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Wave-packet dynamics on Chern-band lattices in a trap
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The experimental realization of lattices with Chern bands in ultracold-atom and photonic systems has motivated
the study of time-dependent phenomena, such as spatial propagation, in lattices with nontrivial topology. We
study the dynamics of Gaussian wave packets on the Haldane honeycomb Chern-band lattice model, in the
presence of a harmonic trap. We focus on the transverse response to a force, which is due partly to the Berry
curvature and partly to the transverse component of the energy band curvature. We evaluate the accuracy of a
semiclassical description, which treats the wave packet as a point particle in both real and momentum space, in
reproducing the motion of a realistic wave packet with finite extent. We find that, in order to accurately capture
the wave-packet dynamics, the extent of the wave packet in momentum space needs to be taken into account: The
dynamics is sensitive to the interplay of band dispersion and Berry curvature over the finite region of momentum
(reciprocal) space where the wave packet has support. Moreover, if the wave packet is prepared with a finite
initial momentum, the semiclassical analysis reproduces its motion as long as it has a large overlap with the
eigenstates of a single band. The semiclassical description generally improves with increasing real-space size of
the wave packet, as long as the external conditions (e.g., external force) remain uniform throughout the spatial
extent of the wave packet.
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I. INTRODUCTION

The presence of nontrivial topology in the energy bands
of lattice models [1,2] has generated intense interest over
the past decade. When an energy band possessing a nonzero
Chern number is filled with fermions, one obtains a Chern
insulator, realizing a quantized Hall effect without external
magnetic fields. The Chern number is a topological invariant,
defined as the flux of the Berry curvature over the Brillouin
zone. The Berry curvature acts like a momentum-space analog
of the magnetic field [3]. One of the first examples of
a Chern-band model was introduced in the seminal work
by Haldane [4], where time-reversal symmetry is explicitly
broken in a honeycomb lattice model of free fermions by
complex hoppings between next-nearest-neighbor lattice sites.

Chern-band physics has been discussed in numerous differ-
ent scenarios. Originally, the focus was on electronic systems
[5–9]. More recently, lattices with nontrivial Berry curvature
have been experimentally realized using ultracold atoms
trapped in optical lattices [10–13]. The spatial geometries
in these setups are more flexible than in traditional solid-
state situations. These experimental developments have thus
motivated the study of effects of lattice and trap geometries
on topological states [14–19]. Cold atoms also provide an
excellent platform for observing and analyzing nonequilibrium
dynamics of Chern bands. Therefore, there has been increasing
interest in developing protocols to characterize the topological
nature of Chern bands from nonequilibrium behavior [20–30].
For instance, the quench dynamics of Chern insulators can
signal their nontrivial edge states [26] and the semiclassical
trajectory of wave packets can be related to the Chern
number [22].

Topological photonics has proved itself to be another
important context for Chern-band physics [31–40]. Theoretical
studies and proposals [32–36] have also been supplemented
by experimental observation of the topological edge states in

photonic systems [37–40]. In addition, topological magnons
have been proposed as a platform to study transport influenced
by Berry curvature in the context of the thermal Hall effect
[41–43].

For ultracold atoms (especially bosons) and for photonic
systems, a dynamical situation where the atoms or photons
form a spatially localized and evolving wave packet is more
natural than a static situation in which a band is exactly
filled. Thus, the recent experimental developments call for a
systematic understanding of the nonequilibrium dynamics of
realistic wave packets on Chern-band models. A particularly
important theme is the response of a localized wave packet
to an applied force (potential gradient) [13,22,27,29,44]. One
expects Bloch oscillations in the direction of the applied force.
In addition, there is also motion perpendicular to the direction
of the force, with contributions due to the topological Berry
curvature and due to the band dispersion.

