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Strongly interacting mesoscopic systems of anyons in one dimension
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Using the fractional statistical properties of so-called anyonic particles, we present solutions of the Schrödinger
equation for up to six strongly interacting particles in one-dimensional confinement that interpolate the usual
bosonic and fermionic limits. These solutions are exact to linear order in the inverse coupling strength of the
zero-range interaction of our model. Specifically, we consider two-component mixtures of anyons and use these to
eludicate the mixing-demixing properties of both balanced and imbalanced systems. Importantly, we demonstrate
that the degree of demixing depends sensitively on the external trap in which the particles are confined. We also
show how one may in principle probe the statistical parameter of an anyonic system by injection a strongly
interacting impurity and doing spectral or tunneling measurements.
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I. INTRODUCTION

In the quantum world we classify physically identical parti-
cles according to their statistical properties and typically divide
them into two distinct sets. The key characteristic is that upon
exchange of two such particles the total wave function changes
only by a sign which is positive for bosonic and negative for
fermionic particles. It came as quite a surprise to many when
Leinass and Myrheim [1] (see also Refs. [2,3]) discovered that
in two dimensions (2D) one can accomodate exchange statis-
tics that is neither bosonic nor fermionic but rather interpolates
the usual possibilities and gives rise to so-called anyonic
particles. Systems that display effective anyonic statistics are
a topic of great current interest due to the integral role they
enjoy in the field of quantum computation [4] (see Ref. [5] for
an overview of recent theoretical and experimental progress).

An early breakthrough in the understanding of anyons
was achieved by Haldane who generalized the 2D case
and introduced the notion of “fractional statistics” in any
dimension [6]. Anyons also play a prominent role in exploring
the connection between statistical mechanics and random
matrix theory [7,8]. In one dimension (1D), the famous
Calogero-Sutherland (CS) model [9,10] provides an example
of fractional statistics and anyons [11]. The CS model can
even be extended to exactly solvable many-body models
exhibiting long-range order in 1D [12]. Thus, 1D anyonic
systems remains a research topic of great interest in several
different fields [13–26]. Most recently, realization of anyonic
behavior in cold atomic gases have been proposed in both
2D [27–29] and 1D [30] setups. Such proposals typically
require manipulation of small atom numbers. It is therefore
encouraging that preparation of desired mesoscopic system
sizes is becoming increasingly more precise [31–34].

In this paper we will utilize the notion of anyons to
elucidate the behavior of strongly interacting mesoscopic 1D
systems. In particular, we will describe a general framework
that can deal with mixtures of several components of anyonic
particles with the important limiting cases being Fermi-Fermi,
Bose-Fermi, and Bose-Bose systems. Using solutions of the
Schrödinger equation for the up to six-body systems in both
box and harmonic confinement, we will show how statistics
and trapping potentials are important for the tendency of two-
component systems to either mix or phase separate when the
particles have strong short-range repulsive interactions. This

mixing-demixing transition remains a very active research area
with several open questions [35–39]. The results we present
quantify exactly what one should understand by demixing
at the level of particle ordering in the exact wave functions
that take the full trap geometry into account and thus go
beyond any local density approximation based on Bethe ansatz,
mean-field, or Luttinger liquid theory.

The solutions of the Schrödinger equation are obtained
based on a recently developed functional approach to systems
with strong zero-range interactions parametrized by a coupling
strength g. The solutions we present are exact to linear order
in 1/g. It does not rely on Bose-Fermi [40–43] or anyon-
Fermi mappings [16] as these techniques are not capable of
solving general multicomponent systems [44]. In contrast,
our approach yields energies and wave functions that are
adiabatically connected to the eigenstates for large by finite
interaction strengths. In Fig. 1 we show an example with four
particles in a hard-wall box (open boundary conditions) for
different particle statistics (to be defined below). In order
to reach the strongly interacting (“hard core”) regime one
typically tunes the interaction strength from weak to strong
in experimental setups. It is therefore essential to provide
theoretical predictions that take the preparation into account.
This is not possible if one starts from the strictly impenetrable
so-called Tonks-Girardeau [43,45] regime where all manipu-
lations are done assuming an infinite short-range repulsion.
Our framework naturally provides suggestions for probing
anyonic statistics in strongly interacting systems through both
the energy spectra and the particle ordering contained in the
wave functions. As a concrete example we consider using a
strongly interacting impurity in a tunneling experiment to infer
the statistical properties of the majority particles.

