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We evaluate the spectral properties of the Goldstino in a Bose-Fermi mixture of cold atoms and molecules
whose dynamics is governed by a supersymmetric Hamiltonian. Model-independent results are obtained from
sum rules obeyed by the spectral function. We carry out specific calculations, at zero and finite temperature,
using the random-phase approximation, and obtain in particular analytic expressions for the dispersion relation
at low momentum. These explicit calculations allow us to pin down more precisely the features of the Goldstino
that can be attributed to the supersymmetry alone, together with its spontaneous breaking. The anomalous large
effect of the Fermi sea at moderate and large momenta is emphasized.

DOI: 10.1103/PhysRevA.92.063629 PACS number(s): 67.85.Pq, 11.30.Pb

I. INTRODUCTION

It has been suggested recently that some special Bose-Fermi
mixtures of cold atoms and molecules on optical lattices
could be prepared in such a way that they exhibit symmetry
under the interchange of bosons and fermions (see [1,2] and
references therein). In fact, the underlying algebraic structure
of the Hamiltonian that governs the dynamics of such systems
shows some similarity to the supersymmetry of high-energy
physics [3]. Although, in the present case the supersymmetry
does not involve space-time coordinates, this analogy has
triggered many theoretical works on the subject [1,2,4–6]. In
particular, it has been suggested that, since supersymmetry
is broken at finite temperature and/or density, an analog of
a Nambu-Goldstone excitation, dubbed the Goldstino [7],
should appear in the spectrum [1].

The study of this Goldstino is interesting for a variety
of reasons. Such modes have been studied in genuine su-
persymmetric relativistic quantum field theories or models
[7] and it is worthwhile to compare the properties of these
modes with those that can be produced in cold-atom systems.
Collective phenomena where bosons are turned into fermions
are also expected in the high-temperature quark-gluon plasma,
even though the supersymmetry there is only approximate1

and its role rather subtle [8]. The connection between the
supersymmetry breaking (spontaneous or explicit) [9] and the
existence of the Goldstino also raises interesting questions
[10]. Finally, the Goldstino is an example of a collective
excitation carrying fermionic quantum number,2 a rather
unusual feature in many-body systems where most of the
well-known collective excitations have a bosonic character. All
these issues provide motivation for the present study, which is,
however, more limited in scope.

Our discussion builds on the recent suggestion presented in
Ref. [4], where an ingenious experimental setup was proposed

*sato@fbk.eu
1Other models with only approximate supersymmetry, in which a

Goldstino excitation emerges, have been studied; see, for instance,
[11,12].

2Another such excitation exists in the quark-gluon plasma, the so-
called plasmino; see [13,14] and references therein.

to obtain evidence for the Goldstino. This setup involves
(fermionic) atoms and (bosonic) molecules placed in an optical
lattice. The molecule is made of two fermions that exist in two
species, with one species being essentially inert. The latter
will then be ignored in our discussion, as well as many other
details that are important for the experimental realization but
not for our present purpose. Our study will be based on a
simple continuum Hamiltonian inspired by the original setup
of Ref. [4] and whose parameters are chosen so that it exhibits
supersymmetry. Our goal is to study the spectral properties of
the Goldstino, how these are affected by the temperature, and
to what extent these are determined by symmetry consideration
alone. We discover that the supersymmetry predicts indeed the
existence of a sharp excitation at zero momentum at an energy
given by the difference of the fermion and boson chemical
potentials, but that this mode is strongly modified by the
presence of fermions at finite momentum.

This paper is organized as follows. In the next section
we introduce a specific model of a Bose-Fermi mixture
of cold atoms that can exhibit a special (super)symmetry
under the interchange of bosons and fermions. We review
some consequences of this supersymmetry, in particular
on the degeneracies of the excitation spectrum [1]. Finite
density breaks the supersymmetry and the properties of the
associated Nambu-Goldstone collective mode, the Goldstino,
are discussed in a model-independent way, in particular with
the help of sum rules. In Sec. III we present the results of
explicit calculations of the collective excitations using the
random-phase approximation (RPA). The spectral function is
analyzed in generic situations, at zero and finite temperature.
We obtain analytic expressions for the dispersion relation and
the strength of the Goldstino at low momentum. The specific
effect of the Fermi sea on the finite-momentum excitations
is emphasized. Section IV summarizes our conclusions and
points out possible extensions of the present work.

II. SIMPLE SUPERSYMMETRIC MODEL AND
GOLDSTINO EXCITATION

Although most of the arguments that we develop have a
broader range of applicability, we base our discussion on the
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specific Hamiltonian H = H0 + V in d dimensions, with

H0 = −tb

∫
ddx b†(x)∇2 b(x) − tf

∫
ddx f †(x)∇2f (x),

V =
∫

ddx
(

Ubb

2
b†(x)b†(x)b(x)b(x)

+Ubf b†(x)b(x)f †(x)f (x)

)

=
∫

ddx
(

Ubb

2
nb(x)(nb(x) − 1) + Ubf nb(x)nf (x)

)
,

(2.1)

where b(x) and f (x) denote, respectively, the annihilation
operators of bosons and fermions, with b†(x) and f †(x) the
corresponding creation operators, and nb(x) and nf (x) are,
respectively, the local densities of bosons and fermions

nb(x) ≡ b†(x)b(x), nf (x) ≡ f †(x)f (x). (2.2)

We assume that the bosons have zero spin and that only one
spin component of the fermions is active, so the spin degrees of
freedom can be forgotten. This Hamiltonian can be viewed as
a continuum version of the lattice model suggested in Ref. [4],
with on-site interactions between the bosons and the fermions.
This is the origin of the notation tb and tf for the kinetic
(hopping) terms of the boson and the fermion, respectively.
There is no local fermion-fermion interaction, because all
fermions have the same spin component.

A. Supersymmetry and degeneracies

The Hamiltonian (2.1) possesses symmetries that we now
examine. First, it is easily verified that it commutes with the
particle number operators Nb and Nf ,

[H,Nb] = [H,Nf ] = 0, (2.3)

with

Nb =
∫

ddx nb(x), Nf =
∫

ddx nf (x),

n(x) ≡ nf (x) + nb(x), N ≡ Nb + Nf ,

(2.4)

where we have introduced the total particle density n(x) and
number N for future convenience. Next let us consider the
operator

Q ≡
∫

ddx q(x), (2.5)

where q(x) annihilates one boson and creates one fermion at
point x,

q(x) ≡ f †(x)b(x). (2.6)

By using the canonical commutation and anticommutation
relations

[b(x),b†(y)] = δ(d)(x − y), {f (x),f †(y)} = δ(d)(x − y),

(2.7)

one easily establishes the algebra

[Q,Nb] = Q, [Q,Nf ] = −Q,

[Q,Nb + Nf ] = 0, [Q,Nb − Nf ] = 2Q, (2.8)

{Q,Q†} = N.

Note also the important relation

Q2 = 0. (2.9)

We refer to the operator Q as the supercharge and to the algebra
above as a supersymmetric (SUSY) algebra. We emphasize,
however, that this algebra differs from that considered in the
context of high-energy physics [3]: The latter is related to the
space-time symmetries, while the former is not. The present
supersymmetry is best viewed as an internal symmetry under
the change of bosons into fermions and vice versa. When tb =
tf and Ubb = Ubf , the Hamiltonian H = H0 + V commutes
with the supercharge and these conditions will be assumed
to hold throughout this paper. We then set th = tf = tb and
U = Ubb = Ubf .

