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Noise and instability of an optical lattice clock
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We present an analysis of the different types of noise from the detection and interrogation laser in our strontium
lattice clock. We develop a noise model showing that in our setup quantum projection noise-limited detection
is possible if more than 130 atoms are interrogated. Adding information about the noise spectrum of our clock
laser with sub-10−16 fractional frequency instability allows one to infer the clock stability for different modes
of operation. Excellent agreement with experimental observations for the instability of the difference between
two interleaved stabilizations is found. We infer a clock instability of 1.6 × 10−16/

√
τ as a function of averaging

time τ expressed in seconds for normal clock operation.
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I. INTRODUCTION

Optical clocks in general and lattice clocks in particular
have shown outstanding fractional frequency instabilities
of about 2 × 10−16/

√
τ (where τ is the averaging time

expressed in seconds) [1–3], averaging down to the low 10−18

regime. This development has been made possible mainly
by significant improvements on the frequency stability of
the interrogation lasers [3–6]. The improvement of clock
stability has a strong impact on the determination of the clock’s
accuracy since systematic frequency shifts can be evaluated
with higher accuracy in reasonable time. Furthermore, the
stability of a clock also determines how practical it is for actual
measurements and if, e.g., temporal variations of signals [7]
can be observed.

The instability of a clock stems from different sources of
noise contributing to the error signal detected in the clock
cycle, i.e., the estimated frequency offset of the clock laser
from the atomic transition, and from the Dick effect [8]
due to the noncontinuous interrogation of the atoms by the
clock laser [9]. The Dick effect originates mostly from the
unobserved clock laser fluctuations during the dead time of
the clock cycle.

In high-performance clocks the reference transition is
coherently interrogated by either Rabi or Ramsey schemes
on a frequency-sensitive slope of the spectroscopic signal.
In the detection, the quantum superposition state of each
individual atom is projected to the ground or excited state,
leading to the fundamental noise limit given by the quantum
projection noise (QPN) [10]. An increase of atom number N

will reduce the influence of the projection noise as it scales
with

√
N while the signal scales with N . However, in practice

the atom number is limited by other factors as, e.g., collision
shifts [11–14]. Ideally, the QPN should be the dominant noise
contribution in the measurement of the frequency offset of the
local oscillator from the atomic line.

Squeezed states [15] and entanglement of the atoms [16]
can overcome the projection noise limit. It must, however, be
noted that at present even the most stable optical clocks are
still limited by the aliasing of laser noise, i.e., via the Dick
effect.

With this background it becomes obvious that a detailed
understanding of the noise sources present in the experiment
is not only essential for optimizing the clock stability and

interrogation strategy, but also for judging the necessity to
implement squeezing and entanglement methods to improve
the clock.

We therefore give a rigorous analysis of the detection noise
contributions in our Sr lattice clock [17] (Sec. II). The noise
model is further supplemented by a contribution of the clock
laser noise [6] via the Dick effect (Sec. III). Combining both,
we show that the clock instability observed during evaluations
of systematic effects in the interleaved stabilization mode is
well reproduced and a clock instability of 1.6 × 10−16/

√
τ

can be inferred for regular clock operation (Sec. IV), which is
governed by the excellent stability of our clock laser [6] and
competitive with the best values of 2.2 × 10−16/

√
τ [1] and

3.2 × 10−16/
√

τ [2] published to date.

II. DETECTION NOISE OF THE LATTICE CLOCK

In this section, the individual noise contributions affecting
the measured excitation probability are discussed. In the final
part of the section, their influence on the clock signal is
modeled and compared with experimental observations. For
the sake of simplicity, we express all noise amplitudes in
arbitrary units of the data acquisition system labeled “counts.”

