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We study the interaction between a probe and a trigger weak fields in a sample of cold rubidium atoms in the
presence of a coupling and a dressing strong fields. Dipole Rydberg blockade may occur and can be set to depend
on the probe and trigger polarizations giving rise to diverse regimes of electromagnetically induced transparency
(EIT) with a concomitant small probe and trigger absorption and dispersion. This is shown to be relevant to the
implementation of polarization conditional probe and trigger cross nonlinearities in cold Rydberg atoms.
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I. INTRODUCTION

Photon-photon interactions enabled by nonlinear optical
mechanisms play an important role in quantum information
processing. Photons, in fact, are ideal carriers of quantum
information as they can propagate at the speed of light and
are generally not affected by the environment [1]. Large
cross-phase nonlinearities between two photons, in particular,
are crucial in many quantum information applications. One
of the preferred and widely explored schemes to enhance
cross-phase nonlinearities is based on Kerr-EIT interactions
between a probe field and a signal field [2–5]. A major
drawback, in this case, is the mismatch of group velocities
which limits the probe and signal interaction time, placing
an upper limit on the order of a small fraction of a radian
to the resulting cross-phase shift [6]. Large intensities are
required instead to reach appreciable nonlinear modula-
tions using Kerr-EIT-like interactions [7]. To overcome this
limit, matched double slow-light pulses with two atomic
species [8] have been proposed as well as various other variant
schemes including the tripod [9–11], N-tripod [12,13], and
M [14,15] configurations. Enhanced cross-phase modulations
have been implemented with a double EIT experiment in
the tripod configuration of 87Rb atoms [3] and a dou-
ble slow-light experiment in the M configuration of 133Cs
atoms [4].

Cold Rydberg atoms, on the other hand, are now attracting
great attention [16,17]. The unique combination of their strong
dipole-dipole interactions and long radiative lifetimes can, in
fact, be exploited to realize robust light-atom quantum inter-
faces [18–20] for quantum information processing purposes.
Rydberg atoms may exhibit, in particular, a special cooperative
nonlinearity [21] known as Rydberg blockade, whereby the
presence of an atom excited to a Rydberg state will shift out
of resonance the corresponding Rydberg state of all nearby
atoms prohibiting the simultaneous Rydberg excitation of
two or more atoms within a given volume (corresponding
to a so-called superatom) determined by their dipole-dipole
interactions. Strong photonic interactions in the presence of a
Rydberg blockade have been shown to occur in samples of cold
Rydberg atoms when driven into a EIT regime [22,23]. This has
been restrained, however, to considerations of absorptive and
dispersive photon-photon interactions of a single light field.

Extensions to conditional nonlinear interactions between two
light fields are usually not straightforward [24–27].

The paper’s main motivation is the discussion of an efficient
scheme for achieving large conditional nonlinear interactions
between two weak optical fields with a concomitant small
absorption and dispersion. We show that such conditional
interactions can be achieved in samples of cold rubidium
atoms through the polarization-selective excitation of a
high-lying Rydberg state coupled by a probe field and a
trigger field in different EIT regimes. Specifically this is
implemented under a symmetric EIT driving either through
the inverted-� (P ) configuration of Fig. 1(a) or through the
inverted-Y (Y) configurations of Figs. 1(b) and 1(c). First,
this extends typical cooperative nonlinearities observed in
cold Rydberg atoms, whose nonlinear response depends on
the incident field intensity at a fixed polarization [28–30], to
polarization-conditional cooperative nonlinearities. Second,
different cooperative nonlinearities arising from specific probe
and trigger polarization choices, through the selection of
specific Rydberg excitation paths, give rise to different optical
cross nonlinearities between the probe and trigger fields.
Polarization-conditional interactions between the two weak
fields enable us to devise polarization-encoded cross nonlin-
earities exhibiting a large cross-phase modulation effect with
little losses. Third, our polarization-conditional scheme takes
place within the same 87Rb superatom, at variance with what
occurs, e.g., in cross-Kerr-like [31], resonant absorbing [24],
transversely separated [25], and site addressable [26] Rydberg
nonlinearities. Last and at variance with a simple cross-Kerr
gate that depends on the intensity of a control field (scalar
gate) [32–34], our polarization-selective optical nonlinearities
scheme may be relevant to a Rydberg polarization gate.
The latter is instead a vector gate, with two or more photon
states simultaneously present, able to implement vector-state
manipulations needed for quantum information processing.

We describe the evolution of internal variables for cold
rubidium atoms through a standard set of Liouville equations
briefly illustrated in Sec. II, while the atomic responses to both
probe and trigger fields in one inverted-� and in two inverted-
Y configurations are discussed, respectively, in Sec. III A
and Secs. III B and III C. The Rydberg blockade effect is
discussed here by treating all atoms through a superatom (SA)
model suitably including the two-photon correlation [30,35].
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FIG. 1. (Color online) Level diagrams of cold 87Rb atoms driven into the inverted-� (A1) and the inverted-Y (B1,C1) configurations. All
atoms are equally distributed between the two ground levels |g〉 and |m〉 and transitions to the excited level |e〉 are induced by weak probe ωp

(A,B) and trigger ωt (A,C) fields, respectively. The excited level |e〉 is further connected to ground level |a〉 and Rydberg level |r〉 by strong
coupling (ωc) and dressing (ωd ) fields, respectively. The excitation of level |r〉 depends on the specific (circular) probe and trigger polarizations
and so is the Rydberg blockade effect (see text). Atoms inside a SA containing one Rydberg excitation are driven into the tripod (A2) or lambda
(B2,C2) configuration since strong dipole-dipole interactions now move level |r〉 far off resonance. Such polarization-selective dipole-dipole
interactions give rise to two correlated EIT regimes, namely, “inverted-� � tripod” (A1 � A2) regime and “inverted-Y � lambda” (B1 � B2
and C1 � C2) regime.