The commutation relations (2.8) above imply degeneracies
among the eigenstates of the Hamiltonian. We can label these
eigenstates by the eigenvalues Nb and Nf of the number
operators. Thus we denote a typical eigenstate by |n,Nb,Nf 〉,
with n standing for all the other quantum numbers that are
necessary to completely specify the state. The supercharge
acting on such a state yields

Q|n,Nb,Nf 〉 =
√

N |n,Nb − 1,Nf + 1〉,
Q†|n,Nb,Nf 〉 =

√
N |n,Nb + 1,Nf − 1〉.

(2.10)

In fact, since Q2 = 0, one of these two states is necessarily an-
nihilated by the supercharge or its complex conjugate. Indeed,
suppose, for instance, that Q†|n,Nb,Nf 〉 exists. By acting
on this state with Q, one gets QQ†|n,Nb,Nf 〉 ∝ |n,Nb,Nf 〉.
Acting once more with Q yields Q|n,Nb,Nf 〉 = 0. Similar
reasoning can be used to show that if Q|n,Nb,Nf 〉 exists, then
it is annihilated by Q†. It follows that any state |n,Nb,Nf 〉 is
annihilated either by Q or by Q†. This property has actually
been used to determine the coefficient

√
N in Eq. (2.10). Now,

because [H,Q] = [H,Q†] = 0, if |n,Nb,Nf 〉 is an eigenstate
of H , so are |n,Nb − 1,Nf + 1〉 and |n,Nb + 1,Nf − 1〉, with
the same eigenvalue. However, only two of these three states
can simultaneously exist, so the eigenstates of H are doubly
degenerate, except the vacuum state, which is invariant under
the action of the supercharges Q and Q†. Note that the vacuum
state (N = 0) is the only state that possesses this property, as
is clear from Eq. (2.10).

In the weak-coupling limit, the ground state will typically
be composed of a Fermi sea of fermions, while the bosons will
occupy the zero-momentum state, as is schematically shown
in the top panel of Fig. 1. We study the spectrum of long-
wavelength excitations induced in such a system by the action
of the supercharge Q or its complex conjugate Q†, or more
generally by the operator

qp =
∫

ddx e−ip·x q(x) =
∫

ddk
(2π )d

f †(k)b(k + p) (2.11)
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FIG. 1. (Color online) Schematic picture illustrating the particle-
hole excitations (bottom) induced by the action of the operator Q†

acting on the noninteracting ground state (top). The left (right) panel
represents the distribution function of the fermion (boson).

and its complex conjugate q
†
p. The supercharge corresponds to

the zero-momentum components of qp, Q = qp=0, and reads
explicitly

Q =
∫

ddk
(2π )d

f †(k)b(k), Q† =
∫

ddk
(2π )d

b†(k)f (k).

(2.12)

At zero temperature, since the bosons are only present in the
k = 0 mode, Q annihilates the ground state as long as Nf

is finite (since then a fermion occupies the single-particle
state with zero momentum). By contrast, Q† generates a
superposition of particle-hole excitations, where the hole is
fermionic and the particle is bosonic (see the bottom panel
of Fig. 1). These particle-hole excitations are degenerate, a
fermion with energy thk2 being simply replaced by a boson
with the same energy. This is the situation that we mostly
consider in this paper. We will occasionally comment on the
case Nf = 0, i.e., with no fermion in the ground state. Then
the action of the supercharge Q will produce an excitation with
one fermion in the zero-momentum state. Note that in order
to avoid having to deal with Bose condensation, we restrict
ourselves to two-dimensional systems3 (d = 2). In particular,
we assume that the dispersion relation of the bosons remains
quadratic at low momenta.

Since we will be considering excitations where the numbers
of bosons and fermions are allowed to change, it is convenient
to work in Fock space and introduce chemical potentials. We
define

HG = H0 + V − μbNb − μf Nf = H − μN − �μ�N,

(2.13)

3It may be necessary in some explicit calculations to keep a
very small but nonvanishing temperature (and correspondingly a
small, negative, chemical potential), in order to stay away from
condensation.

with μ ≡ (μb + μf )/2, �N ≡ (Nf − Nb)/2, and �μ ≡
μf − μb. While the total number of particles N commutes
with HG, this is not so of the supercharge Q, which does not
commute with �N . By using the commutation relations (2.8),
we get

[Q,HG] = �μQ, [Q†,HG] = −�μQ†. (2.14)

Thus, the difference of chemical potentials μf − μb = �μ

induces an explicit symmetry breaking that lifts the (twofold)
degeneracy between the eigenstates of H (or of H − μN ).

In particular, for the state illustrated in Fig. 1, we have

E1 − E0 = �μ, (2.15)

where E0 is the energy of the ground state |ψ0〉 of HG (with
a given number of bosons and fermions) and E1 is the energy
of the state Q†|ψ0〉. That is, the particle-hole states have now
energies (thk2 − μb) − (thk2 − μf ) = �μ above the ground
state (in this case, �μ = μf > 0). Note that |ψ0〉 and Q†|ψ0〉
are degenerate ground states of H − μN . In the case where
the ground state contains only bosons, excitations are induced
by the supercharge Q and the excitation energy of the state
Q|ψ0〉 vanishes: E1 − E0 = −�μ = μb = 0. In this case, the
Hamiltonian HG is supersymmetric (since then �μ = 0) and
its ground state |ψ0〉 is degenerate with the state |ψ1〉 = Q|ψ0〉.
This holds, however, only for the noninteracting system.
Repulsive interactions yield positive contributions to μf and
μb (detailed expressions in the mean-field approximation are
given in Sec. III), which are in general distinct and therefore
result in a nonvanishing �μ and correspondingly an explicit
supersymmetry breaking.

B. Retarded propagator and excitation spectrum

Further insight into the excitation spectrum can be gained
by considering the retarded propagator of the supercharge

GR(t,x) ≡ iθ (t)〈{q(t,x),q†(0)}〉eq. (2.16)

At vanishing temperature, the expectation value is a ground-
state expectation value. We may then write a spectral repre-
sentation in terms of the excited states ψn and ψm that can
be reached from the ground state by acting with q†(x) and
q(x), respectively. After taking a Fourier transform of the time
variable, we obtain

GR(ω,x) = −
{∑

n

〈ψ0|q(x)|ψn〉〈ψn|q†(0)|ψ0〉
ω − (En − E0) − �μ

+
∑
m

〈ψ0|q†(0)|ψm〉〈ψm|q(x)|ψ0〉
ω + (Em − E0) − �μ

}
. (2.17)

This expression shows that the retarded propagator has poles
corresponding to the excitation energies En − E0 of the states
|ψn〉 that have nonvanishing overlap with q†(x)|ψ0〉 and at
minus the energies of the states |ψm〉 that overlap with
∼q(x)|ψ0〉, the excitation energies being measured with
respect to the chemical potential difference �μ.
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By integrating Eq. (2.17) over x, one obtains the zero-
momentum component of the retarded propagator

GR(ω,p = 0) = −
{∑

n

〈ψ0|Q|ψn〉〈ψn|q†(0)|ψ0〉
ω − (En − E0) − �μ

+
∑
m

〈ψ0|q†(0)|ψm〉〈ψm|Q|ψ0〉
ω + (Em − E0) − �μ

}
. (2.18)

Among the intermediate states there are states that are
degenerate with the ground state and are of the form Q|ψ0〉 or
Q†|ψ0〉. Note that, for reasons already discussed, only one of
these two states can be realized and which is realized depends
on the sign of �μ. If �μ > 0, we must have Q|ψ0〉 = 0;
otherwise GR(ω,p = 0) has a pole for ω = �μ, corresponding
to a negative excitation energy −�μ, in contradiction with
the assumption that |ψ0〉 is the ground state. Therefore, only
the first term contributes for �μ > 0. By the same reasoning,
one shows that only the second term is finite when �μ < 0.
Note that this simple property no longer holds at finite
momentum p, as we will see in Sec. III.