A natural framework to describe the motion of wave packets
is to use semiclassical equations of motion. For systems with
Berry curvature, the semiclassical equations were introduced
in the context of crystals with magnetic Bloch bands [45–50],
anomalous Hall responses [50–52], and optical lattices with
spin-orbit coupling [53]. They have been used to study the
effect of the Berry curvature on wave-packet trajectories
[29,54] and on collective modes [55,56] in ultracold gases.
For instance, Ref. [29] outlines a procedure to isolate the
contribution of the topological Berry curvature by separately
evolving the system under opposite potential gradients and
then appropriately summing up the responses.

Semiclassical approaches typically rely on the approxima-
tion of assigning a sharply defined position and momentum
simultaneously to a quantum state. Based on this assumption
one can solve the set of coupled differential equations for
position and momenta and hence obtain sharply defined
trajectories of the particle in both real and momentum space.
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However, this assumption is a priori not valid in realistic
situations where the wave packets have a finite spread in
both real and momentum space, a scenario expected in typical
ultracold bosonic and photonic experiments.

In this work we study the effect of size and initial
momentum of a wave packet placed off center in a harmonic
trap in Haldane’s honeycomb model and evaluate the ability of
the semiclassical approach to describe these effects. We focus
on time evolutions up to moderate time scales such that the
displacement of the wave packet from its initial position is
not large compared to the wave-packet size and much smaller
than the distance to the center of the trap. In this regime the
trap plays a role similar to a constant force. We quantify the
transverse motion of the wave packet using the angular velocity
θ̇ with respect to the center of the trap.

We find that the standard point-particle semiclassical
approach captures some qualitative features of the dynamics,
but is generally insufficient to quantitatively describe the
actual real-time dynamics. Therefore, we reformulate the
semiclassical description to take into account the finite spread
of the wave packet in momentum space. The exact evolution
of θ̇ is compared in detail to predictions from the extended
semiclassics and from the standard point-particle semiclassics.
In momentum space the wave packet moves at a constant rate
in the direction of the force, leading to Bloch oscillations. As it
crosses different regions of the Brillouin zone, the local Berry
curvature and band curvature determine θ̇ (t). For spatially
localized wave packets, the extent in momentum space is
finite. The extended semiclassics procedure incorporates the
variations of band dispersion and Berry curvature in this
extended region of momentum space. We find that, as long
as the physics is dominated by one band, this procedure
reproduces the full dynamics well. This shows that the basic
idea of semiclassics (simultaneously assigning both position
and momentum to a quantum particle) can incorporate aspects
of the full quantum dynamics to an extent beyond what is
known from the usual point-particle treatment.

One might intuitively expect that semiclassical descriptions
should work better for spatially large wave packets since
these correspond to smaller regions in momentum space.
We show that this is generally true, but that semiclassics
still describes the dynamics of rather small wave packets,
especially if momentum-space extent is included. In addition,
by considering a tight trap, we show an example of possible
experimental relevance where larger real-space sizes can
render the semiclassical description less inaccurate, due to an
inhomogeneity of the force within the spatial support region
of the wave packet.

We also demonstrate the effect of initializing the wave
packet with a finite momentum. In addition to zero momentum
(� point) we start with the packet at one of the K points
and one of the M points of the Brillouin zone. We show
that imparting momenta to a Gaussian wave packet using an
eik·r-like factor can cause the wave function to have significant
occupancy in the upper band, including extreme cases where
it is almost completely transferred to the upper band. As long
as one of the bands dominates, the semiclassical description
works well when using the properties (band dispersion and
Berry curvature) of the band where the state has most of its
weight. The single-band semiclassical procedure is naturally

insufficient when multiple bands are significantly occupied:
Features such as interference oscillations are not captured by
an incoherent averaging of contributions from different bands.

The rest of the paper is organized as follows. In Sec. II we
describe the model, the geometries, and the simulations of time
evolution. In Sec. III we discuss the semiclassical framework
for the dynamics of the wave packet, followed by a comparison
of the results from simulations and semiclassics in Sec. IV.
Finally, we comment on the dynamics in a tight harmonic trap
in Sec. V and provide some discussion and context in Sec. VI.

