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Optics near a hyperbolic defect
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We examine the properties of a family of defects called hyperbolic disclinations, and discuss their possible use
for the design of perfect optical absorbers. In hyperbolic metamaterials, the ratio of ordinary and extraordinary
permittivities is negative, which leads to an effective metric of Kleinian signature (two timelike coordinates).
Considering a disclination in the hyperbolic nematic host matrix, we show that the timelike geodesics are Poinsot
spirals, i.e., whatever the impact parameter of an incident light beam, it is confined and whirls about the defect
core. The trapping effect does not require light to be coherent. This property also remains in the wave formalism,
which may be the sign for many potential applications.
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Since the pioneering works of Veselago [1], media exhibit-
ing negative permittivities (better known as metamaterials)
led to an unprecedented control of light. Cloaking the
electromagnetic field, imaging objects beyond the diffraction
limit (perfect lens) or manipulating the near field are only a
few examples of the possibilities offered by these artificial
media [2]. Besides these technological applications, research
on metamaterials also benefits fundamental physics: quite
unexpectedly, it provides tools to investigate optical analogs
of black holes [3,4]. Recently the advent of hyperbolic (or
indefinite) metamaterials represented another step forward in
light control (for a review, see Ref. [5]) as well as in testing
high energy physics (metric signature transitions [6]). Such
media exhibit effective permittivities of opposite signs and
can be made from a host nematic liquid crystal doped with
coated core-shell nanospheres [7].

In this work we will investigate the propagation of light in
a hyperbolic liquid crystal endowed with a linear defect called
disclination. The hyperbolic behavior modifies the regular
conical geometry around the disclination, leading to a family
of topological defects: the hyperbolic disclination. The study
of null geodesics shows that the effective metric induced by
the defect has a dramatic influence on light propagation: rays
are totally trapped by the disclination, regardless of the impact
parameter. Then, as the geometry of hyperbolic disclination
was never investigated, some of its general properties such as
the group of associated space-time isometries are examined.
Finally, the standpoint of wave optics is used to study

*On leave from Departamento de Matemática Universidade Federal
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hyperbolic disclinations and their relevance for the design of
optical absorbers is briefly discussed.

In practice, the hyperbolic medium can be made of an host
nematic liquid crystal containing an uniform distribution of
coated core-shell spheres (polaritonic core and semiconductor
shell) and submitted to an external electric field [7]. For a
planar anchoring, the director field is orthoradial, such that the
uniaxial permittivity tensor is given by

ε = εo r̂ ⊗ r̂ + εe

(
1

r2
φ̂ ⊗ φ̂

)
+ εoẑ ⊗ ẑ, (1)

where εo denotes the ordinary permittivity, εe denotes the
extraordinary permittivity, and r̂ ,φ̂,ẑ stand, respectively, for
the three unit vectors of the cylindrical coordinate basis.
Uniaxial crystals support two eigenmodes: the ordinary mode
that experiences the medium as an isotropic dielectric with
permittivity εo, and the extraordinary mode that experiences
an anisotropic refractive index. Extraordinary rays obey a
hyperbolic dispersion relation [7]:

k2
⊥

εo

+ k2
‖

εe

= ω2

c2
. (2)

Depending on incident angle of light, either εo or εe can be
negative (magnetic permeability remains equal to unity). In the
remainder we will restrict ourselves to the extraordinary light,
which is polarized in the plane defined by the wave vector
k and the director [8]. The director field exhibits cylindrical
symmetry, as happens for nematics confined inside a capillary
tube (axis z), and light beams are shot in planes of constant
height. Then, using the formulation of Fermat principle in
terms of light geodesics in a Riemannian curved geometry, the
metric experienced by light in the vicinity of a disclination
(with unit topological charge) is given by [9]

ds2 = −c2dt2 + εodr2 + εer
2dφ2 + εodz2. (3)
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Such a configuration is carried out with hometropic anchoring
at the boundaries. In the following, since we are interested
in the extraordinary ray propagating in z = const. planes, we
will omit the z component in the effective metric from now on.
Assuming for example that εo ≥ 0 and thus εe ≤ 0, one can
rescale the radial coordinate by ρ = √