Figure 1 shows a simplified level scheme of the strontium
atom. Details for laser cooling and trapping of strontium
atoms have been described in previous publications [17–19].
To derive the spectroscopic signal of the lattice clock after
the interrogation of the 87Sr atoms by the clock laser, atoms
in the ground state (1

S0) are excited with a resonant laser
beam in standing-wave configuration on the strong 461-nm
cooling transition 1

S0-1
P1. The fluorescence is observed by

a photomultiplier tube in the current mode. Its signal is
amplified and digitized with an analog-to-digital converter of
the data acquisition computer. This signal g is, apart from an
offset o, proportional to the 1

S0 ground-state atom number.
The radiation pressure removes the atoms from the detection
volume within 20 ms.

Similarly, the signal e from atoms in the excited clock state
(3P0) is detected after the atoms have been optically pumped
within few 100 μs to the 3P1 state by two lasers resonant with
the 3P0-3S1 and 3P2-3S1 transitions, from where they decay
further to the ground state. In addition, the offset o in both g

and e due to stray light, multiplier dark current, and electronic
offset is measured via a third and final detection pulse after
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FIG. 1. (Color online) Simplified level scheme of the strontium
atom. Arrows indicate the transitions used for cooling and spec-
troscopy and their associated wavelengths.

removing any remaining atoms. Therefore, each of the signals
g, e, and o is a sum of different contributions from fluorescence
(Sfluo), stray light (Sstray), and electronic background (Selec).
From these three signals, the atomic excitation probability pe

is estimated by

pe = e − o

e + g − 2o
. (1)

This normalization removes substantial noise on g and e due
to shot-to-shot fluctuations of the atom number N . Here, we
replaced the measured offset o by its running average o, since
the variation of the actual background is small on time scales
of several interrogation cycles; thus the additional noise of
pe due to the shot-to-shot noise of the offset measurement is
suppressed and does not need to be considered in the noise
model.

The connection between the excitation probability, in par-
ticular its noise, and the corresponding frequency excursion of
the interrogation laser is given by the slope of the spectroscopic
signal. For the case of probing the atomic resonance line at a
half-width point [8] using Rabi interrogation with a pulse of
length Tπ , the slope is

dpe

dν
≈ ±2π × 0.30Tπ, (2)

with its sign depending on which side of the resonance is
probed. A Ramsey interrogation scheme with a free precession
time TRamsey and short excitation pulses leads to a steeper slope
of

dpe

dν
≈ ±2π × 0.5TRamsey. (3)

A. Electronic noise

The electronic noise was measured by running the standard
detection sequence without atoms or laser light being present.
The observed noise is a sum of amplifier, digitizer, and dark
current noise. Such noise will be present in the three signals,
g, e, and o, but not in o. The standard deviation of the signal
is σelec = 0.82 counts, while the amplitude of the electronic
offset signal Selec ≈ 18 counts.

FIG. 2. (Color online) Measured fluorescence shot noise levels
σsn (full circles) as a function of the detected signal Sfluo along with a
fit according to Eq. (4) (solid line).

B. Photon shot noise

During the detection of the atomic fluorescence, a finite
number of photons is collected by the photomultiplier tube.
Thus, the signals g and e will suffer from a shot noise
contribution. In order to quantify this contribution, we have
investigated the photon shot noise using a flashlight as a
shot noise–limited light source. For the observed white phase
noise, the first point of the Allan deviation of the recorded
data is equal to their standard deviation; we use this value
as a measure of the noise to remove the influence of slow
intensity variations of the flashlight. The measurements were
performed for different signal amplitudes. The electronic
background Selec (discussed in the previous subsection) must
be removed to extract the actual “fluorescence” signal Sfluo, i.e.,
the signal stemming only from detected photons. The resulting
“fluorescence” noise contribution σsn is shown in Fig. 2. The
expected

√
Sfluo dependence of the noise amplitude σsn is well

reproduced. From a fit we find

σsn(Sfluo) = 0.59(2)
√

Sfluo, (4)

which corresponds to Sfluo = 0.35(3) counts per detected
photon. Fluorescence shot noise will be present in the signals
g and e with an amplitude depending on the fluorescence
contribution Sfluo to these signals, as, e.g., the electronic offset
Selec is not subject to shot noise.

