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Analytic expressions for the electric and magnetic fields of an ultrashort, tightly focused, linearly polarized
laser pulse are derived, to lowest order of a truncated power-series expansion, from vector and scalar potentials.
Clear steps are described for the analytic and numerical evaluation of higher-order terms in the series, to any
desired accuracy.
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I. INTRODUCTION

This paper reports analytic expressions which model the
electric and magnetic fields of an ultrashort tightly focused lin-
early polarized laser pulse, in lowest-order approximation. A
program is also described clearly for obtaining the fields to any
desired accuracy, analytically and numerically. The underlying
analytic work follows from suitably defined vector and scalar
potentials [1]. The results of this work may be of value for
modeling pulsed ultraintense lasers [2,3] employed in the study
of important ultrafast phenomena in laser-matter interactions,
such as laser acceleration of particles [4,5] and laser fusion [6].

Two of the parameters that characterize a Gaussian beam
of wavelength λ, namely, its waist radius at focus w0 (focal
spot size) and the Rayleigh length zr = πw2

0/λ, will be
employed in this study. The pulse will be assumed to have a
finite axial length L, a measure of its physical extension in
the direction of propagation. This last parameter will be used
to define what is meant by the term ultrashort. A pulse will
be considered ultrashort if L � zr . It will be termed subcycle
whenever L < λ. On the other hand, the designation tightly
focused will mean w0 < λ.

The subject of this paper is not new [7–23]. In some of
the earlier work the axial pulse length was often fixed by
the temporal width τ , taken as the full width at half maximum
(FWHM) of a suitably defined temporal envelope, through L ∼
cτ , with c the speed of light in a vacuum. Most of the time this
has been introduced as a modification to the paraxial Gaussian-
beam fields, derived from the Maxwell equations satisfied by
the fields, or starting from a vector potential. In this paper,
vector and scalar potentials will be used, with the pulse length
built into them as a parameter that emerges naturally from a
plausible interpretation of the solution to the wave equation.

The wave equations whose solution will ultimately be used
to obtain the desired electromagnetic fields are given and
transformed using a new set of coordinates in Sec. II. Solution,
in terms of the new coordinates, to the single transformed wave
equation is developed in Sec. III. Explicitly analytic expres-
sions for the fields are derived and reported in Sec. IV. Finally,
a summary and our main conclusions are given in Sec. V.

II. THE WAVE EQUATIONS

The fields E and B and propagation characteristics, in
vacuum, of a laser pulse satisfy the sourceless Maxwell
equations. Those equations are equivalent to the following

two wave equations (SI units):

∇2 A − 1

c2

∂2 A
∂t2

= 0 and ∇2� − 1

c2

∂2�

∂t2
= 0, (1)

for the vector and scalar potentials A and �, respectively,
provided the Lorenz condition

∇ · A + 1

c2

∂�

∂t
, (2)

is satisfied simultaneously [24]. The fields follow from the
potentials via

E = −∂ A
∂t

− ∇� and B = ∇ × A. (3)

As a starting point for finding the desired fields of a linearly
polarized pulse, we take a vector potential that is also linearly
polarized, i.e., has a single component, say Ax , transverse to the
direction of propagation [1]. With this choice of polarization,
the wave equations (1) for Ax and � become mathematically
identical and, therefore, can admit solutions that have the
same general mathematical structure, differing only by a
multiplicative constant that works to fix the units. Assuming
propagation along the z axis of a Cartesian coordinate system
and taking the vector potential along x, the desired results will
be obtained from the ansatz

A = x̂a0a(x,y,z,t)eik0ζ , � = φ0φ(x,y,z,t)eik0ζ , (4)

in which x̂ is a unit vector in the positive x direction, ζ =
z − ct,a0 and φ0 are constant complex amplitudes, and k0 is
some central wave number which corresponds to a central
frequency ω0 = ck0. Using Eq. (4) in the Lorenz condition (2)
then yields [25]

� = c2

R
(∇ · A), with R = ick0 − 1

a

∂a

∂t
. (5)

Thus, the problem of finding E and B reduces to obtaining
a(x,y,z,t). The method to be followed below parallels that
which we recently employed to obtain fields for a tightly
focused ultrashort, but radially polarized, laser pulse [25]. To
obtain the radially polarized fields, the work in [1,25] starts
with a vector potential of axial polarization (along the direction
of propagation). Some of the background material in this paper
will inevitably be taken from [25], in order to make the present
work as self-contained as can be. Both studies benefit from
work published almost 20 years ago by Esarey et al., in which
a vector potential alone was used [26].
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III. SOLUTION TO THE WAVE EQUATIONS