εor such that

ds2 = −c2dt2 + dρ2 + α2ρ2dφ2. (4)

The third term being negative, this metric corresponds to a
disclination with a defect parameter α2 = εe/εo = (iγ )2 ≤ 0,
or equivalently to a disclination with hyperbolic (imaginary)
deficit angle i × 2πγ . Note also that this metric is not valid
at ρ = 0 and an ultraviolet cutoff is required at small radii
because of the core structure of the topological defect [10].
Equation (4) can be recast into a canonical form by the
coordinate transformation X = ρ cosh γφ and Y = ρ sinh γφ:

ds2 = −c2dt2 + dX2 − dY 2. (5)

The unusual signature (−, + ,−) is known as a Kleinian signa-
ture (after pioneering works by Klein) and (5) corresponds to
an ultrahyperbolic or Plücker geometry [11]. The coordinate
Y (or equivalently φ) behaves as a “pseudotime coordinate.”
Only a few theoretical investigations for such geometry have
been made, and, to the best of our knowledge, these were
limited to the context of quantum gravity [12,13]. The metric
signature transition between ordinary Minkowski space-time
and an effectively Kleinian space-time has been discussed from
the point of view of metamaterials in [6,14].

In the geometrical optics approximation, the trajectories
followed by light are the null geodesics of the hyperbolic
metric and they are determined by

d2xμ

dλ2
+ 
μ

νσ

dxν

dλ

dxσ

dλ
= 0, (6)

where the 
μ
νσ are the affine connections (here the Christoffel

symbols of second kind) and λ is an affine parameter. Only
three Christoffel symbols do not vanish: 


ρ
φφ = γ 2ρ, 


φ
ρφ =



φ
φρ = 1

ρ
. Substituting into the geodesic equations (6), one is

left with three independent equations:

dt

dλ
= κ, (7)

φ̈ + 2

ρ
ρ̇ φ̇ = 0, (8)

ρ̈ + γ 2ρ φ̇2 = 0, (9)

where κ is a real number and the dot notation stands for a
derivative with respect to λ. The second equation is equivalent
to the conservation of angular momentum for a unit mass
and integrates straightforwardly into ρ2φ̇ = L. Instead of
integrating (9), one uses directly a first integral of motion,
obtained from the line element. As light follows null geodesics
of effective space-time, it comes out

0 = gμνẋ
μẋν = −κ2 + ρ̇2 − γ 2ρ2φ̇2. (10)

Substitution into (9) leads to

1

2
ρ̇2 − γ 2 L2

2ρ2
= κ2

2
= Ẽ ≥ 0. (11)

This equation can be interpreted as the total energy of a
unit mass particle moving radially in an effective power-law
potential. Thus, the hyperbolic defect generates an attractive
force towards the defect:

Fd = −γ 2 L2

ρ3
, (12)

which can be understood a centripetal force in three dimen-
sions. Application of Bertrand’s theorem shows that light paths
are generally not closed for such a geometry.

Assuming that Ẽ �= 0, solutions of geodesic equations are
obtained as Poinsot spirals according to

ρ(φ) = − ρ0

sinh γφ
if φ ≥ 0 (13)

= ρ0

sinh γφ
if φ ≤ 0, (14)

where ρ0 = 1/

√
2Ẽ

γ 2L2 . In Fig. 1 a family of curves correspond-
ing to (13) is plotted. Any ray incoming onto the defect with
impact parameter ρ0/γ spirals around the asymptotic point
ρ = 0. The smaller the value of the parameter γ , the more
important the effect, hence 1/γ can be understood as the
whirling strength (or vorticity) of the defect.