C. Detection laser intensity noise

Intensity fluctuations of the detection laser at the position
of the atoms will show up on the fluorescence signal as long as
the transition is not strongly saturated. We avoid high intensity,
since the radiation pressure-induced heating of the atoms
reduces the reasonable interaction time and thus the detected
signal. This loss of signal is not compensated by the higher
photon scattering rate, and the detection would be less efficient.

Intensity fluctuations may arise from both power and
pointing instability of the detection laser. We measured the
power fluctuations of the laser in a similar procedure as for
the shot noise measurements, except that we used stray light
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from the detection laser instead of a flashlight. From these
measurements we have found data that are very similar to
that presented in Fig. 2. In particular, we have observed no
significant noise contribution with a linear dependence on
laser power and thus conclude that laser power noise on short
time scales, which would result in such a contribution, can be
neglected. This is corroborated further by direct measurements
of the laser power. The optical setup of the detection beam,
which is delivered by a fiber and collimated to a diameter of
about 2 mm, comprises only a short free-space path on the
order of 50 cm; we have analyzed its pointing instability and
found it to be negligible on relevant time scales. We also note
that the shot noise of the detection beam with a power of about
400 μW is negligible.

Laser stray light (Sstray) adds a shot-noise contribution to
the signals g and e according to Eq. (4), whereas the similar
noise contribution to the offset is suppressed by the use of o.

D. Detection laser frequency noise

The 461-nm detection laser beam is derived from a
frequency-doubled diode laser system that also produces the
laser beams for laser cooling and Zeeman slowing. The
fundamental frequency of the laser system is stabilized to
a high-finesse, 10-cm-long ultralow expansion glass (ULE)
resonator. With its resonance line width of less than 100 kHz,
we estimate in-lock frequency fluctuations on the kilohertz
level from the in-loop error signal. Compared to the 32-MHz
line width of the 1

S0-1
P1 detection transition, frequency noise

of the detection laser does not contribute significantly to the
detection noise.

E. Quantum projection noise

As mentioned in Sec. I, QPN is the fundamental noise that
ideally should dominate all other noise contributions in the
detection. It depends on the atom number N and the excitation
probability pe [10] as

σQPN(pe) =
√

pe(1 − pe)N. (5)

The signal-to-noise ratio N/σQPN can thus be improved by
increasing the atom number. N is proportional to g + e −
2o, where the constant of proportionality to convert from
“counts” to atom number is about one atom per count. This
factor depends on the actual alignment of the experiment,
the frequency and power of the detection laser, and other
parameters.

We measured the noise σpe of the excitation probability of
samples of atoms with pe = 0.5 and different atom numbers N

to investigate whether we can achieve QPN-limited detection
in our experiment. In order to become insusceptible to fre-
quency noise of the interrogation laser, we prepared a coherent
superposition state by using a resonant π/2-Rabi pulse instead
of Rabi excitation with a π pulse at a half-width frequency
detuning as usually applied in a stabilization sequence. A pulse
length of Tπ/2 = 10.5 ms was chosen. The observed noise σpe

is plotted in Fig. 3. To which extent quantum projection noise
is dominant in our setup and if residual laser noise affected
the data will only become apparent with the combined noise
analysis in Sec. II F.

FIG. 3. (Color online) Excitation probability noise σpe at pe =
0.5 multiplied by the signal amplitude g + e − 2o as a function
thereof (full circles). Atoms are prepared in a superposition of 1

S0 and
3
P 0 states by a frequency-insensitive resonant π/2 pulse. The dashed
line shows a fit of Eq. (5) with a factor of proportionality close to the
experimentally expected one (see text).

F. Detection noise model

Having quantified the individual noise sources, we now
develop a noise model to combine them and verify if the
observed detection noise (Fig. 3) is fully described and whether
QPN is the dominant noise source.

