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Thermodynamics and dynamics of atomic self-organization in an optical cavity
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Pattern formation of atoms in high-finesse optical resonators results from the mechanical forces of light
associated with superradiant scattering into the cavity mode. It occurs when the laser intensity exceeds a threshold
value such that the pumping processes counteract the losses. We consider atoms driven by a laser and coupling
with a mode of a standing-wave cavity and describe their dynamics with a Fokker-Planck equation, in which the
atomic motion is semiclassical but the cavity field is a full quantum variable. The asymptotic state of the atoms is
a thermal state, whose temperature is solely controlled by the detuning between the laser and the cavity frequency
and by the cavity loss rate. From this result we derive the free energy and show that in the thermodynamic limit
self-organization is a second-order phase transition. The order parameter is the field inside the resonator to which
one can associate a magnetization in analogy to ferromagnetism, the control field is the laser intensity, but the
steady state is intrinsically out of equilibrium. In the symmetry-broken phase, quantum noise induces jumps
of the spatial density between two ordered patterns: We characterize the statistical properties of this temporal
behavior at steady state and show that the thermodynamic properties of the system can be extracted by detecting
the light at the cavity output. The results of our analysis are in full agreement with previous studies; we extend
them by deriving a self-consistent theory which is valid also when the cavity field is in the shot-noise limit and
elucidate the nature of the self-organization transition.
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I. INTRODUCTION

There is ample experimental evidence that electromagnetic
fields can cool matter to ultralow temperatures [1–3]. This
is achieved by tailoring scattering processes, so that the
frequency of the emitted photon is, on average, larger than that
of the absorbed one, the energy balance being warranted by
the mechanical energy which is exchanged between matter and
light [4,5]. When atoms or molecules interact with high-finesse
optical resonators, these processes can be tailored using the
strong coupling with the cavity field [6–13].

A peculiar aspect of light-matter interaction inside optical
cavities consists of the long-range interactions between the
atoms, which are mediated by multiple scattering of photons
[14,15]. The onset of this behavior is observed when the system
is driven by external pumps, whose strength overcomes the loss
rate. Some prominent examples are optomechanical bistability
[16,17], synchronization [18], and spontaneous spatial order-
ing [12,19–23]. Among several setups, spontaneous pattern
formation in standing-wave and single-mode cavities has been
the object of several theoretical and experimental studies [12].
This phenomenon occurs when the atoms are confined within
the resonator and are transversally driven by a laser and
consists of the formation of atomic gratings that maximize
coherent scattering of laser photons into the cavity mode,
as sketched in Figs. 1(a) and 1(b). These “Bragg gratings”
are stably trapped by the mechanical effects of the light
they scatter, provided that the laser compensates the cavity
losses so that the number of intracavity photons is sufficiently
large. It takes place when the laser intensity, pumping the
atoms, exceeds a threshold value depending on, among other
things, the rate of photon losses and the number of atoms
[12,21]. This behavior was first predicted in Ref. [21] and
experimentally demonstrated in several settings, which differ
majorly from the initial temperature of the atomic ensemble:
In Refs. [22,24] the atoms were cooled by the mechanical

effects of the photons scattered into the resonator, while
in Refs. [23,25] the atoms initially formed a Bose-Einstein
condensate, and the mechanical effects of light were giving
rise to conservative forces. As a consequence, matter-wave
coherence was preserved during the experiment. In this regime,
the transition to self-organization can be cast in terms of the
Dicke phase transition [26].

In this work we theoretically analyze the dynamics leading
to the formation of spatial structures and their properties at the
asymptotics. Our analysis is based on a semiclassical treatment
and specifically on a Fokker-Planck equation (FPE) derived
when the atoms are classically polarizable particles and their
center-of-mass motion is along one dimension [27]. The cavity
field, instead, is a full quantum variable, which makes our
treatment valid also in the shot-noise limit [27] and describes
parameter regimes that are complementary to those of the
model in Ref. [28], where the field is a semiclassical variable.
Our formalism permits us, in particular, to consistently
eliminate the cavity variables from the equations of motion
of the atoms, and to analyze the properties of the cavity field
across the self-organization threshold, where the intracavity
field is characterized by large fluctuations.

This work extends and complements the study presented
in Ref. [29]. In particular, we perform a detailed analysis of
the stationary state and obtain an analytic expression, which
allows us to determine the phase diagram of the transition
as a function of the relevant parameters. Drawing from this
result, in addition, we show that the onset of self-organization
in spatially ordered patterns is a second-order phase transition,
associated with a symmetry breaking in the phase of the
intracavity field. This allows us to verify conjectures on the
nature of the self-organization transition, previously discussed
in Refs. [30–32]. We further analyze in detail the effects of the
nature of the long-range interactions mediated by the photons
and report on several features which are analogously found
in the Hamiltonian Mean Field (HMF) model, the workhorse
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FIG. 1. (Color online) (a) Atoms in a standing-wave cavity and driven by a transverse laser can spontaneously form ordered patterns (b)
when the laser intensity � exceeds a threshold value �c, which depends on the rate of photon losses, here due to cavity decay at rate κ . In this
regime the atoms experience a long-range interaction mediated by the cavity photons and their motion becomes strongly correlated. (c) Spatial
ordering of atoms is described by the parameter �, which characterizes the localization of the atoms within the standing-wave mode of the
cavity and is proportional to the cavity field. This parameter undergoes a bifurcation at � = �c, corresponding to two different stable patterns.
The values it takes are the minima of an effective Landau potential, displayed in (d) for some values of �, demonstrating that self-organization
is a second-order phase transition. See text for details.

of the statistical physics with long-range interactions [33].
This article is the first of a series of works devoted to the
semiclassical theory of self-organization.

In the present work we analyze the thermodynamics of
self-organization and the dynamics at the asymptotics, while
in following articles we investigate the dynamics following
sudden quenches across the phase transition [34] and compare
our analysis with a mean-field model that discards some
relevant effects of the long-range correlations [35]. This paper
is organized as follows. In Sec. II the FPE at the basis of our
analysis is reported and discussed. In Sec. III the stationary
properties of the distribution function are characterized both
analytically and numerically. In Sec. IV the correlation
functions of the light at the cavity output are determined. The
conclusions are drawn in Sec. V, while the Appendixes report
details of analytical calculations and of the numerical program
that is used to simulate the FPE.

II. MODEL

The dynamics of N atoms or molecules of mass m inside
a single-mode standing-wave cavity is analyzed when the
particles are transversally illuminated by a laser field, as
illustrated in Fig. 1(a). Laser and cavity couple to a dipole
transition of the scatterers and are assumed to be sufficiently
far-off resonance so that the coupling with the internal degrees
of freedom is described by the particles polarizability. From
now on we assume that the particles are atoms, but the
treatment in this paper can be extended to any ensemble of

linearly polarizable particle that can be confined within the
optical resonator [36].

In this regime the atoms scatter all coherently and the cavity
field Ec is the sum of the fields that each atom scatters. We
assume that the atoms’ center-of-mass motion is confined
along the cavity axis, which coincides with the x axis (we
disregard their motion in the transverse plane), and that the
atoms are uniformly illuminated by the laser field. Denoting
the atomic position by xj and the cavity-mode function by
cos(kx), with k the wave number, then Ec ∝ N�, where

� = 1

N

∑
j

cos(kxj ) (1)

measures the ordering of the atoms within the cavity standing
wave. For N � 1, when the atoms are uniformly distributed,
� ∼ 0 and the field within the cavity vanishes. The intra-
cavity intensity is maximal when the positions are such that
cos(kxj ) = 1 (even pattern) or cos(kxj ) = −1 (odd pattern),
namely, when the atoms form Bragg gratings; see Fig. 1(b).
These gratings are the two possible stable configurations the
atoms can form when the laser pump is above threshold, as
shown in Fig. 1(c).

The formation and stability of the Bragg gratings is
determined by the mechanical effects of photon scattering
on the atoms. In this section we report the basic equations
describing the dynamics of the coupled systems, as well as the
assumptions that lead to a FPE governing the semiclassical
trajectories of N atoms inside the single-mode resonator [27].
The FPE is derived under the assumption that the atomic
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motion is at all times in the semiclassical regime, while the
cavity field adjusts quasi-instantaneously to the atomic density
distribution. In this limit, using a perturbative treatment, the
cavity field can be eliminated by the equations of motion of the
atoms’ external degrees of freedom [37]. Readers interested in
the detailed derivation of the FPE from the full quantum master
equation of atoms and cavity are referred to Refs. [27,37]. An
alternative FPE, where fluctuations of the intracavity field are
treated semiclassically but no time-scale separation between
atoms and cavity dynamics is assumed, is derived in Ref. [28].