II. SIMULATIONS OF WAVE-PACKET DYNAMICS
ON THE HALDANE MODEL

A. Model Hamiltonian

Haldane’s model [4] is a tight-binding Hamiltonian on a
honeycomb lattice

HHM = J1

∑
〈i,j〉

b̂
†
i b̂j + J2

∑
〈〈i,j〉〉

eiφij b̂
†
i b̂j + H.c., (1)

where the 〈i,j 〉 denotes the nearest neighbors, 〈〈i,j 〉〉 denotes
the next-nearest neighbors, and b̂

†
j (b̂j ) is the creation (an-

nihilation) operator at site i. We will formally consider the
dynamics of a single particle, so b̂

†
j and b̂j may be thought of

as either fermionic or bosonic operators. When particles hop
between next-nearest neighbors they pick up a phase φij = φ

if they hop in the direction of the arrow shown in Fig. 1(a)
and −φ if they hop in the opposite direction. The energy
spectrum is gapped if φ �= nπ and is particle hole symmetric
for φ = π/2. Throughout this paper we use the parameters

FIG. 1. (Color online) (a) Honeycomb lattice defining the
Haldane model (1) with black and gray circles denoting the two
sublattices. The solid lines represent the real nearest-neighbor
hoppings and the dotted lines the complex next-nearest-neighbor
hoppings. The arrows indicate the direction in which the particle hops
to pick up a phase φ. (b) Two-band energy spectrum with parameters
J1 = −1, J2 = −1/4, and φ = 0.49π . (c) Berry curvature in the
lower band for the same parameter values shown as a color map
in the Brillouin zone. The high symmetry points are marked. The
boundaries of the Brillouin zone are formed by the reciprocal lattice
vectors G1 = (0,4π/3) and G2 = (2π/

√
3, − 2π/3).
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J1 = −1, J2 = −1/4, and φ = 0.49π , for which the energy
spectrum is depicted in Fig. 1(b). The parameters are chosen
so that the two energy bands are quite similar and none of
them are excessively flat (since band flatness can introduce
additional peculiarities in the dynamics) and so as to avoid
exact particle-hole symmetry, since we are interested in generic
rather than fine-tuned effects. We expect the physics described
in this paper (explicitly for these parameters) to be exemplary
for a wide region in parameter space.

For these parameters the bands have a finite Chern number:
−1 for the lower band and +1 for the upper band. The
distribution of the Berry curvature of the lower band in the
Brillouin zone is shown in Fig. 1(c). The upper band has
approximately opposite Berry curvature, i.e., positive instead
of negative values. We provide some details of the topological
properties and conventions in the Appendix. Figure 1(c)
also shows the high-symmetry points. In addition to zero
momentum (� point), these are three inequivalent M points
and two inequivalent K points. We choose the boundaries of
the Brillouin zone to be a parallelogram. In the literature this
is equivalently often chosen to be of hexagon shape; the solid
lines inside the Brillouin zone show the boundaries for such a
choice.

We set � = 1, measuring time in units of �/J1 and energy
in units of J1. Space and momentum are in units of lattice
spacing (set to unity) and inverse lattice spacing, respectively,
and geometric angles are measured in radians.

B. Construction of wave packets

We are interested in the dynamics of a wave packet of
finite real-space extent in Haldane’s honeycomb model in the
presence of a harmonic trap. The initial wave packet is prepared
with a Gaussian shape. For zero initial momentum,

|ψ(t = 0)〉 = 1

N
∑

l

cl|l〉 = 1

N
∑

l

e
− |rl−rc |2

2σ2 |l〉. (2)

Here |l〉 denotes a single-particle state, with the particle com-
pletely localized at a site indexed by l, N is a normalization
factor, and rl = (xl,yl) denotes the Euclidean position of site l.
The coefficient cl(t) denotes the amplitude of the wave function
at time t at site l and σ is the width of the wave packet. We will
also use wave packets with nonzero initial momenta. A finite
momentum is obtained by multiplying the coefficients with a
site-dependent phase factor

|ψ(t = 0; k0)〉 =
∑

l

cl,0e
ik0·rl |l〉

= 1

N
∑

l

exp

[
− |rl − rc|2

2σ 2
+ ik0 · rl

]
|l〉.