A detailed account of SA Rydberg populations resulting from
the three different polarization-dependent excitation paths of
Fig. 1 is given in Secs. IV A and IV B. Depending on whether
the high Rydberg state is excited (dipole blockade) and how the
polarization-excitation path is selected, different cooperative
Rydberg nonlinearities are observed. These will give rise in
turn to different cooperative dispersion and absorption effects,
which we study in Sec. V for a pair of monochromatic probe
and trigger fields under the three polarization configurations
of Fig. 1. Concluding remarks about this paper’s main results
and their implications for polarization-encoded phase-gate
applications are given in Sec. VI.

II. THE BASIC MODEL

Our aim is to exploit the Rydberg blockade effect to
devise a polarization-selective scheme leading to large cross
nonlinearities between two weak optical fields, say a probe
and a trigger, yet minimizing losses. We further seek a driving
configuration that is symmetric as possible with respect to the
probe and trigger transitions so as to avoid any group velocity
mismatch between them as they simultaneously propagate
through a sample of cold atoms.

A symmetric inverted-Y level configuration [36] would
actually allow us to couple the probe and trigger fields,
respectively, to a pair of transitions from two different ground
states to a common excited state which is, in turn, coupled to a
higher Rydberg state via a strong dressing field in a ladderlike
EIT scheme (see Fig. 1). The distinct selection rules of the two
lower transitions provide the required dependence on probe
and trigger polarizations. However, when Rydberg blockade
is turned on detuning the Rydberg state out of resonance, this
inverted-Y configuration would become a highly absorbing
one. Yet, by adding a strong coupling field resonant with
the transition from a third ground state to the intermediate
excited state, so as to realize a symmetric inverted-� level
configuration [Fig. 1(a)], we can well prevent absorption. Even
when the Rydberg state is shifted out of resonance making
the dressing field immaterial, this coupling field allows for a

nearly lossless propagation of the probe and trigger fields in a
lambdalike EIT scheme.

Probe and trigger will then exhibit in general different
absorption and dispersion properties depending on their
polarizations. The inverted-� configuration, in particular,
appears to be a natural choice to achieve the above tasks of
polarization selectivity and symmetric driving accompanied
by small losses. This EIT scheme, where probe and trigger
are treated on equal footing, is also relevant to cross-phase
modulation applications.

A. Symmetric inverted-� configuration

We specifically consider an elongated sample of N cold
87Rb atoms located at fixed positions and illuminated by two
strong laser fields of amplitudes Ec and Ed and two weak laser
fields of amplitudes Ep and Et . The coupling (ωc) and dressing
(ωd ) fields are assumed to have fixed linear polarizations,
while the probe (ωp) and trigger (ωt ) fields may change from
left to right circular polarizations or vice versa as shown in
Figs. 1(a)–1(c).

The inverted-� configuration (case A1), with transitions
|g〉 ↔ |e〉, |m〉 ↔ |e〉, |a〉 ↔ |e〉, and |e〉 ↔ |r〉, is attained
with the choice of “allowed” circular polarizations, namely, a
right-circular probe polarization (σ+

p ) and a left-circular trigger
polarization (σ−

t ). We further assume that (i) only levels |g〉
and |m〉 are initially populated and (ii) both probe and trigger
fields are so weak that levels |a〉, |e〉, and |r〉 are approximately
empty. The resulting frequency detunings (Rabi frequencies)
are defined as δp = ωp − ωeg (�p = Epdge/2�), δt = ωt −
ωem (�t = Etdme/2�), δc = ωc − ωea (�c = Ecdae/2�), and
δd = ωd − ωre (�d = Edder/2�), with ωij (dij ) being the
transition frequencies (dipole moments).

Adopting the rotating-wave and electric-dipole approxima-
tions, we first write down the interaction Hamiltonian for an
ensemble of N cold 87Rb atoms in the symmetric inverted-�
(P ) configuration (The superscript P in the expressions for
susceptibilities and populations refers to the configuration A1,
while the superscript Y refers to the configuration B1 and
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C1. Similarly, the superscript T refers to the configuration A2
while L refers to the configurations B2 and C2.) as

HI = −�

∑N

k=1

[
δpσPk

ee + �mσPk
mm + �aσ

Pk
aa + �rσ

Pk
rr

]
− �

∑N

k=1

[
�pσPk

eg + �tσ
Pk
em + �cσ

Pk
ea + �dσ

Pk
re

+ H.c.
]
, (1)

with �m = (δp − δt ), �a = (δp − δc), and �r = (δp + δd )
defined as two-photon detunings. After a standard averaging
of local atomic operators

1

δn

∑δn

k=1
σPk

ij → σP
ij (z) (2)

in a microvolume δV containing δn atoms centered at z, we
obtain the following Liouville equations:

∂tσ
P
ge = −γ ′

geσ
P
ge + i�∗

dσ
P
gr + i�cσ

P
ga + i�tσ

P
gm + i�pσP

gg,

∂tσ
P
ga = −γ ′

gaσ
P
ga + i�∗

cσ
P
ge,

∂tσ
P
gr = −γ ′

grσ
P
gr + i�dσ

P
ge,

∂tσ
P
me = −γ ′

meσ
P
me + i�∗

dσ
P
mr + i�cσ

P
ma + i�pσP

mg + i�tσ
P
mm,

∂tσ
P
ma = −γ ′

maσ
P
ma + i�∗

cσ
P
me,

∂tσ
P
mr = −γ ′

mrσ
P
mr + i�dσ

P
me,

∂tσ
P
gm = −γ ′

gmσP
gm + i�

†
t σ

P
ge − i�pσP

em. (3)

The remaining coherences and populations σP
ea , σP

er , σP
ar , σP

ee ,
σP

aa , and σP
rr are negligible in the limit of weak probe and

trigger fields. We have also phenomenologically introduced
the complex dephasing rates γ ′

ge = γge − iδp, γ ′
ga = γga −

i�a , γ ′
gr = γgr − i�r , γ ′

gm = γgm − i�m, γ ′
me = γme − iδt ,

γ ′
ma = γma − i�′

a , and γ ′
mr = γmr − i�′

r in terms of the real
dephasing rates γge, γga , γgr , γgm, γme, γma , and γmr as well as
the two-photon detunings �′

a = δt − δc and �′
r = δt + δd .