A. The cavity field

In our treatment the cavity field is a quantum variable. We
report its equation of motion in the limit in which the atoms
constitute a nonsaturated medium and their internal atomic
transitions are described by the polarizability. Our starting
point is the Heisenberg-Langevin equation for operator â(t),
which annihilates a cavity photon at frequency ωc and wave
number k. The equation is reported in the reference frame
rotating at the laser frequency ωL and reads [38]

∂

∂t
â(t) = −{κ − i[�c − NU B̂(t)]}â(t) − iNS�̂(t) + ξ̂ (t),

(2)

where �c = ωL − ωc is the detuning of the laser from the
cavity frequency, ξ̂ (t) is the Langevin force with 〈ξ̂ (t ′)ξ̂ †(t)〉 =
2κδ(t − t ′), and κ is the cavity decay rate. The cavity field is
a function of the two operators B̂(t) and �̂(t), which, in turn,
are functions of the atomic positions x̂j at time t . In detail,
U is a frequency, U = g2/�a , where g is the vacuum Rabi
frequency at the antinodes of the cavity mode, �a = ωL − ωa

is the detuning of the laser frequency from the atomic transition
resonance ωa , and operator B̂ is defined as

B̂ = 1

N

∑
j

cos2(kx̂j ) (3)

and takes on values between 0 and 1. Its expectation value
B = 〈B̂〉 is the so-called bunching parameter [12]. Operator
�̂(t) is the quantum variable corresponding to the order
parameter in Eq. (1). In Eq. (2) it is scaled by the frequency
S = �g/�a , which is proportional to the laser Rabi frequency
� and corresponds to the scattering amplitude of a laser
photon into the cavity mode by an atom at an antinode, with
S/U = �/g. Equation (2) shows that the pump on the cavity
is maximum when 〈�̂〉 = ±1, corresponding to the situation
in which the atoms form Bragg gratings. Self-organization
occurs when these gratings are mechanically stable, namely,
when the mechanical effects of the scattered light stabilize the
atoms in ordered structures, which, in turn, generate the field.
In order to determine these dynamics one would need to solve
the coupled equations of cavity and atomic motion.

We can further simplify the problem by considering the
regime in which the time scale over which the atomic motion
evolves is much larger than the time scale determining the
evolution of the cavity field. This is typically fulfilled when
kp̄/m � |κ + i�c|, where p̄ =

√
〈p̂2〉 is the variance of the

atomic momentum (the mean value vanishes), under the
condition that the coupling between cavity and atomic motion

is sufficiently weak. This latter condition requires that [39]

√
ωr

√
N |S| � |�c + iκ|3/2, (4)

where ωr = �k2/(2m) is the recoil frequency, scaling the
exchange of mechanical energy between photons and atoms.
At zero order in this expansion the cavity field operator
depends on the instantaneous density and reads

âad(t) = NS�̂(t)

�̂′
c(t) + iκ

, (5)

where the subscript indicates the adiabatic limit and we omitted
to report the noise term. Operator �̂′

c is defined as

�̂′
c = �c − UN B̂. (6)

Its mean value vanishes for certain density distributions,
giving rise to resonances. For |NU | > κ small changes of
�c about the resonance can induce large variations of the
field, resulting in the appearance of optomechanical bistable
behavior [16,17,40]. In this paper we focus on the regime in
which |NU | � κ , and treat this as a small parameter on the
same footing as the retardation term. In this limit, the field,
including the diabatic corrections, reads

â(t) = NS�̂(t)

�c + iκ

[
1 + NU

�c + iκ
B̂(t)

]
+ âret(t), (7)

where

âret(t) = iNS

(i�c − κ)2
˙̂� (8)

accounts for retardation effects and depends on the time
derivative of operator �̂, Eq. (1). The derivative, in particular,
takes the form

˙̂� = − 1

2N

∑
j

{
sin[kx̂j (t)]

kp̂j (t)

m
+ kp̂j (t)

m
sin[kx̂j (t)]

}

and shows that the diabatic correction scales with
(kp̄/m)/|κ + i�c|. When this parameter is small, then one
can perform a coarse graining for the atomic motion, over
which the cavity field fast relaxes.

It is also useful to discuss the mean number of photons
inside the resonator. In the adiabatic limit it is given by

〈n̂〉t,ad = Nn̄〈�̂2〉t , (9)

which is valid in zero order in the delay time. For later
convenience, we introduced the dimensionless quantity

n̄ = NS2

�2
c + κ2

, (10)

such that Nn̄ gives the maximum intracavity photon number,
corresponding to the value 〈�2〉t = 1, namely, when the atoms
form a perfectly ordered Bragg grating. The average photon
number can be different from zero also when the field inside
the resonator has vanishing mean expectation value, since in
this case it is proportional to the fluctuations of the order
parameter.
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B. Fokker-Planck equation for N atoms

An equation for the motion of the N atoms within the
resonator is derived under the assumption that at all times
the atomic momentum distribution has width �p = p̄, which
is much larger than the quantum of linear momentum �k

that the atom exchanges with the individual photons (but
sufficiently small so that the atoms are within the velocity
capture range [11]). This assumption is valid for cavities whose
decay rate κ exceeds the recoil frequency ωr : ωr � κ . In fact,
we show that κ determines the minimum stationary width
of the momentum distribution. This regime is encountered in
several existing experiments [17,22,24]. We note that, with this
assumption, the requirement of time-scale separation between
cavity and motion is fulfilled, since the inequality kp̄/m � κ

is consistent with ωr � κ after using p̄2/2m = �κ/2.
Reference [27] reports the detailed steps that lead to the

derivation of a FPE for the distribution f (x, p,t) of the N

atoms positions and momenta x = (x1,x2, . . . ,xN ) and p =
(p1,p2, . . . ,pN ). The FPE can be cast in the form

∂f

∂t
= −

∑
i

pi

m

∂

∂xi

f + S2Lf, (11)

where f ≡ f (x, p,t). The right-hand side (RHS) separates the
ballistic motion from the term proportional to the scattering
rate S and describes the dynamics due to the mechanical effects
of light. This latter term specifically reads

Lf = −
∑

i

∂

∂pi

F0(x) sin(kxi)f

−
∑
i,j

∂

∂pi


0(x) sin(kxi) sin(kxj )pjf

+
∑
i,j

∂2

∂pi∂xj

η0(x) sin(kxi) sin(kxj )f

+
∑
i,j

∂2

∂pi∂pj

D0(x) sin(kxi) sin(kxj )f

+ γ ′

2

∑
i

∂2

∂p2
i

Dsp(xi)f. (12)

Here the first term on the RHS describes the dispersive force
associated with scattering of laser photons into the resonator,
where

F0(x) = (�k)
2�′

c

�′2
c + κ2

(1 + δF )N�. (13)

Its amplitude is proportional to the order parameter � [Eq. (1)],
which is the Wigner representation of operator �̂ [27]. Its
sign is also determined by the frequency shift of the cavity
frequency �′

c(x) from the laser, which takes the same form
as in Eq. (6), now with the corresponding Wigner form
for operator B̂. Coefficient δF is a small correction for the
parameter regime we consider; its general form is given
in Appendix A. The same applies for the coefficients δj

(j = 
,η,D) appearing in the other terms we specify below.
The second term on the RHS of Eq. (12) describes the

damping force due to retardation between the scattered field

and the atomic motion. It depends on the atomic momentum
and is scaled by the function


0(x) = ωr

8�′
cκ(

�′2
c + κ2

)2 (1 + δ
). (14)

The third summand is due to the anharmonicity of the cavity
optical lattice. The function scaling this term has the form

η0(x) = 2�ωr

(−�′2
c + κ2

)
(
�′2

c + κ2
)2 (1 + δη) (15)

and vanishes when �′
c = ±κ .

The last two terms describe diffusion. In particular, the one
scaled by the function

D0(x) = (�k)2 κ

�′2
c + κ2

(1 + δD) (16)

corresponds to the diffusion associated with global fluctua-
tions of the cavity field and is characterized by long-range
correlations, while the term with coefficient Dsp(xi) is instead
due to spontaneous emission of a photon outside the resonator
with γ ′ = γg2/�2

a , where γ is the decay rate of the excited
state. It is the sole term which acts locally, and the dynamics it
implies does not establish correlations between the atoms. Its
explicit form is reported in Appendix A.