(3)

In cold-atom experiments, a wave packet or atomic cloud can
be boosted in momentum space in this way using a Bragg pulse;
this is commonly used to determine the excitation spectrum
of cold-atom systems using Bragg spectroscopy (see, e.g.,
Ref. [57] for a description of the experimental technique).
In experimental spectroscopy, both energy and momentum
are well resolved in order to obtain the energy-momentum

FIG. 2. (Color online) (a) Overlaps Oα of the initial wave packet
at different initial momenta k0 with the eigenstates of HHM (with
periodic boundary conditions) plotted against the energy eigenvalues
Eα . (b) Weight of the wave packet on the lower band (W−) for each
initial momentum in the Brillouin zone.

dispersion. In our case we supply the wave packet with a
momentum using the factor eik0·rl , but do not specify energy.
This can be thought of as a Bragg pulse with sharp momentum
resolution but poor or nonexistent energy resolution. This
allows us to explore various occupancies of the two energy
bands.

The momentum zero wave packet (2) turns out to predom-
inantly have overlap with eigenstates of HHM at the bottom of
the spectrum, in the lower band, as long as σ is not too small.
This is generally true in simple lattice models with negative
hopping constants. In a complicated model such as HHM, this
is not a priori obvious, but is the case for the parameters we
are using.

Boosting the wave packet in momentum space as in
Eq. (3) can result in the wave packet having support on
both bands of HHM. This is exemplified in Fig. 2 through
the overlap of the wave packet with the eigenstates of HHM.
We denote the overlap of the initial state by |ψ(t = 0)〉 with
an eigenstate of HHM and |uα〉 with an eigenvalue Eα as
Oα = |〈ψ(t = 0)|uα〉|2. Figure 2(a) shows a plot ofOα against
Eα for four out of the six high-symmetry momentum points
being the initial momentum of the wave packet. It can be
seen that for k0 = K the wave packet has support on both
bands. The wave packet corresponding to k0 = M1 is also
shifted higher in energy, though it has overlaps primarily with
the states of the lower band. On the contrary, for k0 = M2

the weight shifts almost entirely to the upper band. Such
a drastic difference of behavior between the M1 and M2

points may seem unexpected because they are related by
symmetry. However, the eigenfunction structures are of course
inequivalent, so the overlap distributions after a momentum
boost cannot be expected to be similar.

We quantify the weight of the wave packet on the lower
band W− by taking the sum of the overlaps of the wave packet
with the eigenstates of the lower band. Mathematically,

W− =
N/2∑
α=1

Oα, W+ = 1 − W−, (4)

where W+ is the weight on the upper band and N is the number
of sites in the lattice and hence the number of single-particle
eigenstates. The color map in Fig. 2(b) shows the magnitude
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FIG. 3. (Color online) (a) Geometry of the lattice and the trap. The surface represents the potential of the harmonic trap and the colors
show the occupancies of the wave packet at t = 0 on the real-space lattice. The lower figure shows a zoom near the wave packet. (b) Snapshots
of the time evolution of the real-space occupancies |cl(t)|2. The red circle shows the center of the mass of the wave packet. The solid lines are
equipotential contours of the trap potential. (c) Occupancies of each momentum mode in the Brillouin zone at different times (|c̃k(t)|2). The trap
strength for all figures is V0 = 0.002. The initial wave packet has a Gaussian width σ 2 = 50, initial momentum k0 = M2, and |r0 − rc| = 164.5
in units of the lattice constant.

of W− for a wave packet with a given initial momentum in the
Brillouin zone.