Using the ansatz (4) for the vector potential in the
corresponding wave equation turns the first of Eqs. (1) into one
for a(x,y,z,t). The resulting equation satisfied by a(x,y,z,t)
can most compactly be expressed, and subsequently solved
quite easily, in terms of the following set of coordinates:

ρ = r

w0
, η = 1

2
(z + ct), ζ = z − ct, (6)

where r =
√

x2 + y2. As a result of this coordinate transfor-
mation, the transverse coordinates x and y get fully replaced
by ρ, and η and ζ replace z and t . Note that for the centroid of
the pulse, which is assumed to travel, roughly, at the speed of
light, η ∼ ct and ζ ∼ 0. Thus η determines the axial position of
any point within the pulse relative to the origin of a stationary
coordinate system, say, at the center of the aperture of the laser
system, while ζ represents the position of such a point relative
to the centroid (moving focus) of the pulse.

It can be shown that the equation satisfied by a(ρ,η,ζ )
which follows from the first of Eqs. (1) is

1

ρ

∂

∂ρ

(
ρ

∂a

∂ρ

)
+ 2w2

0

(
∂2a

∂η∂ζ
+ ik0

∂a

∂η

)
= 0. (7)

This equation is exact. An expression for a(ρ,η,ζ ) may
be analytically synthesized from the Fourier components
ak(ρ,η,k), where

a(ρ,η,ζ ) = 1√
2π

∫ ∞

−∞
ak(ρ,η,k)eikζ dk. (8)

Using Eq. (8) in Eq. (7) turns the latter into the following set
of equations for the Fourier components:

1

ρ

∂

∂ρ

(
ρ

∂ak

∂ρ

)
+ 4izrk

∂ak

∂η
= 0, zrk = 1

2
(k + k0)w2

0. (9)

Note at this point that zrk reduces to the familiar Rayleigh
length for k = 0. It can be easily shown, by direct substitution,
that the differential equation in Eq. (9) has the following exact
analytic solution:

ak(ρ,η,k) = fk

pk

e−ρ2/pk , pk = 1 + iαk, αk = η

zrk

, (10)

where fk is a suitably chosen function of k, as dictated
by Fourier transform theory. A hint at the physical role
played by fk may be brought about by considering the
vector potential at t = 0, or ak(ρ,0,k) = fk exp(−ρ2), which
includes a transverse Gaussian profile. Thus the Fourier
transform of fk , to be denoted below by f (ζ ), may be thought
of as an axial profile for the vector potential.

Next, a simple choice for fk will be made, which will lead to
a plausible expression for f (ζ ). The assumption will be made
that the ultrashort tightly focused laser pulse is initially (t =
0) synthesized from Fourier components which correspond
to a band of wave numbers of width k centered about k0.
This is equivalent to having an angular frequency bandwidth
ω = ck centered around ω0 = ck0. The simple model to
be adopted here is based upon

fk =
{√

2π
k

, |k − k0| � k
2

0, elsewhere
. (11)

This is a square function, used often in, e.g., signal processing
theory [28]. For our purposes in this work, it represents a uni-
form distribution of wave numbers. The choice made above is
not unique [26,27], but it has the advantage of being simple and
it leads, as will be shown shortly, to an easily calculable k-space
vector potential in closed analytic form. In [27] two choices
have been made for fk , namely, a Gaussian distribution (with
the negative frequencies carefully gotten rid of) and a (more
realistic) Poisson distribution. The choice we make in this
paper has the added advantage of resulting in incorporation of
the axial pulse length L in a straightforward and plausible way.

The corresponding coordinate-space vector potential, from
which the electric and magnetic fields may ultimately be
derived, will be obtained from inverse Fourier transforms
of successive terms in some power-series expansion, to be
introduced shortly.

Fourier transform of the distribution given by Eq. (11) is

f (ζ ) = 1√
2π

∫ ∞

−∞
fke

ikζ dk = eik0ζ

[
sin(ζk/2)

ζk/2

]
. (12)

The real part of f (ζ ) is a cosine oscillation inside a traveling
envelope, the well-known sinc function. Note that ζ = z

initially, and that |f (ζ )|2 vanishes then at axial points whose
z coordinates are given by zk/2 = ±Nπ , where N =
1,2, . . . . It is suggested, at this point, that L = z = 2π/k

be taken as a measure of the initial axial pulse length. By
analogy, at any later time, the axial pulse length may be taken
as L(t) = ζ (roughly, the full width at half maximum of the
instantaneous envelope).