C. Dynamics away from the bistable regime

Equation (11) describes the coherent and dissipative dy-
namics associated with the mechanical effects of light on the
atomic motion. In this work we assume that γ ′ is much smaller
than the other rates and discard the effect of spontaneous decay
in the dynamics, so that losses are due to cavity decay. As far as
it concerns the terms due to the cavity, we note their nonlinear
dependence on the bunching parameter, which appears in
the denominator of all coefficients and gives rise to bistable
behavior. Here we focus on the regime in which |NU | � κ .
In this regime the dispersive forces due to the mechanical
effects of light in leading order are due to scattering of laser
photons into the cavity. In this limit, we choose detunings
|�c| ∼ κ so that the motion is efficiently cooled, as we show
below. Correspondingly, the coefficients of the functional in
Eq. (12) are modified so that �′

c � �c and the functions
δF ,δη,δ
,δD ≈ 0. More precisely, we perform an expansion
in first order in N |U |/κ . In this limit, the FPE, Eq. (11), can
be cast in the form

∂tf + {f,H } + n̄
NU

�c

L1f

= −n̄

∑

i

sin(kxi)∂pi

1

N

×
∑

j

sin(kxj )

(
pj + m

β
∂pj

+ η̄

β
∂xj

)
f, (17)

where all terms due to the coupling with the light scale with n̄,
given in Eq. (10). In detail, the left-hand side (LHS) collects
the Hamiltonian terms, expressed in terms of Poisson brackets
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with Hamiltonian

H =
∑

j

p2
j

2m
+ ��cn̄N�2, (18)

as well as the terms scaling with U , summarized in the
functional L1, whose detailed form is given in Appendix A.
The RHS reports terms of different origin, which can be
classified as damping, diffusion, and a third term which scales
cross derivatives in position and momentum. In the order of
this list, they are scaled by the coefficients


 = 8ωrκ�c/
(
�2

c + κ2
)
, (19)

β = −4�c/�/
(
�2

c + κ2
)
, (20)

η̄ = κ2 − �2
c

κ
(
�2

c + κ2
) . (21)

We remark that the term in the FPE scaled by parameter η̄ was
already found in the derivation of Ref. [37]. While its effect is
to date not well understood, we checked that for the parameters
we consider it gives rise to small corrections in the quantities
we evaluate. In the mean-field treatment it can be cast in terms
of a correction of the effective mean-field potential the atoms
experience. In that limit it induces a shift to the critical value
of the pump strength at the self-organization transition [35].

D. Long-range correlations

Let us now make some preliminary remarks on the FPE
discussed this far. We first focus on the Hamiltonian term,
Eq. (18). In addition to the kinetic energy this contains
the cavity-mediated potential, which has been obtained in
zero order in the retardation time. Its sign is determined by
the sign of the detuning �c: When �c < 0, the formation
of Bragg gratings, which maximizes the value of |�|, is
energetically favored. Thus, Eq. (18) summarizes in a compact
way a property which was observed in several previous works
[21,22,29,30].

We note that the Hamiltonian in Eq. (18) exhibits several
analogies with the HMF model [33], whose Hamiltonian reads

HMF =
∑

j

p2
j

2m
+ J

2N

∑
i 
=j

[1 − cos(θi − θj )], (22)

where θi are angle variables that in our case would correspond
to θi = kxi . The analogy becomes explicit in Eq. (18) by using

�2 =
∑
i,j

{cos[k(xi + xj )] + cos[k(xi − xj )]}/(2N2).

Like Hamiltonian HMF, also Hamiltonian H is extensive as
it satisfies the Kac prescription [33] for the thermodynamic
limit we choose, which keeps n̄ fixed for N → ∞ (see the
next section). In a canonical ensemble, for J > 0 the HMF
exhibits a second-order phase transition from a paramagnetic
to a ferromagnetic phase controlled by the temperature, where
the order parameter is the magnetization M = (Mx,My), with
Mx = ∑

j cos θj /N and My = ∑
j sin θj /N . This suggests

that � identifies with the x component of a two-dimensional
magnetization and creates an expectation of a transition to

order for negative values of the detunings, �c < 0, for which
a nonvanishing interaction potential term tends to minimize
the energy (we mention that the dynamics for �c > 0 has
been recently studied in Ref. [41]).

Differing from the HMF model, the term cos[k(xi + xj )] in
�2 originates from the underlying cavity standing-wave poten-
tial that breaks continuous translational invariance. Moreover,
the cavity coupling at higher order in |NU/�c| gives rise to
deviations from the Hamiltonian dynamics due to further terms
in the LHS of Eq. (17), which for larger values are responsible
for bistable behavior [40] and only in certain limits can be cast
in the form of conservative forces.

We further highlight that long-range correlations can also
be established by the terms on the RHS of the FPE in Eq. (17),
which are usually associated with incoherent processes. In fact,
retardation effects in the scattering of one atom modify the
intracavity potential which traps the whole atomic ensemble.
Photon losses, in addition, give rise to sudden quenches of the
global potential [11,42]. When the density is uniform, the terms
in the RHS can be reduced to a form [27] which is analogous to
the Brownian Mean Field model [43]. However, this mapping
applies only when the system is deep in the paramagnetic
phase. When the atoms form a Bragg grating, instead, damping
and diffusion become smaller, the atoms being localized at the
points where sin(kxj ) ∼ 0. Moreover, when several atoms are
trapped in a Bragg grating, also damping and diffusion of
atoms which are away from the nodes become smaller. These
properties share some analogies with models constructed to
simulate correlated damping [44] and suggest that incoherent
dynamics can endorse coherent effects for transient but long
times [29,34].

III. PROPERTIES AT EQUILIBRIUM

We now discuss the existence and the form of the stationary
state, namely, of the solution of Eq. (17) satisfying

∂tfS = 0.

It is simple to verify that the function of the form

fS = f0 exp(−βH ) (23)

is a stationary solution in zero order in the parameter
UN/κ and η̄, where f0 warrants normalization. Equation
(23) describes a thermal state whose temperature T is solely
controlled by the detuning �c:

kBT = 1/β = �
(
�2

c + κ2
)

−4�c

. (24)

We mention that this result has been reported in Ref. [29] and
was also found in Refs. [30,31,45] using different theoretical
approaches.

In this section, starting from Eq. (23) we analyze the
properties of the system at steady state. We show that Eq. (23)
makes it possible to identify the transition to self-organization
and the corresponding critical value at which it occurs. By
deriving the single-particle free energy in an appropriate
thermodynamic limit, we demonstrate that the transition to
self-organization is a second-order phase transition, whose
order parameter is �. We point out that the treatment here
presented applies concepts of equilibrium thermodynamics
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and is strictly valid at the steady state, because it is a thermal
distribution.

This section contains analytical results, extracted from
Eq. (23), and data of numerical simulations, obtained by
integrating the stochastic differential equations (SDEs) which
simulate the dynamics of Eq. (17). These equations have been
reported in Ref. [27] and for completeness are also detailed
in Appendix B . A single trajectory for N atoms corresponds
to integrating the set of coupled equations (B1) and (B2) for
the variables {x�(t); p�(t)} with � = 1, . . . ,N and for a given
initial condition. From this calculation, for instance, we find

�(t) =
N∑

�=1

cos[kx�(t)]/N.

The mean values are numerically computed by taking the
average over n such trajectories, which statistically satisfy
the initial conditions, and deliver quantities such as 〈�2〉t =∑n

i=1 �i(t)2/n, where i now labels the trajectory, i = 1, . . . ,n.
In the simulations we assume an ensemble of 85Rb

atoms with transition wavelength λ = 780 nm (D2 line).
This gives the recoil frequency ωr = 2π × 3.86 kHz. The
transition linewidth is γ = 2π × 6 MHz and the linewidth
of the resonator is κ = 2π × 1.5 MHz. These parameters
correspond to the ones of the experiment of Ref. [23]; they
warrant the validity of our semiclassical treatment based on a
time-scale separation.

A. Self-organization as second-order phase transition

In order to characterize the thermodynamic properties of the
self-organization transition, we first determine the free energy
per particle. Our starting point is the definition of the free
energy F = −kBT lnZ , where Z is the partition function,

Z = 1

�N

∫
x
dx

∫
p
d p exp(−βH ), (25)

and � is the unit phase space volume. For convenience,
we have introduced the notation

∫
x dx ≡ ∫ λ

0 dx1 · · · ∫ λ

0 dxN

and
∫

p d p ≡ ∫ ∞
−∞ dp1 · · · ∫ ∞

−∞ dpN . After integrating out the
momentum variables, Eq. (25) can be cast in the form

Z = (Z0λ/�)N
∫ 1

−1
d�Ω(�) exp(−Nβ�n̄�c�

2). (26)

Here Z0 = (2πm/β)1/2 is a constant which depends on the
temperature. The functional Ω(�) is the density of states at a
given magnetization � and is defined as

Ω(�) =
∫

x

dx
λN

δ

[
� − 1

N

N∑
i=1

cos(kxi)

]
. (27)

For identifying the transition to order, we consider N � 1.
This requires an adequate thermodynamic limit. We choose
a thermodynamic limit for which the amplitude n̄ [Eq. (10)]
remains constant as N increases and warrants that Hamiltonian
in Eq. (18) is extensive. In detail, it corresponds to scale the
vacuum Rabi frequency as g ∼ 1/

√
N , which is physically

equivalent to scale up the cavity mode volume V linearly
with N , being the vacuum Rabi frequency g ∝ 1/

√
V . It

follows that the scattering rates characterizing the dynamics

scale as S ∼ 1/
√

N and U ∼ 1/N as N → ∞ (moreover,
S2η0 ∼ 1/N , but this contribution is here neglected). Such
scaling has been applied in a series of theoretical works
[30,38,40].