In fact, the states that are degenerate with the ground state
entirely dominate the retarded propagator at p = 0. To see that,
let us return to Eq. (2.16) and write its Fourier transform as

GR(ω,p = 0) = i

∫ ∞

0
dt eiωt 〈{Q(t),q†(0,x = 0)}〉. (2.19)

By using Q(t) = e−i�μtQ(0), which follows from the equa-
tion of motion for the Heisenberg operator Q(t), i∂tQ =
[Q,HG] = �μQ, and the anticommutation relation

{q(x),q†(y)} = n(x)δd (x − y), (2.20)

which is easily obtained from the (anti)commutation relation
for f and b [Eqs. (2.7)], we obtain

GR(ω,p = 0) = − ρ

ω − �μ
, (2.21)

where ω is assumed to have a small positive imaginary part to
account for the retarded condition. We have set ρ ≡ 〈n(x)〉eq,
the equilibrium density 〈n(x)〉eq being assumed uniform, i.e.,
independent of x. This expression reveals indeed that the
retarded propagator has a single pole at ω = �μ that can
be associated with the state that is reached from the ground
state by the action of Q† or Q, depending on whether �μ is
positive or negative, as we have just discussed.

This result was obtained using only symmetry consider-
ations and commutation relations. It is independent of the
details of the model Hamiltonian, such as the strength of
the interaction, and it holds at finite temperature as well
[15–17]. The pattern we observe here is reminiscent of the
standard pattern of spontaneous symmetry breaking [18], with
an underlying degeneracy that yields a mode with vanishing
excitation energy in the absence of explicit symmetry breaking:
The location of the pole in Eq. (2.21) goes to zero as the explicit
symmetry breaking term �μ vanishes. Because of this analogy
with the Nambu-Goldstone excitations, this mode is generally
referred to as the Goldstino. It is a collective excitation, as
reflected, for instance, in the fact that the spectral strength is
proportional to the total density ρ. However, in contrast to
most collective excitations of many-body systems, which are

bosonic in nature, the Goldstino carries a fermionic quantum
number. The total density ρ = ρf + ρb plays the role of an
order parameter for SUSY breaking [recall that the action of
the supercharge on a given state is proportional to the total
number of particle in that state; see Eq. (2.10)]. Note that
this order parameter is independent of the explicit breaking
induced by the difference of chemical potentials and hence the
difference in the densities ρf − ρb.

C. Spectral sum rules

The spectral function σ (ω,p) = 2 ImGR(ω,p),

σ (ω,p) =
∫ ∞

−∞
dt eiωt

∫
d2x e−ip·x〈{q(x,t),q†(0)}〉, (2.22)

obeys sum rules that can be used to obtain model-independent
information on the properties of the Goldstino at finite
momentum. We consider here more specifically two sum rules.
The first one reads∫ ∞

−∞

dω

2π
σ (ω,p) =

∫
ddx e−ip·x〈{q(0,x),q†(0,0)}〉 = ρ,

(2.23)

where in the last step we have used the (anti)commutation
relations (2.7). The value of this sum rule coincides with the
residue of the pole at ω = �μ in Eq. (2.21). In other words,
the Goldstino exhausts the sum rule at |p| = 0, as we have
already observed. We also emphasize that this sum rule is valid
regardless of detail of the Hamiltonian or temperature, since
we have used only the canonical (anti)commutation relations
in its derivation.

The second sum rule follows by noticing that the supersym-
metry entails a local conservation law. To see that, consider
the equation of motion i∂tq(t,x) = [q(t,x),HG]. A simple
calculation yields

∂tq(t,x) = ith{f †(x)∇2b(x) − [∇2f †(x)]b(x)} − i�μq(x),

(2.24)

which we can put in the form

∂tq(t,x) + ∇ · jQ = −i�μq(t,x), (2.25)

with the current

jQ(x) = th

i
{f †(x)∇b(x) − [∇f †(x)]b(x)}. (2.26)

This current is the analog, for the supercharge, of the particle
currents for bosons and fermions, e.g.,

jb = th

i
{b†(x)∇b(x) − [∇b†(x)]b(x)}, (2.27)

and similarly for jf . These currents obey continuity equations
expressing the local conservation of Nb and Nf , e.g.,

∂tnb(t,x) + ∇ · jb = 0, ∂tnf (t,x) + ∇ · jf = 0. (2.28)

Equation (2.25) has the form of a continuity equation for the
supercharge, with a source term proportional to the explicit
symmetry-breaking term. Taking the Fourier transform of this
equation, we obtain

i∂tqp(t) = th

∫
k

k2(f †
k−pbk − f

†
k bk+p) + �μqp, (2.29)
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with qp(t) given by Eq. (2.11). We note that the first term on
the right-hand side of Eq. (2.29) vanishes at |p| = 0, leaving
the equation of motion i∂tQ(t) = �μQ, which we have used
earlier, with the identification Q = qp=0.

We can use Eq. (2.29) in order to evaluate a second sum
rule ∫ ∞

−∞

dω

2π
ωσ (ω,p) =

∫
q
〈{i∂tq(p,t),q†(q)}〉|t=0. (2.30)

We have∫ ∞

−∞

dω

2π
ωσ (ω,p)

= ρ�μ + th

∫
q

∫
k

k2〈{(f †
k−pbk − f

†
k bk+p),q†(q)}〉

= ρ�μ + thp2
∫

k
〈f †

k fk − b
†
kbk〉

= ρ�μ + thp2(ρf − ρb), (2.31)

where we have used the (anti)commutation relations. This sum
rule, analogous to the f -sum rule, was derived without any
approximation, by using the form of the supercurrent and
the canonical (anti)commutation relations. It involves only
the kinetic part of the Hamiltonian that we have considered
and is therefore independent of the interaction strength U . It
could be modified in case nonlocal (momentum-dependent)
interactions are present.

For p not too big, we may expect the Goldstino to continue
to exhaust the sum rule, with a single peak in the spectral
function located at ω = ωs(p), with residue ρ. When this is
the case, the left-hand side equals ωsρ and the sum rule (2.31)
yields

ωs(p) = �μ − αsp2, (2.32)

where

αs ≡ th

ρ
(ρb − ρf ). (2.33)

We recover the energy of the Goldstino for p = 0 and ωs(p) =
�μ. In addition, the sum rule provides an explicit expression
for the dispersion relation. This quadratic dispersion relation
coincides with that obtained from a construction of a simple
effective action based on supersymmetry [5]. However, the
assumption that the Goldstino exhausts the sum rule at finite
momentum is not realized in generic situations with a finite
fermion density, as the detailed analysis of the next section
will show. Nevertheless, the sum rules derived in this section
remain useful even in such cases, as checks of our numerical
calculations.

III. EXPLICIT CALCULATION WITHIN THE
RANDOM-PHASE APPROXIMATION

We turn now to an explicit calculation of the Goldstino
properties using the RPA. As mentioned earlier, we specialize
to two dimensions. This is in line with the possible realization
of the phenomenon suggested in Ref. [4]. Also, working in
two dimensions allows us to avoid dealing with Bose-Einstein
condensation, which would introduce new features beyond the
scope of the present paper.