C. Trap

The evolution in time is carried out with the Hamiltonian

H = HHM + Htrap = HHM +
∑

l

V (l)b̂†l b̂l , (5)

where

V (l) = V0

2
|rl − r0|2, (6)

with r0 = (x0,y0) denoting the center of the harmonic trap
and V0 controlling its strength. The force exerted by the trap
is along the inward radial direction, so one expects Bloch
oscillations in this direction. We are particularly interested
in the transverse response and hence the angular velocity of
the wave packet around the center of the trap is a natural
observable to study. The angular variable θ at position r =
(x,y) is given by θ = tan−1 y−y0

x−x0
. Its average as a function of

time is calculated using

〈θ〉(t) = tan−1 〈y〉(t) − y0

〈x〉(t) − x0
(7)

from the averages x and y for the time-dependent wave
functions

〈x〉(t) =
∑

l

|cl(t)|2xl, 〈y〉(t) =
∑

l

|cl(t)|2yl. (8)

D. Simulations of wave-packet dynamics

In this work we present results for the exact dynamics of
wave packets placed off center in the trap and compare them

with semiclassical predictions. We present simulations mostly
for a relatively weak trap (V0 = 0.002), where the wave-packet
width σ is much smaller than the distance (≈164.5) to the trap
center r0. The trap potential gradient (i.e., the force) does not
vary too much over the extent of the wave packet. In Sec. V
we also present results for a tighter trap (V0 = 0.02), where
the initial distance of the wave packet to the trap center is 10
times smaller so as to have the same force at the center of
the wave packet. The trap curvature is more significant in this
case.

In Fig. 3(b) we show the real-space evolution of the wave
packet in the weak trap for two different initial momenta. We
focus on dynamics up to t ≈ 20. The motion of the wave
packet on this time scale is not large compared to its width.
The force acts in the radial (positive-x) direction. A transverse
response, perpendicular to the force, is clearly visible; we
analyze this quantitatively through the time dependence
of 〈θ̇〉. In the following sections we provide a thorough
comparison of numerically exact results for 〈θ̇〉 obtained
through direct simulation (which we refer to as 〈θ̇〉exact) with
predictions from the semiclassical formalism, to be defined
below.

In addition to the transverse response, there are also Bloch
oscillations in the radial direction; this is not obvious in the
real-space snapshots but is more evident in momentum space.
The motion of the wave packet in momentum space is obtained
by taking a lattice Fourier transform of the coefficients cl(t)
at each instant of time to obtain the occupancies of each
momentum, denoted by c̃K(t). This motion can be visualized
by plotting the coefficients |c̃k(t)|2 over the Brillouin zone
at different instants of time, as done in Fig. 3(c). The wave
packet moves through the Brillouin zone at constant rate in the
direction of the force. Due to the periodicity of the Brillouin
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FIG. 4. (Color online) Trajectories of the wave packet in momen-
tum space for three initial momenta showing Bloch oscillations. The
orange circles represent the trajectory of the center of the wave packet
in momentum space. The blue larger circles denote the position of
the wave-packet center in momentum space at four instants of time
(t = 0, 5, 10, and 15).

zone, each time the wave packet exits through the right or top
boundary it reenters through the left or bottom boundary. As a
visual aid, we show schematically in Fig. 4 the trajectories of
the wave-packet centers starting from the three high-symmetry
points.

III. SEMICLASSICAL DYNAMICS

In this section we set up the semiclassical framework to
calculate the time evolution of θ̇(t). We first formulate the
basic point-particle approach, under the standard assumption
of simultaneously well-defined position and momentum. We
then formulate an extension where the structure of the wave
packet in momentum space is taken into account.

In the most basic semiclassical approach, the structure of
the wave packet in both real and momentum space are ignored,
so the wave packet or particle is described by a sharply defined
position and momentum (r,k). In addition, it is also assumed
that the wave-packet dynamics is completely governed by a
single energy band. We will first write down the semiclassical
equations with the assumption that the wave packet has support
only on the lower band. The semiclassical equations of motion
are [50]

dr
dt

= ∇kE−(k) − dk
dt

�−(k), (9a)

dk
dt

= F. (9b)

Here E−(k) is the energy dispersion and �−(k) is the
Berry curvature of the lower band. From the second term in
Eq. (9b) we see that the Berry curvature induces a velocity
perpendicular to the direction of the external force, which
leads to the transverse motion of the wave packet.