II. MODEL

The model Hamiltonian for our N -body system has the
form

H =
∑

i

[
− �

2

2m

∂2

∂x2
i

+ V (xi)

]
+ g

∑
i<j

δ(xi − xj ), (1)

where m is the mass, V (x) is the external trap potential, and
g is the interaction strength. Here we assume that all particles
have the same mass and the same interaction strength which
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FIG. 1. (Color online) Four-body system of two A and two B

particles in a hard-wall box with statistical parameters θA and θB

respectively. The exact solution for large short-range interaction
strength, g, have linear spectral slopes as shown schematically for
(a) Fermi-Fermi (FF), (b) Bose-Fermi (BF), and (c) Bose-Bose (BB)
mixtures. (d) The probabilities of different particle configurations
for the ground state is shown as a function of first θB (keeping
θA = 0) and then θA (keeping θB = π ). The particle configurations
of each line is shown in the left-hand panel. The system is
dominantly antiferromagnetic in the FF limit (θB = θA = 0), then
becomes demixed in the BF case (θB = π and θA = 0), and finally
becomes completely mixed in the BB limit (θB = θA = π ) where all
configurations are equally likely.

is always parametrized by g. The trap potential length scale
is L (box size or harmonic trap length) which is our basic
unit throughout. From L we obtain �

2/mL2 as our unit of
energy and likewise we will measure g in units of �

2/mL. The
anyonic exchange symmetry implies that [16]

�(xk,xk+1) = −e−iθε(xk+1−xk )�(xk+1,xk), (2)

where we suppress the dependence on all N coordinates for
simplicity and xk and xk+1 are two adjacent identical (anyonic)
particles that we exchange and ε(x) = −ε(−x) = 1 [ε(0) =
0]. For θ = 0 they are fermions (F) and for θ = π they are
bosons (B). The boundary conditions are dictated by V (x). It
is open boundary conditions, i.e., � vanishes at the end of
the box for the hard-wall case, while for the harmonic trap
one has Gaussian decay at large distance. Periodic boundary
conditions are not discussed here.

When we discuss two-component mixtures below it is
important to note that there are no symmetry requirements
between different components, i.e., the wave function may
acquire an arbitrary phase under exchange of an A and a
B particle. In Ref. [26], solutions with symmetric (bosonic)
exchange of A and B particles have been discussed. We obtain
the eigenstates of the Hamiltonian without restrictions on the
exchange of A and B. These eigenfunctions can have different
phases under exchange of A and B, but they are nevertheless
eigenstates and thus the physically relevant states.

A powerful feature of our approach to strongly interacting
systems [44] is that we obtain these states without using the

representation theory of symmetry algebras. As discussed in
Refs. [15,46] using the Bethe ansatz, the ground-state energy
depends on g and θ . This is also the case here as illustrated
in Fig. 1 for the Fermi-Fermi (FF), Bose-Fermi (BF), and
Bose-Bose (BB) limits. Our formalism goes beyond the Bethe
ansatz since it can treat arbitrary external traps. Introducing
several strengths for intra- and interspecies interactions is an
interesting question that has led to recent surprises [47] but will
not be pursued here. Furthermore, one could include also odd-
parity interactions [41] but we assume that these are negligible
compared to the even-parity ones in Eq. (1).

To find the spectrum and the eigenstates for 1/g → 0, we
construct a totally antisymmetric wave function, denoted �A,
from the N lowest single-particle states of the potential V (x).
By construction, �A vanishes whenever xi = xj for any i,j =
1, . . . ,N . A general solution of the Schrödinger equation for
1/g → 0 can now be written as

� =
∑

n

an�A[xPn(1), . . . ,xPn(N)], (3)

where the sum runs over all permutations, Pn, of the N

coordinates. Solving the Schrödinger equation now amounts
to finding the coefficients an which specify the amplitude on
each of the orderings of the N particles. This may be done
by noticing that in the limit of 1/g → 0, the ground state
has the largest slope of the energy as function of 1/g [see
Figs. 1(a), 1(b), and 1(c)], the first excited the second largest
slope, etc. The slope of the energy may be expressed in terms of
the an coefficients and varied to obtain linear equations whose
solutions yield the eigenstates [44]. Note that the particles are
impenetrable in the strict limit where 1/g = 0. For large but
finite g exchange is allowed but suppressed. In any case the
solutions we obtain are accurate to linear order in 1/g.