FIG. 2. Self-energies for the fermion (left panel) and the boson
(right panel) in the mean-field approximation. The solid (dashed) line
represents a fermion (boson) propagator.

The generic situation that we consider is that in which the
fermion density is finite, given by ρf = k2

F /4π , with kF the
Fermi momentum. In the absence of interactions the fermion
chemical potential is μf = εF , with εF = thk

2
F the Fermi

energy. The boson chemical potential is μb = 0 at T = 0 and
thus �μ0 = εF is positive, where �μ0 is the value of �μ for
U = 0.

In the presence of interactions, the chemical potentials μf

and μb are determined by the constraints ρf = ∫
k n

f

k and

ρb = ∫
k nb

k, where n
f

k ≡ 1/{exp[(εf

k − μf )/T ] + 1} and nb
k ≡

1/{exp[(εb
k − μb)/T ] − 1} are the Fermi and Bose statistical

factors and
∫

k is shorthand for
∫

d2k/(2π )2. In the mean-field
approximation, the single-particle energies are given by (see
Fig. 2 for the relevant diagrams)

ε
f

k = thk2 + Uρb, εb
k = thk2 + U (2ρb + ρf ). (3.1)

At zero temperature the chemical potential are then given in
terms of the densities by μf = εF + Uρb and μb = U (2ρb +
ρf ) so that �μ = μf − μb = εF − Uρ, with ρ = ρf + ρb.
These values of the chemical potentials are those which
maintain the densities equal to their values in the absence of
interaction. Note that, as we increase the value of U from zero,
keeping the densities fixed, �μ changes its sign from positive
to negative at U = 4πthρf /ρ, at which point the nature of the
Goldstino excitation changes (see the discussion in Sec. II).

At finite temperature, the chemical potentials are deter-
mined as functions of the fermion and boson densities from
the equations

μf = Uρb + T ln(e4πthρf /T − 1),

μb = U (2ρb + ρf ) + T ln(1 − e−4πthρb/T ).
(3.2)

In fact, within the range of parameters that we will be using,
the chemical potentials will never differ much from their zero-
temperature values.

We are using units with � = 1. Then, if a denotes the
unit length, a momentum has dimension [p] = a−1. The
quantity thp

2 has the dimension of an energy, i.e., [th] = [E]a2.
Energies will then be measured as ratios tha

−2. The ratio U/th
is dimensionless. By choosing the unit length equal to unity,
we make the dimension of th that of an energy. We use this
quantity as energy unit. We use also kB = 1, so the temperature
has the same unit as the energy. We consider temperatures in
the range 0 � T � th.

In the numerical calculations presented in this section, we
have made a specific choice for the densities, ρf = 0.5 and
ρb = 1. This is in order to illustrate the generic situations that
we wish to discuss, avoiding in particular special values [e.g.,
if ρf = ρb, the right-hand side of the sum rule (2.31) vanishes].
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FIG. 3. Retarded Green’s function in free limit G0(p). These
diagrams represent particle-hole excitations: The left panel is for
fermion-particle–boson-hole excitation, while the right one is for
fermion-hole–boson-particle excitation.

A. Free case (U = 0)

At U = 0, the retarded Green’s function in the supercharge
channel is given by the one-loop diagrams displayed in Fig. 3.
It reads [recall that ω has a small (positive) imaginary part]

G0(ω,p) = −
∫

d2k
(2π )2

{
n

f

k

(
1 + nb

k+p

)
ω − (

εb
k+p − ε

f

k + �μ0
)

+ nb
k+p

(
1 − n

f

k

)
ω + (

ε
f

k − εb
k+p − �μ0

)
}

. (3.3)

This expression makes explicit the origin of the different
contributions, as well as their physical interpretation. The two
terms are in one-to-one correspondence with the corresponding
terms of Eq. (2.17): The first term has poles at positive ω

associated with fermion-hole excitations, while the poles of
the second term represent (minus) fermion-particle excitation
energies at negative ω. At small T , in each term the Bose occu-
pation factor operates a severe selection of available momenta,
either by amplifying the scattering at low momentum (in the
first term) or by restricting the momenta of possible boson-hole
states (second term). This restriction of the phase space leads
to sharp peaks in the spectral function, as we will see soon.
Note that, in agreement with the arguments developed in the
previous section, only one term of Eq. (3.3) contributes at
p = 0. If ρf 
= 0, the last term vanishes: |k| cannot be both
greater than kF (because of the factor 1 − n

f

k ) and vanish
(because of the factor nb

k+p = nb
k). If ρf = 0, it is the first term

that vanishes.
At this point, we notice that the denominators in the two

terms are in fact identical, so simplifications occur, leading
after some calculation to the more compact expression

G0(ω,p) = −
∫

d2k
(2π )2

nf

(
ε

f

k

) + nb

(
εb

k+p

)
ω − εb

k+p + ε
f

k − �μ0

= − 1

4πth|p|
∑
i=f,b

⎛
⎝∫ kci

0
d|k||k|ni

(
εi

k

)
sgn(ω̃i)√

k2
ci − |k|2

−i

∫ ∞

kci

d|k||k| ni

(
εi

k

)
√

|k|2 − k2
ci

⎞
⎠, (3.4)

where ω̃ ≡ ω − �μ0, ω̃f ≡ ω̃ − thp2, ω̃b ≡ ω̃ + thp2, kcf ≡
|ω̃ − thp2|/2th|p|, and kcb ≡ |ω̃ + thp2|/2th|p|. At low tem-
perature, μf � εF and μb � 0, so �μ0 � εF . We see from
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FIG. 4. (Color online) The range of support for the fermion-hole
continuum is indicated by the red shaded area. The black curve
indicates the location of the boson-particle pole position (for p < kF )
and the boson-hole pole for p > kF . The parameters are T = U =
0, ρb = 1, and ρf = 0.5, corresponding to kF = √

2π � 2.5. The
dashed horizontal line indicates the value ω̃ = −�μ0, corresponding
to ω = 0. It touches the minimum of the continuum at p = kF . When
p > kF , the boson-hole pole lies outside the fermion continuum and
its energy ω < 0 corresponds to minus the excitation energy of the
corresponding Goldstino. We have chosen a = 1 so that both ω̃/th and
p are dimensionless (see the discussion at the beginning of Sec. III).

Eq. (3.4) that the imaginary part of G0 comes from the region
of ω values where the equation

ω = εb
k+p − ε

f

k + �μ0 = �μ0 + th(p2 + 2p · k) (3.5)

is satisfied. Note that the minimum of the continuum occurs
for p = kF : For this value of the momentum there exists an
excitation where a fermion on the top of the Fermi sea (k =
kF ) turns into a boson with vanishing momentum, releasing
an energy εF that just compensates for �μ0. This particular
excitation occurs therefore at ω = 0. It is degenerate with the
reverse process where a boson receives a kick of momentum
kF and turns into a fermion at the top of the Fermi sea. This
degeneracy is visible in Fig. 4: It is the point where the branch
corresponding to the boson-hole excitation leaves the fermion
continuum, at p = kF .

At |p| = 0, G0(ω,p = 0) has a pole at ω = �μ0 � εF ,
corresponding to the free Goldstino excitation. Since �μ0 > 0,
this excitation is realized by the action of the operator Q† on
the ground state.