Due to the hyperbolic geometry, the group of isometries
preserving the Plücker line element differs from the usual
Poincaré group. Besides usual translations and t-X boost, one
finds two new kinds of transformations. The first one is given
by

ct ′ = ct, (15)

X′ = 

(
X − v

c
Y

)
, (16)

Y ′ = 

(
−v

c
X + Y

)
, (17)

where 
 = (1 − v2/c2)−1/2 is analog to the usual Lorentz
factor, and which implies that the parameter v is bounded by
c. This is similar to a space-time rotation (or boost) between
Y and X, the rapidity being given by � = arctanh(v/c). The
second kind of transformation is given by

ct ′ = 
̃
(
ct + u

c
Y

)
, (18)

X′ = X, (19)

Y ′ = 
̃(−ut + Y ), (20)

where 
̃ = (1 + v2/c2)−1/2. This is a rotation between two
timelike coordinates t and Y , the angle being defined by � =
arctan(u/c). In this case, the requirement for 
̃ to be defined
does set any limit on u. For Kleinian space-times, the set
of transformations leaving (5) unchanged is a six-parameter
group which includes five kinds of transformations: the three
space and time translations, one regular boost (between t and
space coordinate X), but there appears also one pseudoboost
(between pseudotime Y and X) and one time rotation (between
time t and pseudotime Y ).

Y being looked upon as a pseudotime coordinate does not
threaten causality, as it arises from the effective geometry
treatment of the material. However, classical systems are now
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FIG. 1. (Color online) Left: Variations of the Poinsot spiral (positive sign) with respect to parameter ρ0 (γ = 0.5). Right: Variations of
the Poinsot spiral (positive sign) with respect to whirling parameter γ (ρ0 = 2). Solutions corresponding to the minus sign are deduced by a
rotation of 180◦.

extensively used to investigate their high-energy counterparts
(for classical optics, see for example [3,15]), such that the
question of causality cannot be circumvented when consider-
ing true metrics with Kleinian signature. In particular, do the
null geodesics (13) and (14) preserve causality? Causality is
preserved when the sign of time interval between two events
is preserved under the elements of the Poincaré group. In
the case of Plücker geometry, this is true for regular boosts,
space rotations and boosts, and it is obviously verified for
pseudoboosts. Considering the time rotation (21) and (20),
time intervals are related each other by

dt ′ = 
̃dt

(
1 + u

c2

dY

dt

)
. (21)

Hence, causality is preserved independently of values taken
by u (the unbounded parameter) for events such that when
dY = 0, that is 0 = sinh (γφ)dρ + ργ cosh (γφ)dφ, which
is satisfied by both solutions (13) and (14). In other words,
causality is preserved for all events on null geodesics in the
Plücker geometry.

FIG. 2. (Color online) Left: Conical structure of the hyperbolic
dispersion relation. Right: Plot of the dispersion relation showing a
zone of forbidden wave number.

Let us now examine the problem of light propagation
in the framework of wave optics [16]. In the scalar wave
approximation, light wave dynamics is ruled by the covariant
d’Alembert equation [17]

∇μ∇μ� = 1√−g
∂μ

(√−ggμν∂ν�
) = 0, (22)

where � is the wave function, gμν is the metric in contravariant
form, and g = det (gμν). Assuming that the dependency with
respect to t is harmonic and expressing the operator in terms
of variables X and Y (wave vector has a null z component),
this becomes (

∂2�

∂Y 2
− ∂2�

∂X2

)
− ω2

c2
� = 0, (23)

where ω is the angular frequency. The four-wave vector can be
written in contravariant components as Kμ = (ω/c,k,�/c,0)
and solutions of (23) are linear combinations of plane waves
of the form

�(X,Y,t) = �0 exp (ikμxμ) (24)

= �0 exp {i[kX − (�/c)Y − ωt]}, (25)

which obey the dispersion relation

ω2 = c2k2 − �2. (26)

This dispersion relation presents a forbidden band as occurs
for low-frequency phonon polaritons [18] (Fig. 2).