With this definition in mind, we determine an explicit form
of the free energy as a function of � by using the method of
the steepest descent. We identify the fixed point �∗, which is
given by the equation

�∗ = I1(y�∗)

I0(y�∗)
, (28)

with y = 2n̄/n̄c and n̄c > 0, while I1 and I0 are modified
Bessel functions of the first kind [46] (the details of the
calculations are reported in Appendix C). Depending on y,
and thus on n̄, Eq. (28) allows for either one or three solutions,
where the two regimes are separated by the value n̄ = n̄c, with

n̄c = κ2 + �2
c

4�2
c

. (29)

Using this result, the free energy per particle in the thermody-
namic limit takes the form

F(�) ≈ F0 + 1

β

[(
1 − n̄

n̄c

)
�2 + 1

4
�4

]
, (30)

with F0 = −kBT ln(Z0λ/�). Equation (30) has the form of
the Landau free energy [47], and shows that the transition to
self-organization is continuous and of second order. Its form
close to threshold for different values of the pump strength,
and thus of n̄, is sketched in Fig. 1(d), where (�/�c)2 = n̄/n̄c.
For n̄ < n̄c, thus, the order parameter vanishes: The atoms
are uniformly distributed in space and one can denote this
phase as paramagnetic invoking the analogy between �

and a magnetization. For n̄ > n̄c, on the contrary, the order
parameter takes a value different from zero, as shown in
Fig. 1(c). By setting the first derivative of the free energy
[Eq. (30)] to zero we also find an analytic expression for
the order parameter above but close to the threshold: � =
±√

2(n̄/n̄c − 1).
We remark that in Ref. [30] it was conjectured that

self-organization in a standing-wave cavity is a second-order
phase transition. In this section we have demonstrated that
this conjecture is correct by performing an explicit mapping
of the free energy into the form of a Landau model [47].
Our theoretical model demonstrates that the steady-state
distribution is thermal; it further naturally delivers the steady-
state temperature and the value of the critical pump strength,
here cast in terms of the quantity n̄c. We observe that the critical
value n̄c is in agreement with the value determined in Ref. [30]
by means of a mean-field model based on a phenomenological
derivation. [This is visible after considering the definition in
Eq. (10), which gives the critical pump strength value �c after
using Sc = g�c/�a as a function of the critical value n̄c of
Eq. (29).] In Ref. [31] the self-organization threshold was
estimated by means of a kinetic theory based on treating the
cavity field semiclassically, finding a value consistent with our
result.

We remark that the typical concept in second-order phase
transition of spatial domains, whose average size increases
with a power-law behavior as the critical value is approached,
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FIG. 2. (Color online) (a) Order parameter |�| and (b) steady-
state temperature as a function of n̄ and �c (in units of κ). The red
line denotes the value n̄c as a function of �c, as reported in Eq. (29).

becomes now invalid: Their energetic cost scales with the
system size due to the long-range cavity-mediated potential.
This is simply understood as two domains with 〈�〉 = +1
and 〈�〉 = −1 generate fields which interfere destructively,
resulting in a vanishing intracavity photon number. This
example illustrates the nonadditivity of long-range interacting
systems. We now analyze more in detail the behavior of the
magnetization.

B. Phase diagram

The magnetization of our model [Eq. (1)] is intrinsically
related to the spatial order of the atoms within the cavity and
thus determines the properties of the signal at the cavity output.
Its stationary value depends on the various physical quantities,
which can be summarized in terms of the single parameter n̄ in
Eq. (10). The detuning �c, which also enters in the definition of
n̄c, determines the temperature of the steady state; see Eq. (24).

Figure 2(a) displays the phase diagram of the magnetization
as a function of n̄ and �c: The white region is the paramagnetic
phase, the dark region the ferromagnetic one, and the scale
of gray indicates the value of |�|. We note that the lines at
constant �c correspond to constant asymptotic temperatures
and to a well-defined threshold value of n̄c(�c). Following
one such line, the value of |�| is zero for n̄ < n̄c, while
above n̄c it grows monotonically until unity as n̄ → ∞. The

magnetization as a function of n̄ and at �c = −κ is shown in
Fig. 1(c).

Keeping n̄ fixed and varying �c instead consists of varying
the temperature. However, not for all values of n̄ there
is a temperature at which the transition to ferromagnetism
is observed. In fact, if n̄ < min(n̄c) = 1/4, the phase is
paramagnetic for all values of �c. For n̄ > 1/4, instead,
there exists a critical value of �c(n̄) at which the transition
to self-organization occurs. In this case, above threshold the
magnetization monotonically grows with �c. The temperature
of the atoms is shown in Fig. 2(b): Here it is clearly visible that
the temperature is independent on n̄ and is solely a function of
�c. In particular, it reaches a minimum at �c = −κ , as one can
verify using Eq. (24). The corresponding minimal temperature
is kBTmin = �κ/2.

C. Dynamics of the magnetization at steady state

The mapping of the free energy to the Landau model
allows one to draw an analogy between self-organization and
ferromagnetism. Due to the long-range interactions, however,
the symmetry-breaking transition does not occur through
the spatial formation of magnetized domains of increasing
size, rather through the observation of Bragg gratings during
long periods of time, whose mean duration increases as the
pump strength is increased above threshold. This property was
already reported in Refs. [21,30] and is also found in the HMF
[33]. The behavior close to threshold is instead to large extent
unexplored, as it is characterized by large fluctuations of the
cavity field and thus requires a theoretical model that treats
the cavity field as a quantum variable, which our model does.
Our analysis focuses on the statistical properties of these time
intervals and, more generally, of the autocorrelation function
of the magnetization across the transition. In this section
we discuss this temporal behavior by analyzing trajectories
of the magnetization evaluated by means of the SDE as in
Appendix B . We set �c = −κ and N |U |/κ = 0.05.

1. Stationary magnetization for finite N

In order to perform the numerical analysis, we first
benchmark the statistical properties for a finite number of
trajectories. Typical trajectories at the steady state are shown
in Fig. 3 for different values of n̄.

They show �(t), obtained by averaging over the instanta-
neous positions of 50 atoms within the resonator. Fluctuations
about the mean value are visible: Their size increases below
threshold as n̄ is increased and depends on the number of
atoms, as one can see in Fig. 4 (see below). In order to extract
the order parameter from the numerical data, we thus need to
estimate the size of the fluctuations about the mean value as a
function of N . For this purpose we determine the probability
distribution PN (�0) of finding � = �0 at the stationary state,
which we define as

PN (�0) = P0

∫ 1

−1
d�δ(� − �0)Ω(�) exp(−β��cn̄N�2),

(31)

where Ω(�) is given in Eq. (27) and the parameter P0 =
(Z0λ/�)N/Z warrants normalization:

∫ 1
−1 d�0PN (�0) = 1.
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FIG. 3. (Color online) Order parameter as a function of time (in
units of κ−1) at the asymptotics of the dynamics and for different
values of n̄ (see inset). Each trajectory corresponds to a numerical
simulation with N = 50 atoms.

For a given detuning �c this probability distribution depends
on n̄ and on the atom number N . We determine PN (�0) using
our analytical model and performing the integral by means of
the Metropolis algorithm [48].

The results are displayed in Fig. 4 for different atom
numbers N and pumping strengths n̄. The curves clearly show
that the size of the fluctuations about the mean value decrease
with N . We also observe that, for N fixed, the fluctuations
about the mean value increase with n̄ as it approaches the
threshold value from below. For atom numbers of the order
of 50 and larger we verified that PN (�0) converges to the
form exp(−N �4

0/4) for n̄ = n̄c, in agreement with the result
found in the thermodynamic limit. Above threshold, on the
contrary, the distribution exhibits two peaks whose centers
converge towards the asymptotic values of Eq. (28) for large
N and whose widths decrease as n̄ is increased. We compare
these results with the data obtained after integrating the SDE

(circles) and verify the convergence of the numerical results
with increasing N to the predictions at the thermodynamic
limit.

Figure 5(a) displays �(t) as a function of time obtained
by integrating the SDE for N = 20 atoms and n̄ = 0.01 n̄c,
thus well below threshold. The distribution PN (�0) that we
extract after averaging over the time and over 100 trajectories
of this sort is given by the circles in Fig. 5(b). The curve is in
excellent agreement with a Gaussian distribution centered at
�0 = 0 (dashed curve) whose explicit derivation is reported
in Appendix D and which reads

P theo
N (�0) = 1√

2πσ 2
N

exp

(
− �2

0

2σ 2
N

)
, (32)

with

σN = 1/
√

2N. (33)

From this result we identify the width σN with the statistical
uncertainty in determining the value of �0. Figure 5(c)
displays a trajectory �(t) for n̄ = 1.4 n̄c, thus above threshold;
the corresponding distribution PN (�0) is given by the circles in
Fig. 5(d). The trajectory exhibits jumps between the two values
of the Bragg gratings, the duration of the time intervals during
which the atoms are trapped in a Bragg grating determines the
size of the fluctuations about the two peaks of the probability
distribution, and the finite rate at which these jumps occur
is the reason for the nonvanishing value of the probability at
�0 ∼ 0.