Using Eqs. (10) and (11) one next attempts to find the vector
potential amplitude a(ρ,η,ζ ) from Eq. (8):

a(ρ,η,ζ ) =
∫ k0+k/2

k0−k/2

ψke
ikζ

k
dk, ψk = e−ρ2/pk

pk

. (13)

Evaluation of the integral in Eq. (13) in general can be a
formidable task. As an alternative, ψk will be viewed as a
function of the combination k′ = k + k0 and power series
expanded about the central wave number k0. Then the integral
may be evaluated term by term [25–27]. Formally,

ψk =
∞∑

n=0

ψ
(n)
0 (ρ,η)

kn

n!
, ψ

(n)
0 ≡ ∂nψk

∂kn

∣∣∣∣
k=0

. (14)

Finally,

A = x̂a0e
ik0ζ

∞∑
n=0

ψ
(n)
0

n!

∫ k0+k/2

k0−k/2

[
kneikζ

k

]
dk. (15)

The remaining integral can actually be carried out in terms
of exponential integral functions:∫ b

a

kneikζ dk = an+1E−n(iaζ ) − bn+1E−n(−ibζ ). (16)

However, in the final result, obtained by substitution of Eq. (16)
into Eq. (15), one would have to deal with an infinite sum which
may converge slowly, if at all. Besides, the end result will be
difficult to interpret intuitively. The good news is that only the
first few terms in the series, for which the required integrals
in Eq. (15) can be done easily, may be needed in applications.
Numerically, too, the exponential integral functions can be
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calculated with arbitrary precision. For these reasons together,
we opt for the term-by-term integration, in which case the sum
in Eq. (15) would be truncated at some value n = m and the
vector potential obtained from it would be denoted by A(m).
This would be referred to as the mth-order vector potential
and, using this notation, E(m) and B(m) would denote the mth-
order electric and magnetic fields, respectively. Effectively,
one needs to evaluate

A(m)(ρ,η,ζ ) = a0e
ik0ζ

m∑
n=0

ψ
(n)
0 (ρ,η)

n!
Sn(ζ ). (17)

The central pieces remaining before an expression may be
obtained for the vector potential to some order m are (a) the
coefficients ψ

(n)
0 (ρ,η) and (b) the associated integrals Sn(ζ ).

In principle, the coefficients can be found analytically to any
order. The first four such expressions have been obtained
elsewhere [25]. They are

ψ
(0)
0 = 1

p
exp

[
−ρ2

p

]
, ψ

(1)
0 = iα

k0

[
1

p
− ρ2

p2

]
ψ

(0)
0 , (18)

ψ
(2)
0 = iα

k2
0

[
−2(1 + ρ2)

p2
+ ρ2(4 + ρ2)

p3
− ρ4

p4

]
ψ

(0)
0 , (19)

ψ
(3)
0 = iα

k3
0

[
3(2 + 4ρ2 + ρ4)

p3
− ρ2(18 + 12ρ2 + ρ4)

p4

+ ρ4(9 + 2ρ2)

p5
− ρ6

p6

]
ψ

(0)
0 . (20)

In Eqs. (18)–(20)

p = 1 + iα, α = η

zr

, zr = 1

2
k0w

2
0. (21)

On the other hand, all of the associated integrals follow from

S0 = eik0ζ

[
sin (ζk/2)

ζk/2

]
= f (ζ ), (22)

Sn = (−i)n
∂nS0

∂ζ n
. (23)

In principle, analytic expressions for the vector potential
and, consequently, the fields may now be obtained, to any
desired order, using Eqs. (18)–(23). Only the zeroth-order
potential and fields will be derived and reported below, as
they turn out to be the most relevant in applications, with
the higher-order corrections contributing negligibly. With
a0 = A0 exp(iϕ0), the equations above yield

A(0) = A0

exp
[− ρ2

1+α2

]
√

1 + α2

[
sin(ζk/2)

ζk/2

]
eiϕ(0)

, (24)

where

ϕ(0) = ϕ0 + 2k0ζ − tan−1 α + αρ2

1 + α2
, (25)

and ϕ0 is a constant.
A discussion of the pulse intensity and its propagation

characteristics, based on the zeroth-order vector potential,
may be found elsewhere [25]. Here, we proceed to finding
the zeroth-order electric- and magnetic-field components.