Notice that the inverted-� configuration, associated with
the choice of allowed circular polarizations and the absence
of Rydberg blockade, i.e., the case (A1) in Fig. 1, is described
by fully symmetric equations. By switching one or the
other circular polarization from allowed to forbidden, the
full � configuration reduces to the asymmetric inverted-Y
configuration (B1) or (C1) of Fig. 1. By switching both
circular polarizations from allowed to forbidden we end up
with a trivially symmetric and vacuumlike situation being
both probe and trigger decoupled. On the other hand, when
Rydberg blockade is turned on and level |r〉 is pushed out of
resonance, the full inverted-� configuration (A1) reduces to
the symmetric tripod configuration (A2) while the inverted-Y
configuration (B1) reduces to the lambda configuration (B2)
and so is for the reduction (C1) → (C2).

B. Reduced configurations

The polarization selectivity in Fig. 1 stems from the
selection rules of the |g〉 ↔ |e〉 and |m〉 ↔ |e〉 transitions. In
particular, the trigger field may be decoupled from the |m〉 ↔
|e〉 transition due to the forbidden circular polarization (σ+

t )
which results into an inverted-Y configuration encompassing
levels |g〉, |a〉, |e〉, and |r〉 (B1). Similarly, in the other

inverted-Y configuration with levels |m〉, |a〉, |e〉, and |r〉 (C1)
the probe field is decoupled from the |g〉 ↔ |e〉 transition due
to a forbidden circular polarization (σ−

p ). It is easy to attain
the Liouville equations for the off-diagonal elements σY

ij of an
inverted-Y configuration (B1 or C1) by setting, respectively,
�t = 0 or �p = 0 in Eqs. (3).

We further stress, in a mean-field sense, that one atom
excited to a Rydberg level |r〉 shifts the same Rydberg level of
all surrounding atoms due to strong dipole-dipole interactions
(Rydberg blockade). Precisely, the excitation to |r〉 of atoms
within a blockade sphere of radius Rb around the Rydberg
excited atom is then strictly forbidden owing to a very large
resonance shift. Consequently, within this blockade sphere,
the optical responses to probe and trigger fields are no longer
described by the inverted-� (A1) or inverted-Y (B1,C1)
EIT configurations, but rather by the basic tripod (A2) or
lambda (B2,C2) EIT configurations (see Fig. 1). Relevant
Liouville equations for off-diagonal elements σT

ij and σL
ij in

the tripod and lambda configurations can be easily attained
by further setting �d = 0 in the equations for σP

ij and σY
ij of

the inverted-� and inverted-Y configurations, respectively. A
detailed discussion of how such polarization-selective dipole-
dipole interactions give rise to cooperative nonlinearities in
correlated EIT regimes—inverted-� � tripod (A1 � A2) and
inverted-Y � lambda (B1 � B2 and C1 � C2)—depending
on the SA Rydberg populations will be provided in Sec. V.

III. ATOMIC SUSCEPTIBILITIES

We discuss in this section the probe and trigger suscepti-
bilities for all six EIT configurations in Fig. 1. These can be
obtained from Eqs. (3) via a straightforward, albeit lengthy,
calculation of relevant steady-state probe (σge) and trigger
(σme) atomic coherences, starting from the inverted-� (P )
configuration (A1).

A. Polarizations {σ+
p , σ−

t }
For this choice of probe and trigger polarizations and

for intensities such that |�p|2σgg = |�t |2σmm, the probe and
trigger susceptibilities are

χP
p = Ngσ

P
ge

�p

(4)

= Ng

iγ ′
grγ

′
gaγ

′
gmA∗

mσgg

γ ′
gmAgA∗

m + γ ′∗
mrγ

′∗
maAg|�p|2 + γ ′

grγ
′
gaA

∗
m|�t |2 ,

χP
t = NmσP

gm

�t

(5)

= Nm

iγ ′
mrγ

′
maγ

′
mgA

∗
gσmm

γ ′
mgAmA∗

g + γ ′∗
grγ

′∗
gaAm|�t |2 + γ ′

mrγ
′
maA

∗
g|�p|2 ,

where σP
ge and σP

me are steady-state solutions of Eqs. (3). We
denote here by Ng = N0d

2
eg/2ε0�, Nm = N0d

2
em/2ε0�, and

N0 the average volume density of a finite atomic sample
of length L. We also define Ag = γ ′

grBg + γ ′
ga|�d |2 and

Bg = γ ′
geγ

′
ga + |�c|2 as well as Am = γ ′

mrBm + γ ′
ma|�d |2 and

Bm = γ ′
meγ

′
ma + |�c|2.

The inverted-� configuration (A1) can be seen as made
of two adjacent inverted-Y configurations, one involving the
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probe field (B1) and the other involving the trigger field
(C1), and both sharing the driving and coupling fields �d

and �c. Each inverted-Y configuration has, in turn, double
dark states [36], whereby the probe field, for instance,
exhibits double EIT [3,37,38] leading to different transparency
windows centered around δp = δc and δp = −δd with almost
identical probe responses at both window centers. The two
windows become centered at the same position when the dark
states become degenerate, namely when δc → −δd . Clearly
the same holds unchanged for the trigger response.

The inverted-� configuration (A1), owing to its intrinsic
symmetric driving structure, further allows for the tuning of
these two pairs of dark states and, in particular, for their
matching. This takes place when �p = �t and δp = δt and
gives rise to similar absorptive and dispersive properties, hence
similar group velocities, for both probe and trigger fields.
Note, in fact, that under such a symmetric EIT driving the
two expressions for χP

p and χP
t turn into each another upon

the interchange {g ↔ m,p ↔ t} [39]. Matching, in addition,
yields almost identical probe responses in both inverted-�
(A1) and inverted-Y (B1) configurations. Likewise, for a
trigger field driving the (A1) and (C1) configurations.