2. Autocorrelation function

We now analyze the autocorrelation function for the
magnetization,

C(τ ) = lim
t→∞〈�(t)�(t + τ )〉, (34)

FIG. 4. (Color online) Probability distribution for the order parameter at steady state, PN (�0) as in Eq. (31), for N = 5,8,20 atoms with
�c = −κ and n̄/n̄c = 0.01, 0.7, 1, 1.4 (from left to right). The dots correspond to the probability distribution PN (�0) extracted from numerical
simulations at steady state, performed by means of the SDE. The dashed vertical lines in (d) indicate the asymptotic value �0 = ±�∗ [Eq. (28)]
for n̄ = 1.4 n̄c.
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FIG. 5. (Color online) (Top panels) Magnetization � as a func-
tion of time (in units of κ−1), obtained from a simulation of the SDE
for N = 20, �c = −κ , and n̄ = 0.01 n̄c (a) and n̄ = 1.4 n̄c (c). The
black dashed lines are located at ±σN = ±√

1/(2N ) and indicate the
statistical uncertainty in the determination of the value of �0. Subplots
(b) and (d) display the corresponding probability distribution PN (�0)
obtained after averaging over time and over 100 trajectories �(t)
(circles). The dashed line in (b) is the theoretical prediction in Eq. (32).
The dashed line in (d) corresponds to the distribution obtained by
numerically integrating Eq. (31) using a Metropolis algorithm [48].

which we extract from the trajectories evaluated using the
SDE. Figure 6 displays C(τ ) for different values of n̄. For
all values of the pump strength a fast decaying component is
always present whose temporal width seems to be independent
of n̄. One also notices the contribution of a slowly decaying
component whose decay rate decreases as n̄ increases.

In order to gain insight, we first analyze the autocorrelation
function below threshold for n̄ = 0.01 n̄c. For this case we
can reproduce the numerical result by means of an analytical
model, reported in Appendix D . This model assumes that
the atoms are homogeneously distributed in space and form a
thermal distribution at the temperature determined by Eq. (20),
which corresponds to the stationary solution of the FPE in
Eq. (17) well below threshold [27]. Starting from this state,
their motion is assumed to be ballistic and is thus calculated
after setting n̄ = 0 in Eq. (17). The resulting autocorrelation
function reads

Cfree(τ ) = σ 2
N exp

[−(
τ/τ free

c

)2]
, (35)

where the correlation time is

τ free
c =

√
�β/ωr . (36)

FIG. 6. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 [Eq. (34)] as a function of the time τ (in
units of κ−1) for N = 20 atoms, �c = −κ , and various values of n̄

(see inset). The curves are obtained by determining �(t) with the
numerical data (SDE).

Its excellent agreement with the numerics is visible in Fig. 7.
This result shows that below threshold the fluctuations are
mostly due to thermal motion, while the effect of the cavity
forces, which tend to localize the atoms, is negligible. By
considering the analogy between the different curves in Fig. 6,
we conjecture that thermal fluctuations are responsible for the
short-time behavior of the autocorrelation function.

We now turn to the long-time behavior of the autocorrela-
tion function for increasing values of n̄. Inspection of typical
trajectories close and above threshold, shown in Figs. 3 and
5(c), shows that this is related to the time scales over which the
atomic ensemble forms a Bragg grating. The system can take
on values for the collective parameter � clearly exceeding the
value of σN for times which are orders of magnitude larger than

FIG. 7. (Color online) Autocorrelation function C(τ ) =
limt→∞〈�(t)�(t + τ )〉 as a function of the time τ (in units of κ−1)
for N = 20 and N = 50 atoms (see inset). The circles correspond to
numerical simulations performed with n̄ = 0.01 n̄c and �c = −κ .
The line shows the analytical estimate using Eq. (35).
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the correlation time τc characteristic of thermal fluctuations, as
visible in Fig. 5(c). We call these finite time intervals trapping
times, corresponding to configurations in which (part of) the
atoms are trapped in Bragg gratings.

In order to analyze the statistics of the trapping times, we
first introduce the following criterion: the atoms are forming
a Bragg grating when |�(t)| > σN . This criterion alone,
however, also includes fluctuations that can also happen well
below threshold, as visible in Fig. 5(a). For this reason we
set an infrared cutoff for the trapping times, such that they
shall exceed τ free

c . Herewith, we thus find a trapping time
of length τtrap with starting point t and end point t + τtrap

if |�(t + t ′)| > σN for t ′ ∈ [0,τtrap] and τtrap > 10 τ free
c . It is

important to note that this sets a rather strict criterion on the
trapping times as we explain now. In Fig. 5(c), one can see
that even if the atoms seem to be trapped in a grating, the
order parameter can take on values |�(t)| < σN for times of
the order of τ free

c . We choose to ignore these events when they
are not associated with a sign change of �. We perform the
statistics of the trapping times by evaluating the probability
density Ptrap(τ ) of finding a trapping time of length τ , and then
using this quantity to determine the cumulative distribution
F (τtrap), defined as

F (τtrap) =
∫ ∞

τtrap

dτ ′Ptrap(τ ′). (37)

Distribution F (τtrap) thus gives the probability that the trapping
time is larger than τtrap. Figure 8 displays F (τtrap), as we
extracted it for N = 20 atoms and different values of n̄: It
is clearly visible that the trapping times are shifted towards
higher values as n̄ increases. The distribution exhibits long
tails, which suggests that this dynamics is characterized by
the existence of rare events with very long trapping times.
In order to better understand this behavior, we determine the
mean trapping time 〈τtrap〉n. This is numerically found for a
given interval of time ttot, in which n trapping intervals of
length τ

(i)
trap are counted (i = 1, . . . ,n), and reads

〈τtrap〉n =
n∑

i=1

τ
(i)
trap/n. (38)

In Fig. 8(b) we plot 〈τtrap〉n as a function of the number of
counts for N = 20 and various values of n̄ above threshold.
The mean trapping time 〈τtrap〉n, in particular, seems to
converge to a finite value for sufficiently long integration times.
We argue, however, that this can be an artifact of the finite
integration time ttot, which we choose to be ttot ≈ 106κ−1:
This conjecture is supported by the rather steep decay of
the cumulative distribution at t > 105κ−1 visible in Fig. 8(a).
Hence, our results do not exclude the existence of a power-law
decay of the distribution F (τ ). This discussion clearly shows,
nevertheless, that the trapping times are responsible for the
long tails of the autocorrelation function.

We now study the statistics of the events which lead to
jumps between two Bragg gratings. These events are visible,
for instance, in Fig. 5(c) and are characterized by a time
scale which we now analyze. We denote these finite times
by jumping times. More precisely, we define a jump of time
length τjump as the interval of time [0,τjump] within which
|�(t + t ′)| < σN for t ′ ∈ [0,τjump]. We further impose that

FIG. 8. (Color online) Statistics of the trapping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , and total evolution time ttot ≈ 106κ−1. The curves correspond
to different values of n̄ above threshold (see inset). (a) Cumulative
distribution F (τtrap) for the trapping times [Eq. (37)]. Higher pumping
strengths lead to longer trapping times. Subplot (b) displays the mean
trapping time 〈τtrap〉n [Eq. (38)] as a function of the number of counts
n. The inset shows the values of 〈τtrap〉 as a function of n̄, which we
extrapolate from the curves, like the ones shown in the onset.

at the starting and the end points of the jumps the order
parameter � has a different sign, such that the configuration
has switched, for instance, from an even pattern (� > σN ) to an
odd one (� < −σN ). We identify jump events in Fig. 5(c) with
the green segments. An exception is the event at κt ∼ 3000,
which does not fulfill the criteria we impose and thus does not
qualify. We numerically determine the probability distribution
Pjump(τjump) for the jumping times at a given value of n̄ > n̄c.
Figure 9(a) displays the probability distribution Pjump(τjump)
for n̄ = 1.4 n̄c. We observe that it exhibits the features of
exponential decay with time. Further information is extracted
from the mean jumping time 〈τjump〉n, which we evaluate as

〈τjump〉n =
n∑

i=1

τ
(i)
jump/n, (39)

with τ
(i)
jump the jumping time for the ith jump and i = 1, . . . n.

Figure 9(b) displays 〈τjump〉n for different pumping strengths.
The mean values 〈τjump〉n do not differ much for different
pumping strengths, in agreement with the conjecture that ther-
mal fluctuations are responsible for the short-time behavior of
the autocorrelation function. Nevertheless, we see indications
that the mean jumping time decreases as n̄ increases; thus, at
large pump strengths the atoms reorganize in Bragg gratings
over shorter time scales.