IV. THE ELECTRIC AND MAGNETIC FIELDS

Adopting L = 2π/k for the initial axial length of the
pulse, Eqs. (3)–(5) and (24) give

E(0)
x = E0

2k0

e2ik0ζ

πζ/L

e−ρ2/p

p

{[
Q1 −

(
16x2

p2w4
0

)(
c

2R
− ic2

4zrpR2

)]
sin

(
πζ

L

)
+ 2π

L
cos

(
πζ

L

)}
, (26)

E(0)
y = −E0

k0

e2ik0ζ

πζ/L

e−ρ2/p

p3

[
8xy

w4
0

](
c

2R
− ic2

4zrpR2

)
sin

(
πζ

L

)
, (27)

E(0)
z = 2E0

k0

e2ik0ζ

πζ/L

e−ρ2/p

p2

[
x

w2
0

]{(
cQ2

2R
− c2Q3

4R2

)
sin

(
πζ

L

)
+

(
c

2R

)
2π

L
cos

(
πζ

L

)}
, (28)

cB(0)
x = 0, cB(0)

y = E0

2k0

e2ik0ζ

πζ/L

e−ρ2/p

p

{(
4ik0 − 2

ζ

)
sin

(
πζ

L

)
+ 2π

L
cos

(
πζ

L

)}
, (29)

cB(0)
z = 2E0

k0

e2ik0ζ

πζ/L

e−ρ2/p

p2

[
y

w2
0

]
sin

(
πζ

L

)
. (30)

The remaining terms in Eqs. (26)–(30) have the following
definitions:

E0 = ck0a0, R = c

2

[
Q1 + 2π

L
cot

(
πζ

L

)]
, (31)

Q1 = 4ik0 − 2

ζ
+ i(p − ρ2)

zrp2
, (32)

Q2 = 4ik0 − 2

ζ
− i(2p − ρ2)

zrp2
, (33)

Q3 = 4

ζ 2
+ p − 2ρ2

z2
r p

3
−

(
2π

L

)2

csc2

(
πζ

L

)
. (34)

In general, all terms in Eqs. (26)–(30) which contain R

and R2, in their denominators, stem from the scalar potential,
according to Eq. (5). Therefore, an approach based on a vector
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FIG. 1. (Color online) Density plots of the normalized intensities in a plane perpendicular to the propagation direction and through z = λ0/2.
(a)–(c) are snapshots at t = λ0/4c, and (d)–(f) are at t = 3λ0/4c. The intensities are normalized by taking a0 = 2zr/[ic(1 + 4k0zr )], which
makes |E(0)| = 1 at focus (x = y = z = 0) at t = 0. All plots employ the parameters L = 0.8λ0 and w0 = 0.7λ0.

potential alone that is linearly polarized along x [26] will
result in a transverse electric field Ex only. More specifically,
the fields are also transverse at all points on the propagation
axis, where x = y = 0. The only nonzero components there
are E(0)

x and B(0)
y . Off-axis contributions stemming from the

remaining components are understandably small, compared to
the main ones. In particular, E(0)

z /E(0)
x ∼ βx,B(0)

z /B(0)
y ∼ βy,

and E(0)
y /E(0)

x ∼ (βx)(βy), where β = 4/(pw2
0).

To demonstrate the calculational power of the above
equations, they are applied in the case of a typical pulse that is
both ultrashort (L = 0.8λ0) and tightly focused (w0 = 0.7λ0).
In Fig. 1, normalized intensity distributions of the pulse in
a plane perpendicular to its propagation direction, calculated
using Eqs. (26)–(34), are shown at two different times. The top
and bottom panels (a)–(c) and (d)–(f) are snapshots taken at
two instants separated by one-half of a field cycle. The slight
changes observed in the corresponding legends of the two
sets of snapshots reflect the evolution in time of the intensity
patterns, as well as the effect of diffraction. Figure 2 is the
same as Fig. 1, but for |cB(0)

y /E0|2 and |cB(0)
z /E0|2.

The propagation characteristics are demonstrated further in
Fig. 3 by plotting the normalized intensity |E(0)

x /E0|2 (and the
real part of the associated electric-field component E(0)

x /E0) at
the two times t = λ0/(4c) and 3λ0/(4c), along the propagation
axis. Note that the peaks, which were at z = 0 at t = 0, are now
near z ∼ λ0/4 and 3λ0/4, respectively. Denoting the group and
phase velocities by vg and vp, respectively, this is consistent
with the prediction that z = vgt ∼ ct , for the pulse envelope,
and z = vpt ∼ ct , for the field. Upon closer inspection, one
actually may arrive at the conclusion that the group velocity is
slightly less than c, while the phase velocity is slightly larger
than c.