Owing to dipole blockade, level |r〉 may be decoupled,
which reduces the inverted-� configuration (A1) to a tripod
configuration (A2) whose susceptibilities can easily be com-
puted from Eqs. (3) by setting �d = 0, i.e.,

χT
p = Ng

iγ ′
gaγ

′
gmB∗

mσgg

(γ ′
gmBg + γ ′

ga|�t |2)B∗
m + γ ′∗

ma|�p|2Bg

, (6)

χT
t = Nm

iγ ′
maγ

′
mgB

∗
gσmm

(γ ′
mgBm + γ ′

ma|�p|2)B∗
g + γ ′∗

ga|�t |2Bm

. (7)

B. Polarizations {σ+
p , σ+

t }
The probe susceptibility associated with this polarizations

choice corresponds to an inverted-Y configuration (B1) ob-
tained by setting �t = 0 in Eqs. (3),

χY
p = Ng

iγ ′
grγ

′
gaσgg

Ag

, (8)

which reduces, in the presence of dipole blockade (�t = �d =
0), to that of a lambda configuration (B2),

χL
p = Ng

iγ ′
gaσgg

γ ′
geγ

′
ga + |�c|2 . (9)

In this case the trigger susceptibility vanishes as in vacuum
(χv

t = 0).

C. Polarizations {σ−
p , σ−

t }
This is instead the reverse situation in which the probe

field has a vanishing susceptibility (χv
p = 0), while the

trigger susceptibility corresponds to that of an inverted-Y
configuration (C1),

χY
t = Nm

iγ ′
mrγ

′
maσmm

B
, (10)

or to that of a lambda configuration (C2),

χL
t = Nm

iγ ′
maσmm

γ ′
meγ

′
ma + |�c|2 . (11)
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FIG. 2. (Color online) Imaginary (a, b) and real (c, d) parts of
probe and trigger susceptibilities vs probe and trigger detunings
δp = δt under a balanced driving (see text) with σgg = σmm = 0.5
and �p = �t = 3.0 kHz. The susceptibilities plotted in (a) and (c)
refer to the inverted-� (red-thin line) and inverted-Y (blue-dotted
line) configurations whose relevant level transitions are shown
schematically in (e). The susceptibilities plotted in (b) and (d)
refer to the tripod (red-thin line) and lambda (blue-dotted line)
configurations with relevant level transitions shown schematically
in (f). The coupling and dressing field parameters are �c = �d =
2.0 MHz, δc = δd = 1.0 MHz while the atomic parameters are γge =
γme = 3.0 MHz, γgr = γmr = 3.0 kHz, γga = γgm = γma = 1.0 kHz,
deg = dem = 1.5 × 10−29 C m, and N0 = 2.4 × 1012 cm−3.

As before they are obtained from Eqs. (3) by setting,
respectively, �p = 0 or �p = �d = 0.

The analytical results (A → C) anticipated above are
further discussed here through the direct computation of
all relevant atomic susceptibilities. In Fig. 2 we plot both
real and imaginary parts of the probe and trigger suscep-
tibilities associated with all six EIT configurations shown
in Fig. 1. We first observe that, under a symmetric EIT
driving, the probe and trigger fields always exhibit identical
susceptibilities whether we deal with an inverted-� (red-thin
line) configuration (A1) or with an inverted-Y (blue-dotted
line) configuration (B1,C1), that is χP

p = χP
t and χY

p = χY
t

as shown in Figs. 2(a) and 2(c). These two panels further
show that the probe absorption and dispersion are nearly
indistinguishable for an inverted-� (A1) as well as for
an inverted-Y (B1,C1) configuration, that is χP

p � χY
p . In

the same way this holds for the trigger field, with χP
t �

χY
t . At variance with Refs. [9,14,36], where slightly dif-

ferent probe and trigger detunings are needed to balance
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FIG. 3. (Color online) Same as in Fig. 2 except that we take
δc = δd = 0 here. The pair of probe (trigger) transparency windows
now collapse into a single one centered at δp = δt = 0 (see text) for
the inverted-�, inverted-Y, tripod, and lambda configurations whose
relevant transitions are shown schematically in (e) and (f).

their absorption and dispersion responses, our probe and
trigger fields interact in a symmetric configuration with
identical detunings and Rabi frequencies. Identical probe and
trigger absorption and dispersion are then intrinsic to our
model.

Figure 2(a) displays the typical double-EIT spectrum with
two probe (trigger) transparency windows placed at δp = δc =
1.0 MHz and δp = −δd = −1.0 MHz and this occurs for both
inverted-� and inverted-Y configurations in the nondegenerate
near-resonant EIT regime. One transparency window (δp =
δc = 1.0 MHz) opens up as due to the interaction between the
longer probe (trigger) leg and the coupling beam, whereas
the other window (δp = −δt = −1.0 MHz) arises as due
to the interaction of the shorter probe (trigger) leg and the
dressing beam as depicted in Fig. 2(e). Such a double-window
structure clearly disappears in the presence of dipole Rydberg
blockade effects when the three configurations (A1–C1)
reduce, respectively, to the three configurations (A2–C2) [see
Fig. 2(f)]. This is observed in Figs. 2(b) and 2(d) where
the probe (trigger) susceptibility in the tripod (red-thin line)
and lambda (blue-dotted line) configurations clearly exhibits
the typical single-EIT spectrum with only one window left
at δp = δc = 1.0 MHz. The two equalities mentioned above
still hold for the tripod and lambda configurations, namely
χT,L

p = χ
T,L
t and χT

p,t � χL
p,t .
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FIG. 4. (Color online) Same as in Fig. 2 except that we take δc =
−δd = 80.0 MHz, �c = 6.0 MHz, and �d = 8.0 MHz. The pair
of probe (trigger) transparency windows now collapse into a single
one (see text) centered at δp = δt = 80.0 MHz for the inverted-�,
inverted-Y, tripod, and lambda configurations. Points α and β denote
two different reference detunings used in Sec. V.

