, with a good approximation,
relate the complex frequency to the decay length, using the
real part of the group index through the relation Ldecay =
−c/Re[ng]ωI , where Re[ng] = cd Re[k]/dω is found from
the complex-k band diagram [55]. Because we have few points
for this band, we fit a polynomial to the points, from which we
can get the derivative. The result is shown in Fig. 5(c). From
this we find the decay length predicted by the complex-ω
simulation, shown in Fig. 5(d). We see that the two methods
predict a very close band diagram and decay lengths, except for
places where the complex-ω band exhibits frequency splitting
in the band and the complex-k band shows a smoother band
diagram. Consequently, as long as we are not looking for
modes at these places in the band, we can use complex-ω
simulations as a good approximation instead of the complex-k
ones. Another conclusion from this analysis is that one can
even use the complex-ω bands as a computationally efficient
way of finding the SH band approximately and optimizing the
design to reach phase matching. Once the approximate design
has been reached, a few complex-k simulations are enough
to determine the band accurately around the phase-matching
frequency.

To find the field profile with the complex-ω method, a
narrow-frequency-bandwidth pulse, around the frequency ωR ,
is excited in a supercell with the periodic boundary condition
set by kR . After the pulse ends, enough time is given to the
leaky mode to radiate and reach steady state. In the case of a
leaky mode, we reach steady state when a field component of
the form Re[u(r) exp(−iωRt + ωI t)], where ωI is a negative
number, reaches a steady-state value for the absolute value of
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u(r) all over the simulation domain. This means the mode has
an amplitude that decays exponentially in time, but the profile
of the mode does not change in space. The mode found in
this way is the solution of the source-free wave equation in
the given geometry. The Bloch field profiles found from this
method are shown in Fig. 2.

To see the rising tail of the field for the leaky mode, we
perform the simulation in a supercell with a large transverse
dimension of 160a in the y direction. The result is shown in
Fig. 6(a), where the rising tail of the field is clearly visible
at the left and right of the simulation domain. To verify that

this is a steady-state profile, we find the field profile for the
same mode in a supercell with a transverse dimension of 40a

in the y direction. The absolute value of the field is plotted
on a line for the cases of both 40a and 160a supercells in
Fig. 6(b), which shows the exponentially rising tail that looks
linear in a logarithmic plot. It also shows that the two field
profiles found using two different simulations match exactly
over the domain they have in common, verifying that the fields
are the steady-state profiles.

Finally, to use the fields inside the PML region for
evaluating QNBM field integrals in Eqs. (21) and (22), the
main thing to note is that, as long as the integrals have no
explicit inclusion of ε and μ, there is no need to know the actual
transformation that created the PML. This is the advantage of
using the displacement field in Eq. (22). We need to know only
the fields, which is the output by MEEP everywhere, including
in the PML region. We also do a test to verify that fields in
the PML output by MEEP are of physical significance. For this
we calculate the complex group index ngS

by implementing
the fields found from both the 40a and 160a simulations in
Eq. (18) and compare the results. The presence of the large
tails of the field in the larger supercell simulation ensures that
if a wrong method for handling the fields is used, we will get
very different values for ngS

in the two cases. However, as
a property of the mode, the group index calculated from the
fields has to remain unchanged in both cases and also match
the value calculated from the complex-ω band diagram. For
the 40a and 160a supercells we find ngS

= 3.1132 + i1.1923
and ngS

= 3.1134 + i1.1921, respectively. These values are
very close to each other and to that calculated directly from
the band diagram, ngS

= 3.1377 + i1.1756. This test verifies
our point.
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[49] J. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen, Photon.

Nanostruct. 8, 56 (2010).
[50] S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Phys. Rev.

Lett. 94, 033903 (2005).
[51] T. P. White and A. A. Sukhorukov, Phys. Rev. A 85, 043819

(2012).
[52] A. Debnath, K. Debnath, and L. O’Faolain, Opt. Lett. 40, 193

(2015).
[53] A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, Opt.

Express 16, 11376 (2008).
[54] I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, Phys.

Rev. B 83, 115451 (2011).
[55] K. C. Huang, E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A.

Nelson, P. Bienstman, and S. Fan, Phys. Rev. B 69, 195111
(2004).