The noise model assumes independent contributions to
σpe from QPN and other sources of noise. QPN is handled
separately because it leads to anticorrelated noise in g and e.
For the other noise sources, independent contributions from g

and e, but not from o, are considered. For these contributions,
the model uses the derivatives of pe [Eq. (1)] with respect to
g and e. Thus the total noise is given by

σpe =
√√√√∑

i

(
dpe

dg
σg,i

)2

+
∑

i

(
dpe

de
σe,i

)2

+ σ 2
QPN

N2
, (6)

with the derivatives

dpe

dg
= o − e

(g + e − 2o)2
,

dpe

de
= g − o

(g + e − 2o)2
. (7)

In Fig. 4, we summarize the contributions to the detected
excitation probability noise σpe as a function of the total atom
number as expressed by g + e − 2o. We see that the total
noise agrees with the observations from Fig. 3 very well,
when we use a conversion factor of 0.65 atoms/count to
calculate the QPN in Eq. (5). This is in reasonable agreement
with an independent calibration derived from absorption
measurements.

From this analysis we conclude that detection is limited by
QPN for more than 200 counts, or 130 atoms. For 300 atoms
this would lead to a frequency stability of our lattice clock
of less than 6 × 10−17/

√
τ , where we made use of Eqs. (2)

and (5) and used a realistic interrogation time Tπ = 640 ms
with a cycle time of Tc = 1 s [17,20]. However, this estimate
does not take into account the degradation of the stability due

063814-3



ALI AL-MASOUDI et al. PHYSICAL REVIEW A 92, 063814 (2015)

FIG. 4. (Color online) Experimental noise of the excitation prob-
ability with suppressed sensitivity to laser frequency noise (π/2
pulses, full circles) and estimated individual noise contributions. The
QPN is based on a detection efficiency of 0.65 atoms/count. The
shot noise calculation includes the noise of a typical background of
70 counts due to detection laser stray light. The green curve shows
the summed noise according to Eq. (6). The good agreement with the
experimental data demonstrates the completeness of the model and
the absence of laser noise in the data.

to the Dick effect, i.e., the aliasing of high frequency laser
noise due to the noncontinuous interrogation of the atoms.

III. LASER NOISE AND DICK EFFECT

After establishing the noise limitations on the optical clock
instability from the atomic side, we will now show what
frequency instability is introduced by the interrogation laser.
Because of the noncontinuous interrogation of the atoms, a
stability degradation due to aliasing of noise—the so-called
Dick effect [8]—is expected. Its contribution, σy,Dick(τ ), to the
fractional clock instability can be calculated by

σ 2
y,Dick(τ ) = 1

τ

1

|g0|2
∞∑

k=1

Sy(k/T )|gk|2, (8)

where T = nTc, and n is the number of interrogations in
each stabilization cycle. The cycle duration Tc consists of the
preparation time TD and the interrogation time Tπ .

In Eq. (8), the laser’s single-sided power spectral density Sy

is evaluated at multiples of the inverse of the total duration T of
a complete stabilization cycle weighted with coefficients gk ,
which are the Fourier components of a sensitivity function
w(t), and normalized by the dc Fourier coefficient g0.
The sensitivity function w(t) describes the response of the
detected excitation probability to interrogation laser frequency
changes [8],

δpe = 1

2

∫ T

0
2π δν(t)w(t)dt . (9)

The dc Fourier coefficient g0 = 1/πdpe/dν in Eq. (8) relates
the change in excitation probability to a constant change in
laser frequency.

For a π pulse of duration Tπ centered at t = Tπ/2 and
a detuning � ≈ ±0.40/Tπ of the interrogation laser, i.e., to
the half-maximum point of the resonance, it can be found
[Eq. (11) in Ref. [8]] that

wsingle(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2 ϑ cos ϑ

×[(1 − cos 	2) sin 	1

+(1 − cos 	1) sin 	2] during pulse,

0 elsewhere

with

ϑ = π

2
− arctan(2Tπ�), (10)

and

	1 = π
√

1 + (2Tπ�)2
t

Tπ

, 	2 = π
√

1 + (2Tπ�)2
Tπ − t

Tπ

.