The fact that we are considering identical anyons now
impact the an coefficients. To illustrate this, we consider two
adjacent particles with coordinates x1 and x2 and assume that
a1�A is the wave function for x1 > x2 while a2�A is the one
for x1 < x2. The contribution to the slope of the energy in the
limit 1/g → 0 is proportional to |a1 − a2|2 (see Appendix for
technical details). Assuming two identical anyons that obey
Eq. (2), we have a1 = a2e

iθ [the minus sign in Eq. (2) is
due to the antisymmetry of �A]. The contribution becomes
|a1|24 sin2(θ/2). Thus the slope of the energy and the equations
for the eigenfunctions will now depend on θ . Had we instead
considered a pair of nonidentical A and B particles, then there
is no a priory exchange symmetry that relates a1 and a2. In
that case, the eigenstates of the Hamiltonian in Eq. (1) decide
what a1 and a2 is. We note that for θ = π we recover the
hard-core boson solutions of Girardeau [43], while for θ = 0
we have identical (spinless) fermions. The illustrative example
of N = 3 is discussed in Appendix below and we refer the
reader to that discussion for the full details.

III. BALANCED SYSTEMS

In Fig. 1 we show the N = 4 case with two A and two B

particles. Figures 1(a), 1(b), and 1(c) show the slopes of the
energy around 1/g = 0 as the statistics changes from Fermi-
Fermi (FF) [Fig. 1(a)], across Bose-Fermi (BF) [Fig. 1(b)], and
onto the Bose-Bose (BB) mixture case in Fig. 1(c). Notice the
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totally antisymmetric state in Fig. 1(a) which is the horizontal
line and corresponds to ak = 1 for all orderings. It is only a
solution in the FF case. The slopes have a distinct evolution
with statistics which could in principle be observed by
energy measurements in strongly interacting systems. Figure 1
assumes a box trap but only minute quantitative changes occurs
if one uses harmonic confinement. There has been a lot of
recent interest in strongly interacting Fermi-Fermi [44,48–54]
and Bose-Bose mixtures [47,55–57] and extended focus on
the spatial configuration that such systems display for strong
interactions. In Fig. 1(d) we present the exact results for the
ground-state configurations in the limit 1/g → 0. For the FF
mixture we see a dominant antiferromagnetic ABAB/BABA

configuration, while the BF case has ABBA as the most
probable. Finally, as we go to the BB limit, the state originally
proposed by Girardeau [43] becomes the exact ground state.

The generalized Girardeau type state proposed in Ref. [58]
has a completely mixed density profile (identical to perfect
fermionization of four particles) and has been shown to agree
rather well with a wave function inspired by a combination of
the Bethe ansatz for homogeneous space and the single-particle
solutions of the particular trap [38]. This is a kind of hybrid
solution of the trapped problem. Using our exact solutions
in the strongly interacting regime one may easily check that
the generalized Girardeau state is a linear combination of the
eigenstates with slopes shown in Fig. 1(a) (with coefficients
that depend on the geometry of the trap). It is therefore
not connected to eigenstates for large but finite interaction
strengths and thus of little experimental relevance. The
numerical Density Matrix Renormalization Group (DMRG)
results in Ref. [38] seems to agree with a mixed state for
very large interaction strengths which hints at an underlying
issue with applying DMRG to strongly repulsive particles.
It is intrinsically variational and will therefore have great
difficulties with the (quasi)-degenerate many-body spectrum
for strong interactions unless one uses exact solutions as a
guide here. However, we notice that for large but not extreme
values of the repulsive coupling strength Ref. [38] does indeed
find the demixed ground state that is perfectly consistent with
the exact result presented here.