As p increases, the pole turns into a branch cut singularity
corresponding to a continuum of boson-particle–fermion-hole
excitations with energies given by Eq. (3.5). The corresponding
branch cut has support in the region

thp
2 − 2thkF p � ω̃ � thp

2 + 2thkF p. (3.6)

In addition, there is another contribution whose phase space
is controlled by the Bose statistical factor, which imposes k +
p � 0. This leads to a δ-function contribution to the spectral
function located at

ω = �μ0 − th|p|2. (3.7)
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FIG. 5. (Color online) Free (U/th = 0) spectral function at |p| =
1.0. The black solid, red dashed, and blue dotted lines correspond to
temperatures T/th = 0, 0.2, and 1.0, respectively. The unit of σ is
1/th. The left panel shows excitations induced by q†

p. The large width
is due to the fermion continuum (ρf = 0.5,ρb = 1). The right panel
shows excitations induced by qp, with vanishing fermion density
(ρf = 0,ρb = 1).

This δ peak is located within the fermion continuum as long
as p < kF and moves out of it when p > kF . This behavior
is illustrated in Fig. 4. The physical interpretation of the
mode changes depending on whether p < kF or p > kF .
In the former case, we are dealing with a boson-particle
(fermion-hole) state, while in the latter we are dealing with
a boson-hole (fermion-particle) state [see the discussion after
Eq. (3.3) above].

The spectral function at T = 0 is given by the explicit
expression

σ (ω,p) = θ (kF − kcf )

2πth|p|
√

k2
F − k2

cf + 2πρbδ(ω̃ + th|p|2).

(3.8)

It is plotted as a function of ω̃ in Fig. 5, left panel, for the
value of the momentum |p| = 1.0. The integrals of the spectral
weights of the continuum and the peak are, respectively, ρf

and ρb. They add up to ρ = ρf + ρb, in accordance with the
sum rule (2.23). It is also easily checked that Eq. (3.8) satisfies
the second sum rule (2.31).

One can also verify that when p � kF , the fermionic
continuum goes over to a δ function 2πρf δ(ω̃ − thp

2).
Nevertheless, there is no momentum region where the spectral
function exhibits two separate peaks: The width of the con-
tinuum 4th|p|kF always exceeds the separation 2thp2 between
such possible peaks.

It is worth emphasizing in this regard the large effect of
the Fermi sea. In ordinary fermion systems, long-wavelength
excitations involve particle-hole excitations forced by the Pauli
principle to be located in the immediate vicinity of the Fermi
surface. As a result, the widths of the collective excitations
vanish at low momentum. In the present case, particle-hole
states involving a boson as a particle are not affected by the
Pauli principle. As a result, the entire Fermi sea, not only the
vicinity of the Fermi surface, contributes to the excitations,
yielding a huge phase space, which is responsible for the large
broadening of the excitation as soon as p increases. This can
be contrasted with the situation where the Fermi sea is absent.
Then a single peak remains, that associated with the bosonic
(hole) excitation (see Fig. 5, right panel, where ρf is set equal
to zero).

Finite temperature contributes a small width to the latter
excitation, while its effect is larger on the fermion-hole

FIG. 6. Bubble diagrams contributing to the Goldstino propagator
in the RPA. The diagrams drawn correspond to fermion-particle–
(solid line) boson-hole (dashed line) excitations. There exist similar
diagrams, not drawn, with fermion-hole and boson-particle processes
or mixtures of the various processes.

excitation, as can be seen in the plots for T/th = 0.2 and
T/th = 1.0 in Fig. 5. However, in either case, the qualitative
picture remains unaltered as the temperature increases, at least
as long as it remains moderate, i.e., as long as T � th.

B. The Goldstino at p = 0

We now consider the effect of the interactions. In the RPA,
the single-particle energies are evaluated in the mean-field
approximation, where the effect of the boson-fermion or
boson-boson interactions is to shift the single-particle energies
by a constant amount, Uρb for the fermions and U (ρf + 2ρb)
for the bosons [see Eq. (3.1)]. The free response at zero
momentum becomes then

G0(ω,p = 0) = − ρ

ω − �μ − Uρ
. (3.9)

After summing the bubble diagrams drawn in Fig. 6, the
full retarded propagator is obtained as

GR(ω) = G0(ω)

1 − UG0(ω)
. (3.10)

Note that for ω � �μ, G0 is of order U−1 from Eq. (3.9)
and the summation of all the bubble diagrams is needed for
consistency: Each new bubble contributes a factor G0U ∼ U 0,
where U comes from the vertex. It is easy to verify that
Eq. (3.10) is identical to Eq. (2.21): There is a complete
cancellation of the interaction effects between the corrections
to the self-energies and the direct particle-hole interaction.
This is a pattern familiar in the study of collective modes
associated with spontaneously broken symmetries [18] and
indeed the existence of a pole at ω = �μ is guaranteed by
symmetry, as we discussed in the previous section.

C. The Goldstino at finite momentum

At finite p, the retarded propagator is given by an equation
similar to Eq. (3.10) and reads

GR(ω,p) = G0(ω,p)

1 − UG0(ω,p)
, (3.11)

where G0(ω,p) is given by Eq. (3.4) with mean-field cor-
rections to single-particle energies included. As illustrated in
the left panel of Fig. 7, the continuum is shifted up by the
constant amount Uρ, without any other alteration. In particular,
its minimum remains located at momentum p = kF . Because
of the shift, the pole is now located outside the continuum.
It continues to exist over a small range of momenta, until
the corresponding dispersion relation hits the continuum (at
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FIG. 7. (Color online) Fermion continuum (red shaded area) and
the position of the Goldstino pole (black solid line) at small |p|
(left panel) and large |p| (right panel). At small |p| the quadratic
dispersion relation of the Goldstino is given by ω̃ = −α|p|2, with
α well approximated by the expansion (3.18). This is indicated by
the blue dashed line, while the quadratic dispersion at large |p|,
given by ω̃ = −th|p|2, is plotted as the green dotted line (the nearly
horizontal line in the left panel). The dashed horizontal line in the
right panel indicates the value ω̃ = −�μ, corresponding to ω = 0.
The interaction strength is U/th = 0.1.

|p| ≈ 0.04 for the present values of the parameters). In this
range of momenta, we determine numerically the dispersion
relation by solving the equation UG0(ωp,p) = 1. In the
vicinity of ωp we expand the propagator and get

G(ω,p) ≈ − Z

ω − ωp

, Z = 1

U 2

(
∂G0

∂ω

∣∣∣∣
ωp

)−1

. (3.12)

We use this expression to evaluate the residue numerically.
At low momentum, we may also obtain a simple analytical

estimate. To that aim, we first expand G0 in terms of |p|:

G0 = − ρ

ω̃ − Uρ
+ A

p2

(ω̃ − Uρ)2
+ B

p2

(ω̃ − Uρ)3
+ O(p4),

(3.13)

where the terms that are proportional to |p| or |p|3 vanish due
to the rotational symmetry. The coefficients A and B are given
by

A = th(ρb − ρf ), (3.14)

B = − t2
h

π

∫ ∞

0
d|k||k|3[nf

(
ε

f

k

) + nb

(
εb

k

)]
. (3.15)

Next we expand Eq. (3.13) for small ω̃, which yields

G0 = 1

U

[
1 + ω̃

Uρ
+

(
ω̃

Uρ

)2

+ p2

Uρ2

(
A − B

Uρ

)

+ ω̃p2

U 2ρ3

(
2A − 3B

Uρ

)]
+ O(ω̃3,ω̃2p2,p4). (3.16)

At low temperature and in the vicinity of ω̃ = 0, the A term
in Eq. (3.13) is of order thp2/U 2ρ and the B term is of order
t2
h p2k4

f /U 3ρ3 ∼ t2
h p2/U 3ρ, while the first term is of order

1/U . At weak coupling U � th, the A term is therefore much
smaller than the B term.