During clock operation, each stabilization cycle of the
clock consists of four distinct interrogation (and preparation)
sequences that interrogate the mF = ±9/2 components on
both slopes [17]. Thus, a clock laser frequency correction is
applied every 4Tc, and w(t) is a fourfold series of wsingle(t)
(Fig. 5).

We use an interleaved stabilization scheme to evaluate most
systematic shifts. The parameters of interest are alternated
after each full clock stabilization cycle; separate digital servos
correct the clock laser frequency independently for each
configuration and generate a difference frequency signal. As
the laser frequency noise is in general correlated between the
interleaved interrogations, the Dick effect cannot be simply
treated independently for each of the stabilizations. In analogy
to the Dick effect for clock operation, a Dick effect can also
be derived for the difference between the two interleaved
stabilizations. The sensitivity function is composed of eight

FIG. 5. (Color online) Sensitivity function w(t) of interleaved
stabilizations, shown for the cases of lumped (solid line) and
distributed (dashed line) arrangements, as described in the text.
Vertical gray lines indicate multiples of Tc. The typical parameter
values given in Sec. III were used. For a single stabilization, w(t)
consists only of the first four cycles shown for the lumped interleaved
arrangement.
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FIG. 6. (Color online) (a) Spectral power density of frequency fluctuations Sν = ν2
0Sy (solid line) and Fourier components |g2

k /g
2
norm|

(circles) for k > 0 for interleaved stabilizations for parameter values as given in Sec. III. (b) Partial sums of σ 2
y,Dick(τ ) [Eq. (8)] as a function of

the Fourier frequency fmax = kmax/T at τ = 1 s and for the parameter values given in Sec. III. Shown are the cases of interleaved stabilizations
using either a lumped (solid circles) or a more stable distributed (open circles) probing sequence, as described in the text, and single stabilization
using Rabi (solid squares) and alternatively Ramsey (solid triangles, same interrogation time with π/2 pulses of 100-ms length) interrogation.

repetitions of wsingle(t), where the sign is reversed between
the first and last four (Fig. 5); a possible improvement to
this lumped arrangement is discussed in Sec. IV below. The
conversion coefficient between the signal, i.e., the difference
of excitation probabilities, and laser frequency changes is no
longer given by g0, but by the response to a unit frequency
difference between both stabilization settings, which is

gnorm =
∫ T

0

1

2
|w(t)|dt. (11)

Thus, the instability of the difference between the two
interleaved stabilizations can be calculated from Eq. (8), with
the above sensitivity function and replacing g0 by gnorm.

To calculate σ 2
y,Dick(τ ) from Eq. (8), the laser noise spectrum

is required. We have measured Sy via three-cornered-hat
comparisons with other lasers [6]. The noise spectrum is shown
together with the gk for k > 0 in Fig. 6(a).

Having now all ingredients, the sum in Eq. (8) can be
evaluated for τ = 1 s and typical parameter values (Tπ =
0.64 s, TD = 0.54 s, and Tc = Tπ + TD = 1.18 s). To visualize
the contributions to σy,Dick from different Fourier frequencies,
the partial sum of Eq. (8) up to the frequency fmax = kmax/T

is plotted in Fig. 6(b). We see, that for a single stabilization,
σ 2

y,Dick(τ ) is dominated by g4, whereas higher frequencies
between 1 and 10 Hz contribute significantly for the interleaved
stabilization. In fact, because of the symmetry of the single
stabilization, all gk where k is not a multiple of 4 are zero. Thus,
the Dick effect is exactly the same as for a single interrogation
cycle of length Tc.

IV. LATTICE CLOCK INSTABILITY

To estimate the instability of our lattice clock, the results
from Secs. II F and III were combined; the instabilities due
to detection noise and the Dick effect have to be added in
quadrature. For the difference of two interleaved stabilizations,

the detection noise contribution is
√

2 times that of a single
stabilization discussed in Sec. II due to the two independent
stabilizations, whereas the Dick effect for the difference is
accounted for by the combined sensitivity function discussed
in Sec. III.