Figure 3 is plotted instead for δc = δd = 0 (degenerate
resonant double-EIT regime) where the two transparency
windows collapse into a single one. Notice that in this case the
EIT window associated with the inverted-� and inverted-Y
configurations is slightly wider than the one observed for the
tripod and lambda configurations. Finally, we consider the
degenerate far-detuned double-EIT regime with δc = 80 MHz
and δd = −80 MHz. We show in Fig. 4 the absorption line
to the right of the center of the transparency window at δp =
δt = 80.0 MHz, on a spectral range of detunings of interest
for the cross-phase modulation effects discussed in Sec. V. In
particular, two specific choices of detuning will be considered
below and indicated by points α and β in Fig. 4. Such
detunings are on the same side of this absorption line [Figs. 4(a)
and 4(c)] for the inverted-� and inverted-Y configurations. For
the corresponding tripod and lambda configurations, instead,
points α and β are placed on opposite sides with respect to
the absorption line [Figs. 4(b) and 4(d)] because the width
of the transparency window is reduced as the driving field
is decoupled (�d → 0). The α and β detunings will be
chosen in Sec. V to optimize polarization-selective cross-phase
modulation effects, respectively, in a long (L = 2.0 mm)
and a short (L = 0.1 mm) sample, while minimizing the
losses.
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IV. SA RYDBERG POPULATIONS

For given polarizations of probe and trigger fields, cold
87Rb atoms under consideration behave in principle as a
combination of inverted-� and tripod EIT systems (A1 ↔ A2)
or a combination of inverted-Y and lambda EIT systems
(B1 ↔ B2 and C1 ↔ C2). Such a correlation of level
configurations depends critically on dipole blockade of Ry-
dberg excitations, which can be quantified by SA Rydberg
populations as discussed below.

Now we transfer to the language of so-called SAs. Each SA
is defined by the nSA � 4πN0R

3
b/3 atoms inside a blockade

sphere of the radius [40]

Rb �
( |�d |C6

|�c|2 + |�d |2
)1/6

for |�d | � γge = γme,

Rb �
(

γge C6

|�c|2 + |�d |2
)1/6

for |�d | 	 γge = γme,

where the van der Waals (vdW) coefficient C6 depends on the
principal quantum number n of Rydberg level |r〉 with C6 =
n11(c0 + c1n + c2n

2) for the ns − ns asymptotes of cold 87Rb
atoms [41]. Using C6 = −1.67 × 1013 s−1 μm6 for n = 90,
�d = 80 MHz, �c = 6.0 MHz, �d = 8.0 MHz, and N0 =
2.4 × 1012 cm−3, it is easy to find that the blockade radius is
Rb � 15.4 μm and the atomic number is nSA � 36 700 for a
given SA [42].

A. Polarizations {σ+
p , σ−

t }
When the probe and trigger fields exhibit σ+

p and
σ−

t polarizations, SAs are described by the ground
collective states |G〉 = |g1,g2, . . . ,gnSA/2〉 and |M〉 =
|m1,m2, . . . ,mnSA/2〉 as well as the first-order excited col-
lective states |A1〉 = (|A1g〉 + |A1m〉)/√2, |E1〉 = (|E1g〉 +
|E1m〉)/√2, and |R1〉 = (|R1g〉 + |R1m〉)/√2 with the follow-
ing six components:

|R1g〉 =
√

2

nSA

∑nSA/2

j=1
|g1,g2, . . . ,rj , . . . ,gnSA/2〉,

|E1g〉 =
√

2

nSA

∑nSA/2

j=1
|g1,g2, . . . ,ej , . . . ,gnSA/2〉,

|A1g〉 =
√

2

nSA

∑nSA/2

j=1
|g1,g2, . . . ,aj , . . . ,gnSA/2〉,

|R1m〉 =
√

2

nSA

∑nSA/2

j=1
|m1,m2, . . . ,rj , . . . ,mnSA/2〉,

|E1m〉 =
√

2

nSA

∑nSA/2

j=1
|m1,m2, . . . ,ej , . . . ,mnSA/2〉,

|A1m〉 =
√

2

nSA

∑nSA/2

j=1
|m1,m2, . . . ,aj , . . . ,mnSA/2〉,

while other higher-order excited collective states (with more
than one atoms at level |r〉 or level |a〉) can be neglected near
the EIT window center [35].

The SA operators �ij = |I 〉〈J | obey similar dynamic
equations as those for atomic operators σij = |i〉〈j | except that
the probe and trigger Rabi frequencies should be respectively
replaced by [43]

�p → �s
p =

√
nSA

2
�p, �t → �s

t =
√

nSA

2
�t. (12)

That is, the collective transitions |G〉 ↔ |E1g〉 and |M〉 ↔
|E1m〉 are enhanced to have, respectively, Rabi frequencies �s

p

and �s
t , which may be comparable to �c and �d even if �p,t 	

�c,d . Note, however, that dipole-dipole interactions may result
in the modification of two-particle quantum correlations. As a
matter of fact [30], �2

p,t should be further replaced by �2
p,tgp,t

to include the two-photon correlations

gp,t = 〈�̂†
p,t �̂

†
p,t �̂p,t �̂p,t 〉

〈�̂†
p,t �̂p,t 〉2

(13)

quantifying the probability of having at least two photons in
a blockade volume, but we have gp,t → 1.0 near the center
of a degenerate EIT window at δp,t = −δd = δc with |δc,d | �
γge when the input probe and trigger fields are in coherent
states [35]. Thus we obtain from Eqs. (3)

∂t�
P
ge = −γ ′

ge�
P
ge + i�∗

d�
P
gr

+ i�c�
P
ga + i�s

t �
P
gm + i�s

p�P
gg,

∂t�
P
ga = −γ ′

ga�
P
ga + i�∗

c�
P
ge,

∂t�
P
gr = −γ ′

gr�
P
gr + i�d�

P
ge,

∂t�
P
me = −γ ′

me�
P
me + i�∗

d�
P
mr + i�c�

P
ma (14)

+ i�s
p�P

mg + i�s
t �

P
mm,

∂t�
P
ma = −γ ′

ma�
P
ma + i�∗

c�
P
me,

∂t�
P
mr = −γ ′

mr�
P
mr + i�d�

P
me,

∂t�
P
gm = −γ ′

gm�P
gm + i�

s†
t �P

ge − i�s
p�P

em,

for the inverted-� double-EIT system. To solve Eqs. (14) in
the steady state, we should first express �P

gg and �P
mm in terms

of the variables �P
ij and three considerations are now in order.