Insight into the dynamics underlying a jump in the order
parameter can be gained by considering the corresponding
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FIG. 9. (Color online) Statistics of the jumping times, evaluated
numerically by averaging over 100 trajectories of N = 20, �c =
−κ , total evolution time ttot ≈ 106κ−1. (a) Probability distribution
Pjump(τjump) for n̄ = 1.4 n̄c. (b) Mean jumping time 〈τjump〉n [Eq. (39)]
as a function of the number of counts n and for several values of n̄

above threshold (see inset).

individual atomic trajectories. A simulation for N = 5 atoms
is shown in Fig. 10(a) for the choice of a pump strength
above threshold n̄ = 1.4 n̄c. At a given instant of time, the
atomic positions are, in general, at distances which are integer
multiples of the cavity wavelength, thus localized either at the
even or the odd sites of the spatial mode function, thus forming
one of the two possible Bragg gratings. When this occurs,
the atoms perform oscillations about these positions. The
amplitude of these oscillations does not remain constant, and
one can observe an effective exchange of mechanical energy
among the atoms. This can lead to a change of the potential
that can untrap atoms. The onset of this behavior seems to be
the precursor of the instability of the whole grating, as one
can observe by comparing these dynamics with the one of the
corresponding order parameter in subplot (b). The oscillations
about the grating minima, moreover, are responsible for the
damped oscillation observed in the autocorrelation function in
Fig. 6 for values of n̄ above threshold.

3. Power spectrum

Complementary information to the temporal behavior of the
autocorrelation function can be gained by studying its Fourier
transform. We thus numerically compute the power spectrum
of �(t), which we define as

S̃(ω) = 〈|�(ω)|2〉, (40)

where

�(ω) =
∫ t

0
dτ exp(−iωτ )�(τ ) (41)

FIG. 10. (Color online) (a) Individual atomic trajectories and (b)
corresponding order parameter as a function of time (in units of
κ−1) for N = 5 atoms, �c = −κ , and n̄ = 1.4 n̄c. The black dashed
horizontal lines in (a) indicate the position of the even sites of the
cavity spatial mode function. The trajectories have been numerically
evaluated taking the stationary state as the initial distribution.

is the Fourier transform of the order parameter. Figure 11
displays the spectrum of the autocorrelation function for
different values of n̄ (a) below and (b) above threshold.

One clearly observes two different kinds of behavior,
depending on whether n̄ is below or above threshold: For
n̄ < n̄c we observe a rather broad spectrum about ω = 0,
whose breadth increases as n̄ approaches the critical value
from below. The emergence of a flat broad structure can
be associated with the creation of (unstable) Bragg gratings
and is related to the broadening of the distribution PN (�0)
visible in Figs. 4(b) and 4(c). Above threshold, for n̄ > n̄c, the
width of the component centered at zero frequency becomes
dramatically narrower and narrows further with n̄, indicating
that the atoms become increasingly localized in a Bragg
pattern. The width of this frequency component is determined
by the inverse of the mean trapping time, namely, the rate at
which jumps between different Bragg gratings occur.

Above threshold sidebands of the central peak appear,
which correspond to the damped oscillations of the autocor-
relation function. The central frequency of these sidebands
increases for higher pumping strength, while their width
decreases. We understand these features as the onset of oscil-
lations about the minima of the Bragg grating, which one can
also observe in the trajectories of Fig. 10(a). This conjecture is
supported by a simple calculation of the oscillation frequency
as a function of n̄, assuming that the potential about their
minima is approximated by harmonic oscillators. Even though
the estimated frequency is higher, this estimate qualitatively
reproduces the dependence of the sidebands’ central frequency
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FIG. 11. (Color online) Spectrum of the autocorrelation function
S̃(ω) [Eq. (40)] and in arbitrary units, as a function of the frequency
(in units of κ) for different n̄, and evaluated from the numerical data of
�(t) for 100 trajectories of N = 50 atoms, �c = −κ , and evolution
time ttot = 104κ−1. The subplots show the spectrum for n̄ below (a)
and above (b) threshold (see insets).

with n̄ above threshold, as visible in Fig. 12. This plot further
shows that the behavior between the two parameter regions,
below and above threshold, are qualitatively very different. The
results of our simulations suggest that the transition in Fig. 12
at n̄c becomes sharper as the atom number is increased.

IV. PHOTON STATISTICS AND COHERENCE OF THE
FIELD AT THE CAVITY OUTPUT

Since the photons scattered by the atoms into the resonator
carry the information about the density of the atoms within the
cavity spatial mode function, then detection of the light at the
cavity output allows to monitor the state of the atoms during
the dynamics. This is an established method in experiments
with atoms and ions in cavities [22,49–52], and it is at the
basis of proposals for detecting nondestructively the quantum
phase of ultracold atoms [53,54].

Formally, the field at the cavity output âout(t) is directly
proportional to the intracavity field â via the relation âout(t) =√

2κâ − âin(t), where âin(t) is the input field, with zero mean
value and [âin(t),âin(t ′)†] = δ(t − t ′) [55]. The intracavity field
is, in turn, given by the solution of the coupled atoms-field
dynamics, and under the assumption of time-scales separation
it can be cast in the form given in Eq. (7), which expresses an
effective operator resulting from the coarse-grained dynamics.
Equation (7) shows that in leading order the intracavity field is

FIG. 12. (Color online) Contour plot of the spectrum of the
autocorrelation function S̃(ω) [Eq. (40)] as a function of n̄ and of
the frequency (in units of κ). The other parameters are the same as
in Fig. 11. The red dashed line corresponds to an estimate deep in
the organized regime assuming the atoms are trapped in a harmonic
potential with frequency ω̃ = √

2ωrκn̄/n̄c.

proportional to the magnetization �(t); therefore, the features
of the magnetization we identified thus far shall be visible
also in the photon statistics at the cavity output. In addition,
there is a retardation component, which gives rise to cooling
and that in our parameter regime is a small correction. We
now report the analysis of the intracavity photon number,
and of the first- and second-order correlation functions as a
function of the pump strength n̄. Throughout this analysis
we consider that the system has reached the stationary state
at �c = −κ , corresponding to the minimum temperature of
the atoms. Analytically, all averages are taken assuming the
atomic distribution is stationary. Numerically, this consists of
assuming that the trajectories are evolved starting from the
stationary distribution.

A. Intracavity photon number

The intensity of the emitted light is proportional to the mean
intracavity photon number

ncav = lim
t→∞〈â†(t)â(t)〉. (42)

Figure 13(a) displays ncav as a function of n̄ for different atom
numbers. The circles correspond to the mean photon number
evaluated by numerical simulations using Eq. (7), whereas the
dot-dashed lines show the adiabatic solution, Eq. (9), evaluated
with the steady-state solution of Eq. (23). For n̄ < n̄c the mean
photon number is below unity: Therefore, in this regime shot
noise is dominant. Above threshold, ncav rapidly increases with
N and n̄. For the parameters we choose its value is essentially
determined by the adiabatic component of the cavity field,
while the contribution due to retardation is negligible (it is
less than 0.1%). Thus, the intracavity photon number provides
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FIG. 13. (Color online) (a) The mean intracavity photon number
ncav at steady state is displayed as a function of the pump strength
n̄ (in units of n̄c) and for different atom numbers (see inset). The
circles correspond to the numerical data obtained by using Eq. (7)
and integrating the SDE. The dot-dashed lines correspond to the
adiabatic limit ncav|ad = Nn̄ limt→∞〈�(t)2〉, where the average is
performed over the stationary state in Eq. (23). (b) Contour plot of
ncav|ad as a function of N and n̄. The color code is in logarithmic scale.
The horizontal lines correspond to the dot-dashed curves shown in
subplot (a).

direct access to the autocorrelation function at zero-time delay,
〈�2〉. The numerical data, represented by the circles, follow
very closely the curves corresponding to the adiabatic solution
ncav|ad = Nn̄ limt→∞〈�(t)2〉. The difference between the two
curves is indeed small and due to the effect of the dynamical
Stark shift scaling with the parameter U , which in the numerics
is systematically taken into account. This nonlinear shift of the
cavity frequency is maximum when the atoms are localized in
a grating and for the chosen sign (U < 0) it tends to increase
the value of ncav.

Figure 13(b) displays the contour plot of ncav as a function
of n̄ and N using the adiabatic solution [Eq. (9)] and the
steady-state solution in Eq. (23). We observe that well below
threshold ncav depends solely on n̄ and is independent of N . In
this regime, in fact, the atoms are homogeneously distributed;
there is no collective effect in photon scattering and thus no
superradiance. Using the assumption of a homogeneous spatial
distribution and n̄ � n̄c we can derive an analytical estimate
of ncav which is independent of N (see Appendix D ):

ncav|n̄�n̄c
≈ n̄/2.

As n̄ approaches and then exceeds the threshold value, instead,
the dependence of the mean intracavity photon number on N

becomes evident.

B. Spectrum of the emitted light

We now turn to the first-order correlation function at steady
state, g(1)(τ ) = limt→∞〈â†(t + τ )â(t)〉. At zero-time delay,
τ = 0, it corresponds to the intracavity photon number. For
finite delays τ it is proportional to the power spectrum of the
autocorrelation function. In addition, it contains the nonlinear
contribution of the cavity frequency shift and the retarded
component of the cavity field. We discuss here the spectrum
of g(1)(τ ),

S(ω) = lim
t→∞

1

2π

∫ ∞

−∞
dτe−iωτ 〈â†(t + τ )â(t)〉, (43)

which we then compare with the result obtained for the power
spectrum of the magnetization. The spectrum S(ω) is displayed
in Fig. 14 for N = 50 atoms and different values of the
pumping strength.