From our analysis we infer a combined instability of
4.7 × 10−16/

√
τ , with contributions of 4.6 × 10−16/

√
τ from

the Dick effect and 6 × 10−17/
√

τ for each of the interleaved
stabilizations from detection noise. Experimentally, an insta-
bility very close to that inferred from our analysis is found.
Figure 7 shows the Allan deviation of the difference signal
observed in an interleaved stabilization for the experimental
parameters given in Sec. III and N ≈ 360 atoms. Thus, we

FIG. 7. (Color online) Allan deviation of the difference between
two interleaved stabilizations with Tπ = 0.64 s, TD = 0.54 s, and
N ≈ 360 atoms (full circles). The fractional instabilities σy(τ )
inferred from our analysis for interleaved stabilizations (solid blue
line, 4.7 × 10−16/

√
τ ) and pure clock operation (dashed red line,

1.6 × 10−16/
√

τ ) are shown for comparison.
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conclude that the combined analysis of detection and laser
noise constitutes a very good description of our optical lattice
clock.

The stability of interleaved stabilizations can be improved
by modifying the sequence to use a distributed instead of
a lumped arrangement, i.e., interleaving the interrogation
sequences of each stabilization as well rather than arranging
them in blocks of four, as shown in Fig. 5. We estimate that a
combined instability of 3.4 × 10−16 in 1 s can be achieved.

Based on the previous findings, we can infer the instability
in clock operation with typical atom numbers of N ≈ 300
atoms. Experimentally, we cannot determine this quantity
directly, since we are lacking sufficiently stable oscillators
to compare to. With this analysis we find σy(τ ) = 1.6 ×
10−16/

√
τ dominated by the Dick effect–induced instability

of σy,Dick(τ ) = 1.5 × 10−16√τ (Fig. 7). A slight reduction of
instability can be achieved by Ramsey interrogation instead of
Rabi pulses (Fig. 6).

V. CONCLUSION

We have given a full analysis of the detection noise of our
Sr lattice clock. In combination with a Dick effect analysis of
our new clock laser [6], we are able to give a full description of
our clock’s observed frequency instability when differentially
evaluating systematic frequency shifts. Since the agreement
between model and observation is excellent, we are convinced
that the instability of σy(τ ) = 1.6 × 10−16/

√
τ we determine

for normal clock operation is realistic. This is an exceptionally
small instability, better than the so far published instabilities
of optical clocks [1–3].

Although the residual noise of our clock laser [6] has been
crucial for achieving this result, we also conclude that, even
with one of the most advanced interrogation lasers available
today and an efficient preparation scheme with a duty cycle
of more than 50%, the clock instability is already at very
small atom numbers, limited by the Dick effect and thus the

clock laser. This means that at present advanced squeezing or
entanglement methods are not yet worthwhile.

First, the Dick effect–induced instability must be addressed.
Ramsey interrogation offers a favorable sensitivity function as
compared to a Rabi scheme, especially for high duty cycles [9].
Moreover, reducing the clock laser frequency noise between
1 and 10 Hz, which is caused by seismic perturbations of
the reference cavity, e.g., by active feed-forward [21], could
bring the clock instability to below 10−16 in 1 s. Finally, the
duty cycle of clock laser interrogation could be increased:
Nondestructive detection methods [22], which use, e.g., the
phase shift imprinted onto an off-resonant detection beam,
allow keeping the majority of cold atoms in the lattice and
thus reduce the required preparation time. Furthermore, few
independent physics packages can use the same clock laser for
interrogation to achieve a dead time–free observation of the
laser frequency, thereby eliminating the Dick effect altogether.
The detection noise presented in Sec. II would also be reduced
by a factor of

√
2 owing to the dual interrogation per cycle.

Such a setup leads to an ultimate instability of 4 × 10−17/
√

τ

for the typical parameters discussed here and allows quantum
projection noise–limited detection.
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[16] E. M. Kessler, P. Kómár, M. Bishof, L. Jiang, A. S. Sørensen, J.
Ye, and M. D. Lukin, Phys. Rev. Lett. 112, 190403 (2014).

[17] S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers,
V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi,
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