First, we recall that

�P
aa = �gP

aa + �mP
aa = �P

ag�
P
ga

�P
gg

+ �P
am�P

ma

�P
mm

,

�P
ee = �gP

ee + �mP
ee = �P

eg�
P
ge

�P
gg

+ �P
em�P

me

�P
mm

,

�P
rr = �gP

rr + �mP
rr = �P

rg�
P
gr

�P
gg

+ �P
rm�P

mr

�P
mm

,

and second, we notice that �P
aa and �P

rr may be comparable
to �P

gg and �P
mm, as a result of enhanced collective transitions,

whereas �P
ee is negligible owing to quantum destructive

interference in the EIT regime. In fact, �
gP
aa /�

gP
rr ≈ �2

c/�2
d

and �
gP
ee /�

gP
rr ≈ γ 2

gr/�2
d in the two-photon near-resonant

case of |�a,r | 	 �c,d as well as �mP
aa /�mP

rr ≈ �2
c/�2

d and
�mP

ee /�mP
rr ≈ γ 2

mr/�2
d in the two-photon near-resonant case

of |�′
a,r | 	 �c,d , as follows from Eqs. (14) in the steady
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state. Third, notice that �
gP
rr + �

gP
aa + �P

gg = 0.5 and �mP
rr +

�mP
aa + �P

mm = 0.5 in a good approximation for the bound-
ary conditions �p(z = 0) = �t (z = 0) and initial conditions

�gg(t = 0) = �mm(t = 0), as follows from the second con-
sideration and the conservation of the SA population. From all
the above we obtain

�P
gg = 1

4 + 1
4

√
1 − 16

(
�P

rg�
P
gr + �P

ag�
P
ga

)
, �P

mm = 1
4 + 1

4

√
1 − 16

(
�P

rm�P
mr + �P

am�P
ma

)
, (15)

which are then applied to solve Eqs. (14) upon setting ∂t�
P
ij = 0 to arrive at the SA Rydberg populations

�gP
rr = 0.5|γ ′

ga|2|�s
p|2|�d |2

|Ag + γ ′∗
mr (γ ′∗

ma/γ
′
gm)|�s

p|2(Ag/A∗
m) + γ ′

gr (γ ′
ga/γ

′
gm)|�s

t |2|2 + (
γ ′2

ga|�d |2 + γ ′2
gr |�c|2

)∣∣�s
p

∣∣2 ,

(16)

�mP
rr = 0.5|γ ′

ma|2|�s
t |2|�d |2

|Am + γ ′∗
gr (γ ′∗

ga/γ
′
mg)|�s

t |2(Am/A∗
g) + γ ′

mr (γ ′
ma/γ

′
mg)|�s

p|2|2 + (
γ ′2

ma|�d |2 + γ ′2
mr |�c|2

)∣∣�s
t

∣∣2 ,

for the inverted-� double-EIT system.

B. Polarizations {σ+
p , σ+

t } ({σ−
p , σ−

t })
When the probe and trigger fields exhibit σ+

p and σ+
t (or

σ−
p and σ−

t ) polarizations, SAs are described by the collective
states |G〉, |A1g〉, |E1g〉, and |R1g〉 (or |M〉, |A1m〉, |E1m〉, and
|R1m〉) in the inverted-Y configuration. In this case, relevant SA
Liouville equations can be derived by setting �s

t = 0 or �s
p =

0 in Eqs. (14). Then with similar considerations mentioned
above, we obtain the SA Rydberg populations:

�gY
rr = 0.5|γ ′

ga|2
∣∣�s

p

∣∣2|�d |2
|Ag|2 + (|γ ′

ga|2|�d |2 + |γ ′
gr |2|�c|2)

∣∣�s
p

∣∣2 ,

(17)

�mY
rr = 0.5|γ ′

ma|2|�s
t |2|�d |2

|Am|2 + (|γ ′
ma|2|�d |2 + |γ ′

mr |2|�c|2)
∣∣�s

t

∣∣2 ,

for the inverted-Y double-EIT systems. In a good approxi-
mation, they are restricted by �

gY
rr + �

gY
aa + �Y

gg = 0.5 and
�mY

rr + �mY
aa + �Y

mm = 0.5, respectively.
In Figs. 5 and 6 we plot SA Rydberg populations in

the inverted-� and inverted-Y configurations as a function
of probe and trigger detunings δp = δt , for realistic values
of �p = �t and of γgr = γmr . Figure 5 is attained in the
degenerate resonant EIT regime with δc = −δd = 0, while
Fig. 6 is attained in the degenerate far-detuned EIT regime with
δc = −δd = 80 MHz. We observe a remarkable difference
of SA Rydberg populations �

gP
rr − �

gY
rr (�mP

rr − �mY
rr ) even

if �p,t 	 �c,d since it is possible to have �s
p,t ∼ �c,d in

a dense enough sample. We also observe �
gY
rr = �mY

rr �
�

gP
rr = �mP

rr , indicating that SA Rydberg excitations are
large when only the probe or trigger field is coupled to
the |e〉 level, while they are suppressed when both probe
and trigger fields are coupled to the |e〉 level. This is a
salient result as it prompts a remarkable difference between
the SA Rydberg populations, respectively, in the inverted-�
and inverted-Y configurations, which might be exploited
to attain large conditional phase shifts [44,45]. Such an
essential difference basically arises from the facts that (i)
the collective SA transition amplitudes |G〉 ↔ |E1g〉 and

|M〉 ↔ |E1m〉 are both enhanced by the large factor
√

nsa/2
and (ii) in the symmetric inverted-� configuration (A1) the
two transition pathways interfere destructively yielding a
greatly suppressed Rydberg population compared to those
observed in the asymmetric inverted-Y configurations (B1 and
C1), encompassing instead only a single enhanced transition
amplitude.