[56] G. Parisi, P. Zilio, and F. Romanato, Opt. Express 20, 16690
(2012).

[57] S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten,
C. M. de Sterke, and Y. S. Kivshar, Opt. Lett. 34, 3776
(2009).

063821-11

http://dx.doi.org/10.1002/pssa.201431328
http://dx.doi.org/10.1002/pssa.201431328
http://dx.doi.org/10.1002/pssa.201431328
http://dx.doi.org/10.1002/pssa.201431328
http://dx.doi.org/10.1063/1.4817507
http://dx.doi.org/10.1063/1.4817507
http://dx.doi.org/10.1063/1.4817507
http://dx.doi.org/10.1063/1.4817507
http://dx.doi.org/10.1364/OL.40.002715
http://dx.doi.org/10.1364/OL.40.002715
http://dx.doi.org/10.1364/OL.40.002715
http://dx.doi.org/10.1364/OL.40.002715
http://dx.doi.org/10.1021/acsphotonics.5b00126
http://dx.doi.org/10.1021/acsphotonics.5b00126
http://dx.doi.org/10.1021/acsphotonics.5b00126
http://dx.doi.org/10.1021/acsphotonics.5b00126
http://dx.doi.org/10.1080/713820680
http://dx.doi.org/10.1080/713820680
http://dx.doi.org/10.1080/713820680
http://dx.doi.org/10.1080/713820680
http://dx.doi.org/10.1016/0030-4018(79)90217-7
http://dx.doi.org/10.1016/0030-4018(79)90217-7
http://dx.doi.org/10.1016/0030-4018(79)90217-7
http://dx.doi.org/10.1016/0030-4018(79)90217-7
http://dx.doi.org/10.1103/PhysRevA.82.053825
http://dx.doi.org/10.1103/PhysRevA.82.053825
http://dx.doi.org/10.1103/PhysRevA.82.053825
http://dx.doi.org/10.1103/PhysRevA.82.053825
http://dx.doi.org/10.1364/OE.17.013502
http://dx.doi.org/10.1364/OE.17.013502
http://dx.doi.org/10.1364/OE.17.013502
http://dx.doi.org/10.1364/OE.17.013502
http://dx.doi.org/10.1103/PhysRevLett.110.237401
http://dx.doi.org/10.1103/PhysRevLett.110.237401
http://dx.doi.org/10.1103/PhysRevLett.110.237401
http://dx.doi.org/10.1103/PhysRevLett.110.237401
http://dx.doi.org/10.1103/PhysRevA.89.043825
http://dx.doi.org/10.1103/PhysRevA.89.043825
http://dx.doi.org/10.1103/PhysRevA.89.043825
http://dx.doi.org/10.1103/PhysRevA.89.043825
http://dx.doi.org/10.1364/OL.37.001649
http://dx.doi.org/10.1364/OL.37.001649
http://dx.doi.org/10.1364/OL.37.001649
http://dx.doi.org/10.1364/OL.37.001649
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1364/JOSAA.31.002142
http://dx.doi.org/10.1364/OL.39.006359
http://dx.doi.org/10.1364/OL.39.006359
http://dx.doi.org/10.1364/OL.39.006359
http://dx.doi.org/10.1364/OL.39.006359
http://dx.doi.org/10.1103/PhysRevA.49.3982
http://dx.doi.org/10.1103/PhysRevA.49.3982
http://dx.doi.org/10.1103/PhysRevA.49.3982
http://dx.doi.org/10.1103/PhysRevA.49.3982
http://dx.doi.org/10.1364/JOSA.67.000438
http://dx.doi.org/10.1364/JOSA.67.000438
http://dx.doi.org/10.1364/JOSA.67.000438
http://dx.doi.org/10.1364/JOSA.67.000438
http://dx.doi.org/10.1117/12.451291
http://dx.doi.org/10.1117/12.451291
http://dx.doi.org/10.1117/12.451291
http://dx.doi.org/10.1117/12.451291
http://dx.doi.org/10.1364/OE.19.012408
http://dx.doi.org/10.1364/OE.19.012408
http://dx.doi.org/10.1364/OE.19.012408
http://dx.doi.org/10.1364/OE.19.012408