By using the expansion (3.16) in Eq. (3.11), we obtain the
retarded propagator in the form

GR(ω,p) � − Z

ω̃ + αp2
. (3.17)

Here α and Z are given, respectively, by

α ≡ 1

ρ

(
A − B

Uρ

)

= th(ρb − ρf )

ρ
+ t2

h

πUρ2

∫ ∞

0
d|k||k|3[nf

(
ε

f

k

) + nb

(
εb

k

)]

≈ th

ρ

{
(ρb − ρf ) + 4πthρ

2
f

Uρ

}
(3.18)

and

Z ≡ ρ

(
1 + B

U 2ρ3
p2

)

= ρ − p2 t2
h

πU 2ρ2

∫ ∞

0
d|k||k|3[nf

(
ε

f

k

) + nb

(
εb

k

)]

≈ ρ − p2
4πt2

h ρ2
f

U 2ρ2
. (3.19)

These two expressions (3.18) and (3.19) determine the spectral
properties of the Goldstino at low momentum. The last
approximate equalities in the equations above are valid at
low temperature, when

∫ ∞
0 d|k||k|3nb(εb

k) can be neglected.
The dispersion relation is quadratic [4,5], but the coefficient
of p2, α, is different from that obtained from Eq. (2.32) under
the assumption that the Goldstino pole exhausts the sum rule:
The last term in Eq. (3.18) does not exist in Eq. (2.32). In
fact, at weak coupling, the Goldstino ceases to exhaust the
sum rule as soon as its momentum becomes finite. Equation
(3.19) reveals indeed that the residue decreases rapidly with
increasing |p|2, from its maximum value Z = ρ achieved at
|p| = 0. The Goldstino continues to exist as a pole and as
can be seen in Fig. 7, left panel, its quadratic dispersion is
accurately reproduced with the value of α given in Eq. (3.18),
for |p| � 0.02.

The spectral strength missing in the residue is moved to
the continuum, in agreement with the sum rule (2.23). This
is illustrated by the plot of the spectral function (the top left
panel of Fig. 8), while the respective contributions of the pole
and the continuum to the sum rule are displayed in Fig. 9, top
panel. This figure confirms that for |p| smaller than 0.02, the
spectral weight of the pole is well described by the result of
small |p|, the small ω̃ expansion (3.19). At such small |p|, the
spectral weight of the continuum is almost negligible, but it
increases gradually as |p| increases. Above |p| = 0.04, where
the pole hits the continuum, all the spectral weight is moved
to the continuum.

A similar analysis can be performed for the second sum-rule
(2.31). For convenience, we rewrite this sum rule in terms of
ω̃: ∫ ∞

−∞

dω̃

2π
ω̃σ (ω̃,p) = −th(ρb − ρf )p2. (3.20)

The contribution from the pole∫ ∞

−∞

dω̃

2π
ω̃σ (ω̃,p) � −th

{
(ρb − ρf ) + 4πthρ

2
f

Uρ

}
p2 (3.21)

and that from the continuum are shown in the bottom panel of
Fig. 9. We note that the first two terms on the right-hand side
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FIG. 8. (Color online) Spectral function at various temperature.
The results at |p| = 0.02, 0,05, and 0.25 are plotted in the top left
(0.002), top right (0.05), and bottom panels (0.25). The large (small)
σ part is plotted in the bottom left (bottom right) panel so that the
shape of the peak (continuum) becomes clearer. The black solid line
corresponds to T/th = 0, the red dashed line to T/th = 0.2, and the
blue dotted line to T/th = 1. The plot in the bottom right panel is a
blowup of the bottom left panel to show the structure of the peak near
ω̃ = 0.

of Eq. (3.21), namely, −th(ρb − ρf )p2, agree with the exact
result, so we expect the last term to cancel the continuum
contribution. We also see that, at weak coupling, the latter
term is much larger than the former ones. The figure illustrates
that such a large cancellation indeed takes place between the
contribution of the pole and that of the continuum, which can
be explained by using the following estimates: The pole has a
large strength ρ ∼ O(p0), but its energy ω̃ is small −αp2 ∼
O(p2) at small |p|. The continuum, on the other hand, has a
small strength −p24πt2

h ρ2
f /U 2ρ2 ∼ O(p2), but a large energy

Uρ ∼ O(p0). The net result is a nearly complete cancellation
between pole and continuum contributions, leaving a sum rule
that almost does not change with momentum [right-hand side
of Eq. (3.20)], while the location of the pole varies rapidly
with p. In such circumstances, one cannot use the sum rule to
determine the energy of the collective mode, as suggested by
Eq. (2.32).

Above the momentum where the pole hits the continuum,
the spectral function exhibits a very broad peak (see the top
right panel of Fig. 8). As the momentum increases, the peak
sharpens, as can be seen in the bottom left panel of Fig. 8.
Eventually, its position becomes almost the same as in the
noninteracting limit, i.e., ω̃ � −thp2 [Eq. (3.7) with �μ0

replaced by �μ]. This is expected: In the limit where ω̃

and |p|2 are large compared with Uρ, GR(ω,p) approaches
Eq. (3.4). When the momentum exceeds some value close to
the Fermi momentum, the pole emerges from the continuum,
as shown in the right panel of Fig. 7 (for the parameters used,
the two curves in the right panel of Fig. 7, corresponding,
respectively, to the actual pole position and to ω̃ = −thp2, are
almost indistinguishable). The excitation then corresponds to
ω < 0 and is therefore induced by the operator qp that creates
fermion-particle–boson-hole excitations. Before that point the
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FIG. 9. (Color online) Contributions from the pole (blue dotted
line) and the continuum (green short-dashed line) to the sum rules
(2.23) (top panel) and (3.20) (bottom panel). Their sum (black solid
line) is also plotted. For comparison, the pole contribution obtained
from the small |p| and ω̃ expansion [Eqs. (3.19) and (3.21)] (pink
dash-dotted line) and the right-hand sides (red long-dashed line)
of these two sum rules are also plotted. Note that the exact and
total curves coincide. The unit of the vertical axis in the bottom
panel is th.

dispersion relation corresponds to a boson-particle–fermion-
hole excitation, that is, an excitation induced by q

†
p.

In summary, we have described the behavior of the
Goldstino excitation from low to high momentum, in a
generic weak-coupling situation. At very low momentum the
Goldstino exists as a well-isolated excitation, with a single
peak dominating the spectral function. As the momentum
increases, the spectral weight of the peak decreases and is
moved to the continuum of fermion-hole excitations. At some
value of the momentum, the peak merges with the continuum,
producing a broad structure in the spectral function. This
structure eventually turns again into a sharp peak as the nature
of the excitation gradually changes. The change is complete
when the momentum is sufficiently high for the peak to emerge
from the continuum and ω becomes negative, at which point
the excitation is essentially a boson-hole excitation. Note that
at both low momentum and high momentum, the excitation has
a well-defined quadratic dispersion relation, ω = �μ − αp2

at low momentum and ω ≈ −thp2 at high momentum.
Finite temperature produces a modest smearing, without

altering the global structure of the results, at least within the
range that we have explored, i.e., T/th � 1. This can be seen on
the plot of the spectral function at T/th = 0.2 and T/th = 1 in
Fig. 8. Finite T also increases the value of α, as can be expected
from Eq. (3.18): The integral appearing in the second line of
this equation is dominated by high momenta and increases
when T increases. The value of α increases by ∼20% at T = th
compared to its value at T = 0.
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Finally, let us see how the results are modified as one
increases the coupling U . The left-hand side of the sum
rules (2.23) and (2.31) are plotted in Fig. 10 for the values
U/th = 0.1, 0.2, 0.5, and 1. A comparison with Fig. 9 reveals
that, in this range of couplings, the qualitative behaviors do
not change much. In fact, because in the dominant terms of
Eq. (3.19) |p| appears only in the combination |p|/U , the sum
rules do not change when these are plotted as a function of
|p|th/U , as shown in Fig. 10.