It should be finally noticed that in the limit of weak probe
and trigger fields, even when dipole blockade is effective,
the actual fraction of atoms in levels different from |g〉 and
|m〉 remains very small: even for SA Rydberg populations
of order 1.0 as in Figs. 5 and 6, σee < σaa ∼ σrr < 10−4

as σii ∼ �II /nSA and nSA ∼ 36 000. Then, heating of a
sample due to absorption of coupling and dressing fields is
strongly suppressed as they both interact with nearly empty
levels.

FIG. 5. (Color online) SA Rydberg populations for the inverted-
Y (a, c) and inverted-� (b, d) configurations in the degenerate resonant
double-EIT regime with δc = −δd = 0. Red-thin and blue-dotted
curves correspond, respectively, to γgr = γmr = 3.0 kHz and γgr =
γmr = 5.0 kHz. Other parameters are the same as in Fig. 3 except
�p = �t = 30 kHz in (a) and (b); �p = �t = 50 kHz in (c) and (d).
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FIG. 6. (Color online) SA Rydberg populations for the inverted-
Y (a, c) and inverted-� (b, d) configurations in the degenerate far-
detuned double-EIT regime with δc = −δd = 80 MHz. Red-thin and
blue-dotted curves refer, respectively, to γgr = γmr = 3.0 kHz and
γgr = γmr = 5.0 kHz. Other parameters are the same as in Fig. 4
except �p = �t = 30 kHz in (a) and (b); �p = �t = 50 kHz in (c)
and (d).

V. RYDBERG COOPERATIVE NONLINEARITIES

With the individual susceptibilities of Sec. III and the SA
populations of Sec. IV, we now examine the dispersion and
absorption properties exhibited by a pair of monochromatic
probe and trigger fields traveling through an atomic sample
in the polarization configurations of Fig. 1. For each of the
correlated EIT regimes A1 ↔ A2, B1 ↔ B2, and C1 ↔ C2,
the probe and trigger susceptibilities can be written as

χa
p = 2�gP

rr χT
p + (

1 − 2�gP
rr

)
χP

p for {σ+
p ,σ−

t }, (18)

χa
t = 2�mP

rr χT
t + (

1 − 2�mP
rr

)
χP

t for {σ+
p ,σ−

t }, (19)

χb
p = 2�gY

rr χL
p + (

1 − 2�gY
rr

)
χY

p for {σ+
p ,σ+

t }, (20)

χc
t = 2�mY

rr χL
t + (

1 − 2�mY
rr

)
χY

t for {σ−
p ,σ−

t }, (21)

clearly showing cooperative dispersion and absorption effects
depending on whether or not the sample is optically driven
into the Rydberg state (dipole blockade). The concept of a
blockade sphere for Rydberg excitation, adopted here [46,47]
to get an intuitive physical picture on real effects of the dipole-
dipole interaction on the probe and trigger coherences (2),
enables one to include Rydberg blockade in the average atomic
susceptibilities (18)–(21) which will then be used to describe
the optical response of the entire sample. A monochromatic
probe impinging upon a sample of length L with a vacuum
wave-vector kp experiences, e.g., the phase shift

φa,b
p = Re

(
χa,b

p

)
kpL/2, (22)

FIG. 7. (Color online) Cooperative phase shifts (a) and extinction
coefficients (b) acquired over a L = 2.0 mm long sample around
the point α (Fig. 4) under the inverted-� (A1) (red-thin line) and
inverted-Y (B1,C1) (blue-dotted line) configurations. Here γgr =
γmr = 3.0 kHz and �p = �t = 50 kHz while other parameters are
the same as in Fig. 6.

whereas the extinction coefficient is

κa,b
p = Im

(
χa,b

p

)
kpL/2. (23)

Similar expressions for φ
a,c
t and κ

a,c
t hold for the trigger

upon replacing p → t in the above equations. Because the
susceptibilities χP

p;t (χT
p;t ) and χY

p;t (χL
p;t ) are indistinguishable

(see Fig. 4) and the populations �
gP
rr (�mP

rr ) and �
gY
rr (�mY

rr ) are
in general very different (see Fig. 6), we expect that φa

p (κa
p) be

different from φb
p (κb

p) and likewise φa
t (κa

t ) be different from
φc

t (κc
t ). Such departures are then a direct manifestation of

the cooperative nonlinearities arising from the dipole Rydberg
blockade. When Rydberg transitions are involved, in fact,
the steady-state optical response, hence the phase shifts and
absorption, will also depend on the probability to find an atom
excited into the Rydberg state.

We plot in Figs. 7 and 8 the cooperative phase shifts φa,b
p =

φ
a,c
t and extinction coefficients κa,b

p = κ
a,c
t as a function of

probe and trigger detunings δp = δt . This is done, respectively,
for a long sample (L = 2.0 mm) containing about 65 SAs
around point α and for a short sample (L = 0.1 mm) containing
only about 3 SAs around point β in the degenerate far-detuned
regime with δc = −δd = 80 MHz (see Figs. 4 and 6). We
can reach φa

p = φa
t = 0.77π and φb

p = φc
t = 1.27π , with κa

p =
κa

t ≈ 0.02π and κb
p = κc

t ≈ 0.04π at δp = δt ≈ 80.17 MHz
(point α) in Fig. 7. We further observe φa

p = φa
t = 0.48π and

φb
p = φc

t = −0.01π , with κa
p = κa

t ≈ 0.04π and κb
p = κc

t ≈
0.04π at δp = δt ≈ 80.850 MHz (point β) in Fig. 8.