The results displayed in Figs. 1–3 have been reproduced
exactly, by numerical calculation, using Eqs. (17)–(23). In
general, one should be careful using these equations to avoid

numerical instabilities at points for which ζ = 0. It should be
emphasized, though, that E(0)

x → ica0(1 + 4k0zr )/(2zr ) in the
limit of ζ → 0, while the other field components tend to zero in
the same limit. This justifies taking a0 = 2zr/[ic(1 + 4k0zr )]
to normalize E(0)/E0 to unity in lowest-order approximation.
To order m = 1, taking a0 = 1/(2ick0) achieves the same goal.

Our main equations (26)–(30) model the fields of a pulse
of arbitrary waist radius at focus w0, and an axial length
L restricted by the requirement that the spectrum should
contain only positive frequencies. For this requirement to be

FIG. 2. (Color online) Same as Fig. 1, but for the magnetic-field
components. (a) and (b) are snapshots at t = λ0/4c, and (c) and (d)
are at t = 3λ0/4c.
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FIG. 3. (Color online) Variations of the normalized intensity
|E(0)

x /E0|2 and the real part of E(0)
x /E0 with the axial distance along

the propagation direction, for a pulse of length L = 0.8λ0 and a
waist radius at focus w0 = 0.7λ0. These are snapshots taken at (a)
t = λ0/(4c) and (b) t = 3λ0/(4c). The intensity and field amplitude
are normalized by taking a0 = 2zr/[ic(1 + 4k0zr )], which makes
|E(0)| = 1 at focus (x = y = z = 0) at t = 0.

met, Eq. (11) demands that k � 2k0, and since the axial
length has been taken as L = 2π/k our equations will be
valid as long as L � λ0/2. For a wavelength λ0 = 1 μm,
k0 = 2π × 106 m−1, and a pulse of length L = λ0/2 has a
temporal width τ ∼ L/c = 5/3 fs. If, further, one takes the
arbitrary waist radius w0 = 0.01λ0, the Rayleigh length of
the pulse would be zr = πw2

0/λ0 = 10π nm. Variations, along
the direction of propagation, of the normalized electric-field
component Re(E(0)

x /E0) and normalized intensity |E(0)
x /E0|2

for this pulse, at t = 0, are shown in Fig. 4(a). Note that
the parameters considered correspond to a diffraction angle
ε ≡ w0/zr = 100/π 	 1. Clearly, for such a high diffraction
angle, representations like the Lax series [7,13] cannot be
valid.

Had the axial length been taken as L = π/k instead
(analogous to half the FWHM of a Gaussian pulse) the
restriction on the axial length would have been L � λ0/4. If,
however, one is to drop this restriction on L altogether, our field
equations would hold true for arbitrary values of both w0 and
L. Granted this, consider a pulse that is much shorter and much
more tightly focused than the ones discussed above, one for
which L = 0.01λ0 = w0. With λ0 = 1 μm, these parameters

FIG. 4. (Color online) Variations of the normalized intensity
|E(0)

x /E0|2 and the real part of E(0)
x /E0 with the axial distance along

the propagation direction, for two tightly focused and ultrashort
pulses. These are snapshots taken at t = 0. The intensity and field
amplitude are normalized by taking a0 = 2zr/[ic(1 + 4k0zr )], which
makes |E(0)| = 1 at focus (x = y = z = 0) at t = 0.

correspond to k = 2π/L = 100k0 = 2π × 108 m−1 (equiv-
alent to a frequency bandwidth of f = 3 × 1016 Hz). The
pulse length corresponds approximately to a temporal width
of τ ∼ L/c ∼ 33.3 as, while the focal radius is equivalent to a
Rayleigh length of zr = 10π nm. The normalized electric-field
component and corresponding intensity of this pulse are shown
in Fig. 4(b).

V. SUMMARY AND CONCLUSIONS

The aim of this study has been to obtain relatively simple
analytic expressions for the electric and magnetic fields of
a laser pulse of arbitrary focal spot size w0 and arbitrary
axial length L. This has been accomplished in lowest-order
approximation by deriving Eqs. (26)–(34). A procedure which
leads to higher-order terms, if needed analytically, has been
outlined. The main elements of a general program for working
numerically, on the other hand, using the fields to any desired
order, have also been laid out clearly. The lowest-order
equations have been used to calculate the normalized intensity
patterns of a typically ultrashort and tightly focused pulse,
at two different times. The sample calculations have been
performed in order to demonstrate the power of the derived
expressions, to illustrate a potential numerical instability and
how to avoid running into it, and to shed some light on the
propagation characteristics of the pulse.
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