For larger systems the story is similar as we show in Fig. 2
with the antiferromagnetic dominance being taken over by
mixed configurations as one goes from FF to BF limits. Note
that we only show the configurations carrying the largest part of
the total probability. We omit the results as θA → π (BB limit)
as they are similar to the four-body case in Fig. 1(d). However,
in Fig. 2 we show results for both a box and a harmonic trap
which indeed demonstrates that the trap can have decisive
influence on system configuration for 1/g → 0 both quanti-
tatively and qualitatively. In particular, mixed configurations
dominate the antiferromagnet in the BF limit for harmonic but
not for box traps. This shows how trap engineering can become
state engineering as first discussed in Ref. [44].

IV. IMBALANCED SYSTEMS

We now explore the interplay of statistics and imbalanced in
our strongly interacting mixed systems. The two upper panels
in Fig. 3 show the cases with three (left) and two (right)
fermions (A) mixed with anyons (B). Again the FF limit is
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FIG. 2. (Color online) Same as in Fig. 1(d) but for a balanced
six-body case where the A particles are fermions (θA = π ) assuming
an external confinement that is a box (solid lines) or a harmonic
trap (dashed lines). The configurations as indicated above each set of
lines. For simplicity we show only the configurations with the largest
probabilities.

clearly antiferromagnetic, while in the BF limit it depends
on which particle is in majority. With three B particles, the
BF system is dominated by the (phase separated) ABBBA

configuration, while with only two B particles the system
remains mainly antiferromagnetically ordered (ABABA). The
differences due to the box or harmonic trap are merely
quantitative in this case. In contrast, for the six-body systems
in the two lower panels of Fig. 3, we do see some qualitative
changes with external trap, where a harmonic trap enhances
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FIG. 3. (Color online) Imbalanced five- (upper row) and six-
body (low row) systems. All A particles are fermions (θA = 0).
The configurations follow the lines in the θB = 0 limit (left-hand
side) from top to bottom. Solid lines are for box and dashed lines
for harmonic trapping. As in Fig. 2 we show only the dominant
configurations.
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the configuration AABBAA in the BF limit (lower left panel).
Similarly for the lower right panel, we see enhancement of
the phase separated ABBBBA and ABBBAB/BABBBA

configurations and, again, some qualitative dependence on the
trap. We conclude that the tendency for phase separation for
larger systems in the BF limit discussed in the introduction
seems to be there but that we identify a crucial dependence on
the confinement which makes the local density approximation
questionable for smaller systems. An outstanding problem is
to extrapolate the results obtained here to larger system sizes
and match the few- and many-body limits.

V. PROBING STATISTICS WITH AN IMPURITY

Finally, we address the case of a single impurity that
is strongly interacting with a number of anyons, NB . As
discussed above the statistic of the anyons will in general
influence the energy spectrum and the configurations in the
system. Measuring the “fan” of states shown in Fig. 1 could
therefore provide insights into the statistics by comparison to
the theoretical prediction given the trap shape and the number
of particles. The dependence of the slopes on statistics has
also been identified within the Bethe ansatz approach for
single-component anyons [46].

A different approach which can access more information
about the system is to use tunneling experiments as done
recently for an FF mixture [59]. In the limit 1/g → 0 where the
particles become impenetrable, one can use a simple picture
when opening the trap by lowering the trap on one side [59].
Here we may assume that only the particle located immediately
next to the lowered barrier can tunnel. The probability that this
is the impurity can then be approximated by the configurational
probabilities that we have discussed above. In the left panels
of Fig. 4 we show this probability for different θB in a box
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FIG. 4. (Color online) Probabilities to find an impurity on the
side (left column) or in the middle (right column) of an anyonic
system with up to five anyons as function of statistical parameter,
θB . The upper row is for a box and the lower row for a harmonic
trap. The middle is defined as either the single (for even NB ) or
the two equivalent central positions (for odd NB ). For θB = π all
configurations have equal probability (BB regime).