The behavior is very similar to the spectrum of the
autocorrelation function of the magnetization in Fig. 11. Below
threshold [Fig. 14(a)] we observe a broad frequency spectrum,
while above threshold [Fig. 14(b)] we notice the emergence
of sidebands whose frequency increases with n̄. In general,
the spectrum of the emitted light has the same form as the
power spectrum of the magnetization and thus allows to extract
information about the thermodynamics of self-organization.
The contour plot is very similar to the corresponding one
of the autocorrelation function, Fig. 12. A distinct feature is
found in a small asymmetry between the red (ω < ωL) and the
blue (ω > ωL) sidebands in Fig. 14(b). The asymmetry seems
to be due to the contribution of the diabatic component of
the cavity field, given in Eq. (8). Remarkably, the spectrum
qualitatively agrees with the one observed in experiments
analyzing self-organization of ultracold atoms in single-mode
standing-wave resonators [52], thus outside the regime of
validity of the semiclassical treatment. In particular, sideband
asymmetry above threshold was also reported in Ref. [52].

C. Intensity-intensity correlations

The intracavity photon number below and close to threshold
is smaller than unity, and is thus characterized by large photon
fluctuations. We now study the properties of these fluctuations
by determining the intensity-intensity correlation function,

g(2)(τ ) = lim
t→∞

〈â†(t)â†(t + τ )â(t + τ )â(t)〉
〈â†(t)â(t)〉2

. (44)

with t → ∞ indicating the steady-state, and focus on its value
at zero-time delay, g(2)(0), as a function of n̄ for gaining
insight in the photon statistics. Figure 15(a) displays the
correlation function g(2)(0) as a function of n̄ and for different
atom numbers. The circles show g(2)(0) extracted from
numerical simulations using Eq. (7), while the dot-dashed lines
correspond to the adiabatic solution g(2)(0)|ad = 〈�4〉/〈�2〉2

using the steady-state solution in Eq. (23). Both curves are in
good agreement. We observe a crossover from g(2)(0) ≈ 3 to
g(2)(0) ≈ 1 when tuning the pumping strength from below to
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FIG. 14. (Color online) Spectrum of the intracavity field inten-
sity S(ω) [Eq. (43)] and in arbitrary units at steady state. In (a) the
curves correspond to values of n̄ � n̄c and in (b) they correspond
to values of n̄ > n̄c. The data have been numerically evaluated for
N = 50 atoms and over the interval of time (−104 : 1 : 104) κ−1.

above the threshold, which sharpens as N grows. The value
above threshold is associated with coherent radiation, which is
what one expects when the atoms are locked in a Bragg grating.
The behavior below threshold can be reproduced by means of
an analytical model valid for n̄ � n̄c, in the limit in which the
atoms form a homogeneous distribution. In Appendix D we
show that in this limit we can write

g(2)(0) = 3 − 3/(2N ), (45)

which asymptotically tends to 3 as N increases. This result
qualitatively agrees with experimental measurements with
ultracold atoms performed below threshold [52]. While this
value is also found for squeezed states, in our case we could not
find any squeezing in the field quadratures and thus attribute
the behavior of g(2)(0) below threshold to thermal fluctuations.

Figure 15(b) displays g(2)(0) for different pumping
strengths and number of atoms, evaluated using the adiabatic
solution g(2)(0) = 〈�4〉/〈�2〉2 and the steady state in Eq. (23).
The dashed horizontal cuts correspond to the dot-dashed

FIG. 15. (Color online) (a) The intensity-intensity correlation at
zero-time delay g(2)(0) [Eq. (44)] is shown as a function of the
pump strength n̄ (in units of n̄c) and for different atom numbers
N (see inset). The circles correspond to the data extracted from
numerical simulations, the dot-dashed lines are evaluated using the
steady state in Eq. (23) and the adiabatic solution, where the field
is proportional to the instantaneous value of the magnetization:
g(2)(0)|ad = 〈�4〉/〈�2〉2. (b) Contour plot of the adiabatic component
of the intensity-intensity correlation function at zero-time delay
g(2)(0)|ad vs n̄ and N . The horizontal cuts correspond to the dot-dashed
lines in subplot (a).

curves shown in subplot (a). One clearly observes the crossover
from g(2)(0) ≈ 3 to g(2)(0) ≈ 1 when n̄ exceeds n̄c, while the
transition sharpens for increasing atom numbers.

V. CONCLUSIONS

Atoms can spontaneously form spatially ordered structures
in optical resonators when they are transversally driven by
lasers. In this paper we have characterized the stationary
solution, which emerges from the interplay between the
coherent dynamics due to scattering of laser photons into the
resonator and the incoherent effects associated with photon
losses due to cavity decay. We assumed that these dynamics
are characterized by a time-scale separation, such that the
cavity field relaxes on a faster time scale to a local steady
state depending on the atomic density. This assumption is
valid when the cavity loss rate κ exceeds the recoil energy
ωr scaling the mechanical effects of light, and it is fulfilled
in several existing experiments [17,22,24]. Retardation effects
are small, but important in order to establish the stationary
state.
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Starting from a FPE, which has been derived by means of
an ab initio theoretical treatment [27], we have shown that the
stationary state is thermal, with a temperature that is solely
determined by the detuning between cavity and laser. From
this result, we could determine the free energy and thus show
that atomic self-organization in a standing-wave cavity mode
is a second-order transition of Landau type. Our model allows
us to determine the phase diagram for the self-organization
transition and delivers the critical value of the pump strength in
a self-consistent way. This value is in agreement with previous
estimates [30,31]. An interesting further step is to connect this
theory with quantum-field theoretical models which analyze
self-organization in the ultracold regime [32,45,56], thus
extending the validity of our model to the regime in which
quantum fluctuations in the atomic motion cannot be treated
within a semiclassical model.

We further remark that, while our analysis focuses on a one-
dimensional model, we expect that from our predictions we can
extrapolate the stationary behavior in two spatial dimensions.
This can be calculated by means of a straightforward extension
of the treatment in Ref. [27] to two dimensions. Differing from
one dimension, in the symmetry-broken phase the atoms will
form a checkerboard pattern as found in Ref. [23], as long
as the atomic gas is uniformly illuminated by the laser and
the coupling with the resonator can be treated in the paraxial
approximation. The effect of the dimensionality can modify
the specific form of friction and diffusion. Moreover, in two
dimensions the effect of correlations is expected to be more
relevant, so that the statistical properties will be modified.

Photodetection of the emitted light allows one to reveal the
thermodynamic properties of the atoms. Our results show that
they exhibit several remarkable analogies with experimental
results obtained with ultracold atomic ensembles inside of
resonators [52]. While our theory is not generally applicable
to these systems, it is not surprising that the field at the cavity
output does not depend on the presence (or absence) of matter-
wave coherence, as it solely depends on the atomic density.
Nevertheless, it would be interesting to identify observables
for the cavity field output, if possible, that provide information
about quantum coherent properties of matter, in the spirit of
matter-wave homodyne detection discussed in Ref. [57]. This
could be possible when the cavity spectroscopically resolves
the many-body excitations, as is verified in the parameter
regime of the experimental setup reported in Ref. [58].

This work is the first of a series analyzing the effect of the
long-range cavity-mediated interaction. Here we focused on
the dynamics at steady state. In Ref. [35] we will compare
the results here reported with a mean-field solution, which
is systematically derived from this treatment after making a
mean-field ansatz, and discuss its validity in the perspective of
developing a BBGKY hierarchy for self-organization in optical
resonators [33]. In Ref. [34] we will analyze the dynamics of
the full distribution after quenches across the phase transition,
expanding on the results presented in Ref. [29].
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APPENDIX A: PARAMETERS OF THE
FOKKER-PLANCK EQUATION

In this Appendix we give the explicit form of the parameters
appearing in the coefficients of Eq. (12):

δF = NU�

�′
c

cos(kxi), (A1)

δ
 = cos(kxj )
NU�

�′
c

3�′2
c − κ2

�′2
c + κ2

+ cos(kxi)
NU�

�′
c

+ 4 cos(kxi) cos(kxj )
(NU�)2

�′2
c + κ2

,

(A2)

δη = (2NU�)2

�′2
c + κ2

cos(kxi) cos(kxj )

+ 2NU��′
c

−�′2
c + κ2

{
3κ2 − �′2

c

�′2
c + κ2

cos(kxj ) − cos(kxi)

}
, (A3)

δD = 4NU�

�′2
c + κ2

cos(kxj )[�′
c + cos(kxi)NU�]. (A4)

The diffusion coefficient for the spontaneous decay term reads

Dsp(xi) = (�k)2

{
N2S2�2

�′2
c + κ2

[sin2(kxi) + u2 cos2(kxi)]

+ su2

[
2NS��′

c

�′2
c + κ2

cos(kxi) + s

]}
,

where s = �/g and u2 determines the momentum diffusion
due to spontaneous emission recoils projected on the cavity
axis (dipole pattern of radiation).