In cylindrical coordinates (used by an external observer),
the d’Alembert equation writes as

−∂2
t � + 1

ρ
∂ρ(ρ∂ρ�) − 1

γ 2ρ2
∂2
φ� = 0. (27)
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Performing a Jacobi-Anger expansion from (25) leads to seek
solutions of the form

�(t,ρ,φ) = e−iωt

∞∑
l=0

alRl(ρ)e−lφ, (28)

where al are constants. Note that, in principle, the sum
over l should run from −∞ to +∞, but as hyperbolic
materials behave as damping plasmas in the angular direction,
whirling waves are always evanescent and therefore al = 0
∀l < 0, or equivalently 0 ≤ l ≤ +∞. Substituting (28) into the
d’Alembert wave equation, one is left with Bessel’s equation
of order l/γ :

ρ2 d2Rl

dρ2
+ ρ

dRl

dρ
+

(
ρ2ω2 − l2

γ 2

)
Rl = 0. (29)

Solutions to this differential equation are Bessel’s functions of
fractional order:

Rl(ωρ) = c1Jl/γ (ωρ) + c2J−l/γ (ωρ), (30)

where

Jl/γ (ωρ) =
∞∑

p=0

(−1)p

k!(k + 1 + l/γ )!

(ωρ

2

)2p+l/γ

. (31)

Since Eq. (30) considers both ±l/γ and since l � 0 we
substitute |γ | for γ and choose c2 = 0 so that the wave
amplitude remains finite at ρ = 0. This leaves us with

|�(t,ρ,φ)|2 =
∣∣∣∣∣

∞∑
l=0

alJl/|γ |(ωρ)e−lφ

∣∣∣∣∣
2

, (32)

where the constant c1 was absorbed into al . Since

lim
ρ→0

Jl/|γ |(ωρ) = 0,

as the light whirls around and approaches the origin, its
amplitude decreases.

Provided that light propagates in the half-space containing
the defect, it will always end whirling around the hyperbolic
disclination until it reaches the core: therefore, such a defect

can be understood as an omnidirectional light absorber (analog
of an optical black hole, as stated in [19]). Besides, contrary to
coherent perfect absorbers [20], it does not require incident co-
herent light to be efficient. However, practical realization sets
limits to the efficiency of such a device. First, electromagnetic
energy accumulated at the core of the defect is converted into
thermal internal energy, such that the stability of the director
field configuration can be maintained from additional cooling
devices. Second, the perfect absorption only occurs within a
limited frequency bandwidth due to the resonant nature of
the used core-shell spheres. Third, as previous phenomena
concerns the extraordinary mode, an efficient optical absorber
should include a filter to shut off the ordinary wave. Finally,
it should be noticed that the present model concerns optics
inside a bulk hyperbolic material: to design a perfect optical
absorber, the hyperbolic medium must be impedance matched
to avoid sizable reflections at the interfaces.

In this paper we examined classical optics near a hyperbolic
disclination both in the geometrical optics limit and in the wave
approximation. Near such defect, light propagation occurs as
there were two timelike coordinates in the effective metric,
without causing issues related to causality breaking. More
importantly, hyperbolic nematics behave like a perfect light
absorber in the presence of the defect. They perfectly absorb
any incoming radiation and turn it into thermal energy. Such
effect is preserved even when incoming light beams are not
coherent: despite efficiency bounds related to its practical
implementation, this can be used to design a perfect absorber
that works even with incoherent light, which, to the best of
our knowledge, was never considered before. Many modern-
day applications could benefit from devices based on such
hyperbolic nematics: optical communications, solar energy
conversion [21], or even in medicine (selective delivering of
energy in biological tissues for therapy or imaging). As another
application of the system studied here we can also think
of a metamaterial realization of the two-dimensional Milne
universe [22]. This will be the theme of a separate publication.

The authors would like to thank the referees for their
insightful comments on practical issues related to the design
of the perfect optical absorber.
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