At much stronger coupling (U/th � 1), the situation
changes however, as illustrated in the left panel of Fig. 11. In
this case, the shift of the continuum Uρ becomes large enough
for the pole to stay away from the continuum. Nevertheless,
we still observe the change of the dispersion relation from
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FIG. 11. (Color online) Range of the continuum (shaded area)
and the position of the Goldstino pole (black solid line) at small |p|
(left panel) and large |p| (right panel) at U/th = 40. For comparison,
the asymptotic result on the pole position ω̃ = −α|p|2 at small |p| is
also plotted with the blue dashed line, the result ω̃ = −th|p|2 at large
|p| is plotted with the green dotted line, and ω̃ = −αsp2 is plotted
with the gold dash-dotted line. The dashed horizontal line in the right
panel indicates the value ω̃ = −�μ, corresponding to ω = 0.
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FIG. 12. (Color online) Pole and continuum contributions to the
sum rule (3.20) for U/th = 40. Their sum, the pole contribution
obtained from the small |p| and small ω̃ expansion, and the right-hand
side of Eq. (3.20) (labeled Exact) are also plotted for comparison. The
unit of the vertical axis is th.

ω̃ = −αp2 (small |p|) to ω̃ = −thp2 (large |p|). As can be seen
in Fig. 11, the dispersion relation is approximately ω̃ = −αp2

below |p| � 2 and approaches ω̃ = −thp2 above |p| � 12. At
the same time, the residue is almost equal to ρ below |p| � 2,
while it is approximately ρb above |p| � 12. We note that
the large value of U makes �μ negative, so the excitations
that we are considering are those induced by qk; these are
the excitations expected in the absence of the Fermi sea and
indeed, at strong coupling, the Fermi sea provides just a
renormalization of the dispersion relation, without affecting
much the structure of the excitation. Furthermore, when U

is large, the U -independent contribution to α in Eq. (3.18)
dominates over the U -dependent term, so α approaches αs

defined by Eq. (2.33), as can be seen from Fig. 11. This means
that in this regime (strong coupling and low momentum),
the dispersion relation is completely determined by the sum
rule of Eq. (2.32). Actually, one can gauge the validity of
this assumption by looking at Fig. 12, where the various
contributions to the sum rule are displayed: In contrast to
Fig. 9, the cancellation between the pole and the continuum
is quite modest and the contribution from the pole is almost
equal to the right-hand side of Eq. (3.20).

IV. CONCLUSION AND OUTLOOK

We have analyzed the spectral properties of the Goldstino
that can be produced in a two-dimensional system of cold
atoms and molecules with supersymmetric dynamics. The
supersymmetry is spontaneously broken by the finite density
of particles and it is also explicitly broken by the difference
�μ of the chemical potentials of fermions and bosons: This
is why, at zero momentum, the energy of the Goldstino is not
zero, as would be expected from the Goldstone theorem, but
equal to �μ. As soon as the momentum is finite, the fermions
produce a significant broadening of the excitation: This is
because, in contrast to what happens in usual collective modes,
the fermion excitations are not concentrated in the vicinity of
the Fermi surface, but the entire Fermi sea participates in the
excitation. The situation where there are no fermion in the

063629-10



SPECTRAL PROPERTIES OF THE GOLDSTINO IN . . . PHYSICAL REVIEW A 92, 063629 (2015)

ground state is simpler, since then the Goldstino always appear
as a sharp peak and its properties can be simply obtained from
the sum rules that we have derived. A similar situation holds
at strong coupling. At weak coupling, the dispersion relation
of the mode is quadratic when it is well defined, i.e., at low
momentum (ω̃ = −αp2) and at high momentum (ω̃ = −thp2).
A smooth crossover from the low-momentum region to the
high-momentum region was observed in analyzing the spectral
function. We note that this Goldstino corresponds to the type-B
mode in the classification of Nambu-Goldstone modes [19,20]
because the order parameter ρ is expressed as the expectation
value of the anticommutation relation between the supercharge
and its density ρ = 〈{Q,q†(x)}〉. The quadratic dispersion is
consistent with the classification for the internal symmetry
breaking.

There are a number of interesting issues that would be
worth pursuing. The transition between weak and strong
coupling that we just alluded to is one of them. It would
also be interesting to see how the results obtained in this
paper are modified by the presence of a confining trap. More
generally, it has been shown that the dispersion relation of
(bosonic) Nambu-Goldstone modes can be determined in a
model-independent way [19,20]. It would be interesting to
investigate whether the techniques of these papers can be
applied to the Goldstino. Studying the effect of other explicit
forms of symmetry breaking (beyond that due to the chemical

potential difference) would be worth exploring. The damping
rate of the Goldstino cannot be calculated in the approximation
used in the present paper (beyond the trivial broadening that we
have discussed), but improved approximations that take into
account the collisions would enable us to calculate this quantity
[6]. Another topic of interest is the study of the Goldstino in
cases where the bosons form a Bose-Einstein condensate. We
hope to return to these and other interesting questions in the
near future.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid for the
Global COE Program “The Next Generation of Physics,
Spun from Universality and Emergence” from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.
This work was also supported by JSPS KAKENHI Grant No.
15H03652, the RIKEN iTHES Project, and JSPS Strategic
Young Researcher Overseas Visits Program for Accelerating
Brain Circulation (Grant No. R2411). D.S. thanks T. Kunihiro,
I. Danshita, and Y. Takahashi for fruitful discussion. The
research of J.-P.B. was supported by the European Research
Council under the Advanced Investigator Grant No. ERC-AD-
267258. J.-P.B. thanks the Yukawa Institute of Theoretical
Physics in Kyoto for hospitality, where this paper was
completed.

[1] Y. Yu and K. Yang, Phys. Rev. Lett. 100, 090404 (2008).
[2] Y. Yu and K. Yang, Phys. Rev. Lett. 105, 150605 (2010); M.

Snoek, S. Vandoren, and H. T. C. Stoof, Phys. Rev. A 74, 033607
(2006); M. Snoek, M. Haque, S. Vandoren, and H. T. C. Stoof,
Phys. Rev. Lett. 95, 250401 (2005); A. Capolupo and G. Vitiello,
Adv. High Energy Phys. 2013, 850395 (2013); J. He, J. Yu, X.
H. Zhang, and S. P. Kou, arXiv:1210.3232.

[3] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974).
[4] T. Shi, Y. Yu, and C. P. Sun, Phys. Rev. A 81, 011604(R) (2010).
[5] B. Bradlyn and A. Gromov, arXiv:1504.08019.
[6] H. H. Lai and K. Yang, Phys. Rev. A 91, 063620 (2015).
[7] V. V. Lebedev and A. V. Smilga, Nucl. Phys. B 318, 669 (1989);

K. Kratzert, Ann. Phys. (NY) 308, 285 (2003).
[8] V. V. Lebedev and A. V. Smilga, Ann. Phys. (NY) 202, 229

(1990); Y. Hidaka, D. Satow, and T. Kunihiro, Nucl. Phys. A
876, 93 (2012).