(upper) or harmonic (lower) trap. We see clear variation with
θB and with NB which implies that this could be used to detect
the statistics of 1D anyonic systems. While the precise way in
which the trap is lowered to allow for tunneling is except to
have a minor quantitative effect, we do not except qualitative
differences. Alternatively, it may be possible to use single
site/single atom resolution quantum gas miscroscopy [60,61]
to probe the 1D system locally [62–64]. Here one can probe
the probability of finding the impurity in the center of the
trap which is also very sensitive to statistics as shown on the
right-hand panels in Fig. 4. While the experiments cited here
have an optical lattice on top of the external confinement, this
will not qualitatively change our predictions. It may change
the geometric factors from the confinement which can be
computed using the formulas presented in Ref. [44].
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APPENDIX: ILLUSTRATION OF THE SOLUTION
TECHNIQUE

We now go through the simple example of three particles
where two are anyons in order to illustrate the differences that
arise from generalized statistics. We will be very brief and
refer the interested reader to seek further details in Ref. [44].
To solve the problem in the limit where 1/g → 0 we start
from the totally antisymmtric wave function, �A, which is zero
whenever any of the three particles overlap in space. We work
exclusively with the ground state but the technique applies to
excited states as well. The coordinate space for the three parti-

FIG. 5. (Color online) Schematic of the coordinate space for the
three-body problem where the A particles are anyons with statistical
parameter θ while single the B particle can be considered an impurity.
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cles is illustrated in Fig. 5 where A are anyons with statistical
parameter θ , while B is of a different kind (an impurity).

The most general wave function with the correct boundary
condition is found by taking �A with a different coefficient,
ai , in the six regions in Fig. 5. This basis is complete and
we may expand the solutions in the limit 1/g → 0 in this
basis. As shown in Fig. 1 of the main text all solutions are
degenerate in energy when 1/g = 0. We now use the fact that
as 1/g → 0, the ground state (for g > 0) has the maximum
slope of the energy as a function of g. Using linear perturbation
theory in 1/g or the Hellmann-Feynman theorem, we have
E = E0 − K/g where

K = lim
g→∞ g2

∑
i>j

∫ |�|2δ(xi − xj )
∏3

k=1 dxk

〈�|�〉 . (A1)

The full wave function, �, is a function of x1,x2,x3 and consists
of the six pieces ai�F in Fig. 5. The sum,

∑
i>j , runs over all

pairs according to the Hamiltonian in Eq. (1) of the main text.
〈�|�〉 is the normalization integral. We now eliminate g by
using the zero-range boundary condition

− 1

2g

[
∂�

∂x+
− ∂�

∂x−

]
= �, (A2)

where x± = ±(xi − xj ).
After some calculations along the lines described in

Ref. [44], the expression for K becomes

K = K0
(a1 − a2)2 + (a2 − a3)2 + a2

1 |1 − e−iθ |
a2

1 + a2
2 + a2

3

, (A3)

where K0 is a geometric factor that depends on the trapping
potential and the coefficients, ai , are real numbers. Notice that
for larger systems there are more than one of these factors
in the result [44], but for three-body systems it can be taken
outside for the parity invariant box and harmonic potentials
we work with here. By variation of K with respect to a1, a2,
and a3, one can obtain the eigenstates that are adiabatically
connected to the eigenstate for large but finite g as well as the
slope of the energy to linear order in 1/g.

As discussed, the decisive quantity that determines the wave
functions that are adiabatically connected eigenstates in the
limit 1/g = 0 is the slope of the energy, K . If we describe the
anyons as strictly hard core particles this means they are to be
regarded as ideal fermions and will make no contribution to K .
This reduces the problem to that of two identical fermions and
an impurity, and this is true no matter what value the anyonic
exchange parameter, θ , takes. In turn one would not be able
to recover the correct Bose-Fermi mixture limit discussed in
detail for the four-body system in the main text. This implies
that one needs to consider the anyons when calculating the
energies even in the “hard core” limit 1/g → 0 in order to
have a model that matches the behavior in the known limiting
cases where θ = 0 or θ = π . Our approach is therefore closely
related to the work using the Bethe ansatz in Refs. [15,46],
and we also obtain a strong coupling expansion of the energy
which depends on θ (see Eq. (10) of Ref. [46]). However,
our formalism goes beyond the Bethe ansatz in being able to
handle arbitrary confining geometries without resorting to the
local density approximation.
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