FIG. 8. (Color online) Same as in Fig. 7 for phase shifts (a) and
extinction coefficients (b) acquired over a L = 0.1 mm short sample
around the point β (Fig. 4).
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FIG. 9. (Color online) Same as in Fig. 7 where phase shifts (a)
and extinction coefficients (b) are acquired under the inverted-�
(A1) (red-thin line) and inverted-Y (B1,C1) (blue-dotted line) driving
configurations, with |r〉 being a normal excited state and where the
phase shifts (c) and extinction coefficients (d) are acquired under the
tripod (A2) (red-thin line) and lambda (B2,C2) (blue-dotted line)
driving configurations, in the absence of Rydberg excitation to the
state |r〉.

The cooperative nonlinearity arising from conditional Ryd-
berg blockade may finally be compared with those arising from
standard cross-Kerr EIT processes [2–4,36] and to this extent
we examine two specific cases. We take (i) a sample driven
into the inverted-� and inverted-Y double-EIT configurations,
yet with |r〉 being a normal excited level and (ii) a sample
driven into the tripod and lambda single-EIT configurations.
In case (i), the probe and trigger phase shifts reduce to
φP

p,t = Re(χP
p,t )kp,tL/2 and φY

p,t = Re(χY
p,t )kp,tL/2, while

the extinction constants reduce to κP
p,t = Im(χP

p,t )kp,tL/2
and κY

p,t = Im(χY
p,t )kp,tL/2. In case (ii), on the other hand,

we have for the phase shifts φT
p,t = Re(χT

p,t )kp,tL/2 and
φL

p,t = Re(χL
p,t )kp,tL/2 and for the extinction constants

κT
p,t = Im(χT

p,t )kp,tL/2 and κL
p,t = Im(χL

p,t )kp,tL/2. This is
shown in Fig. 9 where we use the same parameters as in
Fig. 7 and plot in the left (right) panels the individual phase
shifts φP,Y

p = φ
P,Y
t (φT,L

p = φ
T,L
t ) and individual extinction

constants κP,Y
p = κ

P,Y
t (κT,L

p = κ
T,L
t ) around point α [48].

Similar levels of absorptive losses and of (absolute) phase
shifts are observed in Fig. 9. Yet unlike in Fig. 7, there are
no appreciable differences between the two choices {σ+

p ,σ−
t }

(both probe and trigger coupled) and {σ±
p ,σ±

t } (either probe
or trigger coupled) for probe and trigger polarizations. This
indicates that the conditional Rydberg blockade can be
exploited to attain cross-phase modulation effects that are in
general hard to achieve with the usual Kerr-EIT nonlinearities.

VI. CONCLUSIONS

A pair of weak probe and trigger fields interacting with a
pair of strong coupling and dressing fields through a dense

sample of cold rubidium atoms that may be driven to a high
Rydberg state can experience diverse EIT regimes depending
on (a) the probe and trigger polarizations and (b) the presence
of Rydberg blockade effects. This hinges on the probe and
trigger circular polarization selection rules and on the strength
of the linearly polarized coupling and dressing fields, a most
relevant instance of which is illustrated in the five-level
inverted-� EIT configuration (A1) of Fig. 1. The optical
response in this configuration is central to this work and
enables us, in turn, to readily compute the optical responses
of other (reduced) EIT configurations, i.e., inverted-Y, tripod,
and lambda configurations (Sec. III). In each of these EIT
configurations, whether Rydberg blockade is present or not,
the probe and trigger propagation can be engineered so
as to occur without significant absorption and dispersion.
Depending on the choice of circular polarizations, on the
other hand, probe and trigger cooperative cross nonlinear
interactions originating from Rydberg blockade become much
stronger than those observed in typical Kerr-EIT media
yet at the same levels of linear absorption and dispersion
[2–4,36].

Our inverted-� configuration, characterized by large polar-
ization conditional nonlinear interactions between two weak
optical fields with little absorption and dispersion, allows
for efficient cross-phase modulation effects. The required
conditions are (i) a degenerate EIT regime (δc = −δd ) with
strong enough coupling and dressing fields (�c,d ∼ γge ∼
γme), (ii) far off-resonant probe and trigger EIT windows
(δp = δt = δc = −δd = 80 MHz, in our case) to guarantee
that the two-photon correlation functions gp ≈ gt ≈ 1, and
finally (iii) a symmetric driving with equally populated ground
levels |g〉 and |m〉. The last requirement is not only beneficial
to achieve a matching of probe and trigger fields but also
to ensure a suppression of SA Rydberg populations for the
polarization choice of Fig. 1(a), in comparison with those of
Figs. 1(b) and 1(c). One key advantage of our scheme is that
Rydberg blockade results in the conditional reduction from a
double EIT configuration to a simple EIT one, rather than to an
absorbing one. This is the critical point for suppressing linear
absorption and dispersion for any choices of probe and trigger
(circular) polarizations.

The scheme we propose may be relevant to a variety
of all-optical polarization-sensitive cross-phase nonlinearities
with conditional phase shifts on the order of π . Dipole
blockade depends on the probe and trigger polarizations
with the inverted-� and inverted-Y configurations exhibiting,
in fact, quite different Rydberg populations. In particular,
the scheme we propose could provide the basic physical
mechanism for a universal vector gate [14] where the nearly
lossless and distortionless propagation of probe and trigger
pulses would be naturally matched thanks to the symmetry
of our level configuration. Large values of cross phase shifts
could be attained not only in samples containing only a few
rubidium SAs, but also employing very weak light pulses. We
anticipate that cross phase shifts of the order of π might be
achieved with light pulses containing only a few hundreds of
photons, the reason being that the variation of SA Rydberg
populations is mainly determined by nsa �2

p,t so that very
small Rabi frequencies �p,t could be compensated by a large
number nsa .
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