http://dx.doi.org/10.1016/j.cpc.2009.11.008
http://dx.doi.org/10.1016/j.cpc.2009.11.008
http://dx.doi.org/10.1016/j.cpc.2009.11.008
http://dx.doi.org/10.1016/j.cpc.2009.11.008
http://dx.doi.org/10.1364/JOSAB.14.003319
http://dx.doi.org/10.1364/JOSAB.14.003319
http://dx.doi.org/10.1364/JOSAB.14.003319
http://dx.doi.org/10.1364/JOSAB.14.003319
http://dx.doi.org/10.1364/OE.14.009444
http://dx.doi.org/10.1364/OE.14.009444
http://dx.doi.org/10.1364/OE.14.009444
http://dx.doi.org/10.1364/OE.14.009444
http://dx.doi.org/10.1364/OE.16.006227
http://dx.doi.org/10.1364/OE.16.006227
http://dx.doi.org/10.1364/OE.16.006227
http://dx.doi.org/10.1364/OE.16.006227
http://dx.doi.org/10.1063/1.3634074
http://dx.doi.org/10.1063/1.3634074
http://dx.doi.org/10.1063/1.3634074
http://dx.doi.org/10.1063/1.3634074
http://dx.doi.org/10.1016/j.photonics.2012.04.004
http://dx.doi.org/10.1016/j.photonics.2012.04.004
http://dx.doi.org/10.1016/j.photonics.2012.04.004
http://dx.doi.org/10.1016/j.photonics.2012.04.004
http://dx.doi.org/10.1364/AO.15.001040
http://dx.doi.org/10.1364/AO.15.001040
http://dx.doi.org/10.1364/AO.15.001040
http://dx.doi.org/10.1364/AO.15.001040
http://dx.doi.org/10.1364/OME.2.000126
http://dx.doi.org/10.1364/OME.2.000126
http://dx.doi.org/10.1364/OME.2.000126
http://dx.doi.org/10.1364/OME.2.000126
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevA.64.063815
http://dx.doi.org/10.1103/PhysRevB.78.153101
http://dx.doi.org/10.1103/PhysRevB.78.153101
http://dx.doi.org/10.1103/PhysRevB.78.153101
http://dx.doi.org/10.1103/PhysRevB.78.153101
http://dx.doi.org/10.1016/j.photonics.2009.07.002
http://dx.doi.org/10.1016/j.photonics.2009.07.002
http://dx.doi.org/10.1016/j.photonics.2009.07.002
http://dx.doi.org/10.1016/j.photonics.2009.07.002
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevA.85.043819
http://dx.doi.org/10.1103/PhysRevA.85.043819
http://dx.doi.org/10.1103/PhysRevA.85.043819
http://dx.doi.org/10.1103/PhysRevA.85.043819
http://dx.doi.org/10.1364/OL.40.000193
http://dx.doi.org/10.1364/OL.40.000193
http://dx.doi.org/10.1364/OL.40.000193
http://dx.doi.org/10.1364/OL.40.000193
http://dx.doi.org/10.1364/OE.16.011376
http://dx.doi.org/10.1364/OE.16.011376
http://dx.doi.org/10.1364/OE.16.011376
http://dx.doi.org/10.1364/OE.16.011376
http://dx.doi.org/10.1103/PhysRevB.83.115451
http://dx.doi.org/10.1103/PhysRevB.83.115451
http://dx.doi.org/10.1103/PhysRevB.83.115451
http://dx.doi.org/10.1103/PhysRevB.83.115451
http://dx.doi.org/10.1103/PhysRevB.69.195111
http://dx.doi.org/10.1103/PhysRevB.69.195111
http://dx.doi.org/10.1103/PhysRevB.69.195111
http://dx.doi.org/10.1103/PhysRevB.69.195111
http://dx.doi.org/10.1364/OE.20.016690
http://dx.doi.org/10.1364/OE.20.016690
http://dx.doi.org/10.1364/OE.20.016690
http://dx.doi.org/10.1364/OE.20.016690
http://dx.doi.org/10.1364/OL.34.003776
http://dx.doi.org/10.1364/OL.34.003776
http://dx.doi.org/10.1364/OL.34.003776
http://dx.doi.org/10.1364/OL.34.003776