[9] L. Van Hove, Nucl. Phys. B 207, 15 (1982); J. Fuchs, ibid. 246,
279 (1984).

[10] A. K. Das and M. Kaku, Phys. Rev. D 18, 4540 (1978);
M. B. Paranjape, A. Taormina, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 50, 1350 (1983); S. Midorikawa, Prog. Theor.
Phys. 73, 1245 (1985); D. Buchholz and I. Ojima, Nucl. Phys.
B 498, 228 (1997).

[11] D. Satow, Phys. Rev. D 87, 096011 (2013).
[12] J.-P. Blaizot and D. Satow, Phys. Rev. D 89, 096001

(2014).
[13] J.-P. Blaizot and E. Iancu, Phys. Rep. 359, 355 (2002).
[14] J.-P. Blaizot and J.-Y. Ollitrault, Phys. Rev. D 48, 1390

(1993).
[15] A. Nicolis and F. Piazza, Phys. Rev. Lett. 110, 011602 (2013);

A. Nicolis, R. Penco, F. Piazza, and R. A. Rosen, J. High Energy
Phys. 11 (2013) 055.

[16] H. Watanabe, T. Brauner, and H. Murayama, Phys. Rev. Lett.
111, 021601 (2013).

[17] T. Hayata and Y. Hidaka, Phys. Rev. D 91, 056006 (2015).
[18] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);

124, 246 (1961).
[19] H. Watanabe and H. Murayama, Phys. Rev. Lett. 108, 251602

(2012).
[20] Y. Hidaka, Phys. Rev. Lett. 110, 091601 (2013).

063629-11

http://dx.doi.org/10.1103/PhysRevLett.100.090404
http://dx.doi.org/10.1103/PhysRevLett.100.090404
http://dx.doi.org/10.1103/PhysRevLett.100.090404
http://dx.doi.org/10.1103/PhysRevLett.100.090404
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevLett.105.150605
http://dx.doi.org/10.1103/PhysRevA.74.033607
http://dx.doi.org/10.1103/PhysRevA.74.033607
http://dx.doi.org/10.1103/PhysRevA.74.033607
http://dx.doi.org/10.1103/PhysRevA.74.033607
http://dx.doi.org/10.1103/PhysRevLett.95.250401
http://dx.doi.org/10.1103/PhysRevLett.95.250401
http://dx.doi.org/10.1103/PhysRevLett.95.250401
http://dx.doi.org/10.1103/PhysRevLett.95.250401
http://dx.doi.org/10.1155/2013/850395
http://dx.doi.org/10.1155/2013/850395
http://dx.doi.org/10.1155/2013/850395
http://dx.doi.org/10.1155/2013/850395
http://arxiv.org/abs/arXiv:1210.3232
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1103/PhysRevA.81.011604
http://dx.doi.org/10.1103/PhysRevA.81.011604
http://dx.doi.org/10.1103/PhysRevA.81.011604
http://dx.doi.org/10.1103/PhysRevA.81.011604
http://arxiv.org/abs/arXiv:1504.08019
http://dx.doi.org/10.1103/PhysRevA.91.063620
http://dx.doi.org/10.1103/PhysRevA.91.063620
http://dx.doi.org/10.1103/PhysRevA.91.063620
http://dx.doi.org/10.1103/PhysRevA.91.063620
http://dx.doi.org/10.1016/0550-3213(89)90636-6
http://dx.doi.org/10.1016/0550-3213(89)90636-6
http://dx.doi.org/10.1016/0550-3213(89)90636-6
http://dx.doi.org/10.1016/0550-3213(89)90636-6
http://dx.doi.org/10.1016/S0003-4916(03)00143-X
http://dx.doi.org/10.1016/S0003-4916(03)00143-X
http://dx.doi.org/10.1016/S0003-4916(03)00143-X
http://dx.doi.org/10.1016/S0003-4916(03)00143-X
http://dx.doi.org/10.1016/0003-4916(90)90225-D
http://dx.doi.org/10.1016/0003-4916(90)90225-D
http://dx.doi.org/10.1016/0003-4916(90)90225-D
http://dx.doi.org/10.1016/0003-4916(90)90225-D
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.007
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.007
http://dx.doi.org/10.1016/0550-3213(82)90133-X
http://dx.doi.org/10.1016/0550-3213(82)90133-X
http://dx.doi.org/10.1016/0550-3213(82)90133-X
http://dx.doi.org/10.1016/0550-3213(82)90133-X
http://dx.doi.org/10.1016/0550-3213(84)90297-9
http://dx.doi.org/10.1016/0550-3213(84)90297-9
http://dx.doi.org/10.1016/0550-3213(84)90297-9
http://dx.doi.org/10.1016/0550-3213(84)90297-9
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1103/PhysRevD.18.4540
http://dx.doi.org/10.1103/PhysRevLett.50.1350
http://dx.doi.org/10.1103/PhysRevLett.50.1350
http://dx.doi.org/10.1103/PhysRevLett.50.1350
http://dx.doi.org/10.1103/PhysRevLett.50.1350
http://dx.doi.org/10.1143/PTP.73.1245
http://dx.doi.org/10.1143/PTP.73.1245
http://dx.doi.org/10.1143/PTP.73.1245
http://dx.doi.org/10.1143/PTP.73.1245
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1016/S0550-3213(97)00274-5
http://dx.doi.org/10.1103/PhysRevD.87.096011
http://dx.doi.org/10.1103/PhysRevD.87.096011
http://dx.doi.org/10.1103/PhysRevD.87.096011
http://dx.doi.org/10.1103/PhysRevD.87.096011
http://dx.doi.org/10.1103/PhysRevD.89.096001
http://dx.doi.org/10.1103/PhysRevD.89.096001
http://dx.doi.org/10.1103/PhysRevD.89.096001
http://dx.doi.org/10.1103/PhysRevD.89.096001
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://dx.doi.org/10.1016/S0370-1573(01)00061-8
http://dx.doi.org/10.1103/PhysRevD.48.1390
http://dx.doi.org/10.1103/PhysRevD.48.1390
http://dx.doi.org/10.1103/PhysRevD.48.1390
http://dx.doi.org/10.1103/PhysRevD.48.1390
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1103/PhysRevLett.110.011602
http://dx.doi.org/10.1007/JHEP11(2013)055
http://dx.doi.org/10.1007/JHEP11(2013)055
http://dx.doi.org/10.1007/JHEP11(2013)055
http://dx.doi.org/10.1007/JHEP11(2013)055
http://dx.doi.org/10.1103/PhysRevLett.111.021601
http://dx.doi.org/10.1103/PhysRevLett.111.021601
http://dx.doi.org/10.1103/PhysRevLett.111.021601
http://dx.doi.org/10.1103/PhysRevLett.111.021601
http://dx.doi.org/10.1103/PhysRevD.91.056006
http://dx.doi.org/10.1103/PhysRevD.91.056006
http://dx.doi.org/10.1103/PhysRevD.91.056006
http://dx.doi.org/10.1103/PhysRevD.91.056006
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRev.124.246
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.108.251602
http://dx.doi.org/10.1103/PhysRevLett.110.091601
http://dx.doi.org/10.1103/PhysRevLett.110.091601
http://dx.doi.org/10.1103/PhysRevLett.110.091601
http://dx.doi.org/10.1103/PhysRevLett.110.091601