Finally, the correction scaling with NU/κ in Eq. (17) reads

L1f = 2�k�c�
∑

i

sin(kxi)

[
�2

c − κ2

�2
c + κ2

B + � cos(kxi)

]
∂pi

f

(A5)

and is systematically taken into account in our calculations.

APPENDIX B: STOCHASTIC DIFFERENTIAL EQUATIONS

The FPE given in Eq. (17) for |NU | � |�c| can be
simulated by SDEs, which in our case read

dxj = pj

m
dt + dXj , (B1)

dpj = �k
2S2�c

�2
c + κ2

sin(kxj )

[
N∑

i=1

cos(kxi)

]
δUdt

+ 8ωrS
2�cκ(

�2
c + κ2

)2 sin(kxj )

[
N∑

i=1

sin(kxi)pi

]
dt + dPj ,

(B2)
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with

δU = 1 + NU

�c

[
�2

c − κ2

�2
c + κ2

B + � cos(kxj )

]
, (B3)

where j = 1, . . . ,N labels the atoms and dPj denote the
momentum noise terms, which are simulated by means of
Wiener processes. In particular, 〈dPj 〉 = 0 and 〈dPidPj 〉 =
2Dijdt , with

Dij = (�k)2S2 κ

�2
c + κ2

sin(kxi) sin(kxj ) (B4)

the element of the diffusion matrix when spontaneous emission
is neglected.

For �c 
= −κ , we additionally take into account position
noise dXi , which shows cross-correlations with momentum
diffusion 〈dPjdX�〉 = ηj�dt , with

ηj� = 2�ωrS
2 sin(kxj ) sin(kx�)

κ2 − �2
c(

�2
c + κ2

)2 . (B5)

These terms can only be simulated when adding terms as
〈dXidXj 〉 
= 0 to the FPE.

For the numerical simulations, we use the Heun method
[59], which is a second-order Runge-Kutta scheme with a
Euler predictor.

APPENDIX C: DETERMINATION OF THE FREE ENERGY

The equilibrium state reads

f (x, p) = 1

Z�N
exp(−βH ), (C1)

where Z is the partition function, � is the unit phase space
volume, and Hamiltonian H is given in Eq. (18). The canonical
partition function Z takes the form

Z =
(

λ

�

)N ∫ 1

−1
d�Ω(�)

∫ ∞

−∞
dp1 · · ·

∫ ∞

−∞
dpN exp(−βH )

=
(

Z0λ

�

)N ∫ 1

−1
d�Ω(�) exp(−β��cn̄N�2), (C2)

with Z0 = √
2mπ/β and

Ω(�) = N

2π

∫ ∞

−∞
dω exp (iωN�)J0(ω)N, (C3)

where Jn(w) = 1/(inλ)
∫ λ

0 dx cos(nkx) exp[iω cos(kx)] is the
nth-order Bessel function [46]. In order to compute Eq. (C3),
we rewrite it as

Ω(�) = N

2π

∫ ∞

−∞
dω exp [Nh(ω)], (C4)

where we introduced the function

h(ω) = iω� + ln [J0(ω)]. (C5)

We can now compute the integral in Eq. (C4) using the method
of steepest descent. For this purpose, we derive the stationary
condition for Eq. (C5). This reads

i� − J1(ω0)

J0(ω0)
= 0,

which we can rewrite as

� = q(γ0) = I1(γ0)

I0(γ0)
(C6)

after defining ω0 = iγ0 and using that J1(ω0)
J0(ω0) = i

I1(γ0)
I0(γ0) . The

function q : R → (−1,1) with y �→ I1(y)
I0(y) is bijective, such that

there is a unique solution satisfying the equation

γ0 = q−1(�). (C7)

With the method of steepest descent, we get

Ω(�) ∼ N

2π

√
2π

N |h′′(ω0)| exp[Nh(ω0)]

=
√

N

2π
C(�) exp(N{ln[I0(q−1(�))]−q−1(�)�}),

(C8)

with

C(�) =
∣∣∣∣�2 − I0(q−1(�)) + I2(q−1(�))

2I0(q−1(�))

∣∣∣∣
− 1

2

.

Using Eq. (C8) in Eq. (C2), at leading order in N we can cast
the canonical partition function into the form

Z =
(

Z0λ

�

)N ∫ 1

−1
d�

√
N

2π
C(�) exp[−βNF(�)],

where F(�) is the free energy per particle,

β[F(�) − F0] = β��cn̄�2 + q−1(�)� − ln[I0(q−1(�))],

(C9)

and −βNF0 = N ln(Z0λ/�). After performing a Taylor
expansion of Eq. (C9) for small values of the order parameter,
close to � = 0, we obtain

β[F(�) − F0] ≈ (1 − n̄/n̄c)�2 + 1
4�4, (C10)

which shows that close to the instability the free energy can be
cast into the form of a Landau potential [47]. This shows that
the system undergoes, in the considered limit, a second-order
phase transition at the critical value n̄ = n̄c with

n̄c = κ2 + �2
c

4�2
c

. (C11)

We use the method of steepest descent to minimize F(�) in
Eq. (C9) and find that the free energy is stationary if the order
parameter solves the equation

� = q

(
2

n̄

n̄c

�

)
. (C12)

APPENDIX D: ANALYTICAL ESTIMATES

Several quantities of relevance can be analytically deter-
mined in the limit of small pumping strength, specifically
when n̄ � n̄c. In this limit we assume that the atoms move
ballistically and their spatial distribution is homogeneous. The
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steady state then reads

fs(x, p) = 1

λN

(
β

2πm

)N/2

exp

(
−β

∑
i

p2
i

2m

)
,

which is a homogeneous distribution for the atoms, while the
momentum distribution is thermal with β defined in Eq. (20).
The mean value of the order parameter for this distribution
vanishes 〈�〉 = 0, while fluctuations scale as

〈�2〉 =
∫

dx
∫

d pfs(x, p)�2 = 1

2N
. (D1)

Here we used that the cross terms in �2 =∑
i,j cos(kxi) cos(kxj )/(N2) vanish for a homogeneous

distribution. For the standard deviation �� =
(〈�2〉 − 〈�〉2)1/2 we thus find

�� =
√

1

2N
, (D2)

which shows that the width ��0 for the distribution function
PN (�0) in Eq. (31) decreases with N−1/2 for very low
pumping strengths. We checked that for n̄ � n̄c the Gaussian
assumption is a good approximation for low values of |�0|
and sufficiently large atom number. This result is reported in
Eq. (32).

In Sec. IV cavity field properties such as mean photon
number 〈â†â〉 and intensity-intensity correlations at zero-time
delay g(2)(0) are discussed. By adiabatically eliminating the
cavity field, i.e., using Eq. (9), and neglecting the dynamical
Stark shift, we can give the following estimate for the mean
photon number

〈â†â〉 = Nn̄〈�2〉 = n̄/2 = n̄c

2

n̄

n̄c

(D3)

under the assumption of a homogeneous spatial distribution.
As long as the spatial distribution remains homogeneous,
the mean photon number thus scales with the ratio n̄/n̄c

independent on the atom number N . This result is discussed

in Sec. IV A and gets evident in Fig. 13(b). Under the same
conditions, far below threshold, we get

〈�4〉 =
∫

dx
∫

d pfs(x, p)

[∑
i

cos(kxi)/N

]4

= 1

N4

[
N

I(4)

2π
+ 3N (N − 1)

I 2
(2)

(2π )2

]
= 3(N − 1)

8N3
,

(D4)

with I(2) = ∫ 2π

0 dx̃ cos2(x̃) and I(4) = ∫ 2π

0 dx̃ cos4(x̃). For the
intensity-intensity correlations at zero-time delay

g(2)(0) = 〈�4〉/〈�2〉2, (D5)

using Eqs. (D1) and (D4), we thus find

lim
n̄→0

g(2)(0) = 3 − 3

2N
. (D6)

This function tends towards the value of 3 for increasing atom
numbers, as can be seen in Fig. 15.

When assuming ballistic expansion, which is justified
whenever the forces on the atoms due to cavity backaction are
small, i.e., far below threshold, we can also derive an analytical
estimate for the correlation function C(τ ) = 〈�(t)�(t + τ )〉
at steady state,

lim
n̄→0

〈�(t)�(t + τ )〉

= 〈�2〉t
(

β

2πm

)1/2 ∫
dp exp

(
−β

p2

2m

)
cos

(
k

p

m
τ
)

= 〈�2〉t exp

(
− ωr

�β
τ 2

)
= 〈�2〉t exp

[−(
τ/τ free

c

)2]
, (D7)

with τ free
c = √

(�β/ωr ), where β is the inverse temperature
defined in Eq. (20) and 〈�2〉t = 1

2N
according to Eq. (D1).

The result is reported in Eq. (35).
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