We now specialize to the geometry we are using, with a
trapping potential centered at (x0,y0). Using (6), the external
force is given by

F(r) = −∇rV (r) = −V0[(x − x0)x̂ + (y − y0)ŷ]. (10)

So the semiclassical equations form a set of four coupled
differential equations

v−,x(k) = dx

dt
= ∂E−(k)

∂kx

+ V0(y − y0)
z
−(k), (11a)

v−,y(k) = dy

dt
= ∂E−(k)

∂ky

− V0(x − x0)
z
−(k), (11b)

dkx

dt
= −V0(x − x0), (11c)

dky

dt
= −V0(y − y0). (11d)

This set of equations can be solved explicitly to trace out the
trajectory in time of a particle in real and in momentum space.
We label as 〈θ̇〉−,pp-sc the angular velocity corresponding to the
real-space trajectories calculated in this way. (The subscript
pp-sc stands for point-particle semiclassics and the minus sign
denotes that the lower band properties have been used.) A
similar calculation can be done with the characteristics of the
upper band E+(k) and 
z

+(k) and the angular velocity so
calculated is denoted by 〈θ̇〉+,pp-sc.

As observed previously, wave packets can have support
on both bands. One reasonable procedure would be to use
the 〈θ̇ (t)〉−,pp-sc or 〈θ̇ (t)〉+,pp-sc curve, depending on whether
the lower or upper band has more occupancy. We follow a
somewhat more refined procedure by taking the weighted
average of the two according to the weights W∓ of the initial
packet on the two bands. Hence the angular velocity calculated
from the point-particle semiclassics is defined as

〈θ̇〉pp-sc = W−〈θ̇〉−,pp-sc + W+〈θ̇〉+,pp-sc. (12)

A key assumption above is that the wave packet can be
treated like a point particle in both real and momentum space
simultaneously, hence neglecting the quantum nature of the
wave packet. However, in realistic quantum experiments and
simulations, where the wave packet is of finite extent, the
validity of this assumption is not a priori clear. We now extend
this formalism to take into account the finite spread of the wave
packet in momentum space. From the geometric definition
θ = tan−1 y−y0

x−x0
, we obtain

θ̇ = (x − x0)vy − (y − y0)vx

(x − x0)2 + (y − y0)2
. (13)

By using the expressions of v±,x(k) and v±,y(k) obtained from
Eqs. (11a) and (11b), we define the functions θ̇±(k) in the
Brillouin zone. Their typical profiles are shown in Fig. 5, with
parameter values corresponding to the initial position used in
Fig. 3.

With our parameters, we have E−(k) ≈ −E+(k). Also,
we always have 
+(k) = −
−(k). Hence we get θ̇−(k) ≈
−θ̇+(k). In other words, the profiles shown in Fig. 5 for the
two bands θ̇±(k) are nearly but not exactly negative of each
other.

These profiles of θ̇±(k) can be used to calculate the
evolution of the angular velocity in time by taking a weighted
average of θ̇±(k), the weights being the occupancies of the
wave function in momentum space (|c̃k(t)|2) multiplied by the
weights in each band W± defined in (4). We denote the angular
velocity calculated this way by 〈θ̇〉wp-sc(t), the wp as a reminder
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FIG. 5. (Color online) Profiles of θ̇−(k) and θ̇+(k) in the Brillouin
zone as calculated from combining the semiclassical equations of
motion (9b) and the kinematic relation (13). The coordinates of the
center of the mass of the wave packet in real space relative to the
center of the trap are given by x − x0 = −164.5 and y − y0 = 0.5
and the trap strength is V0 = 0.002. Here θ̇−(k) and θ̇+(k) have nearly
but not exactly equal and opposite values θ̇−(k) ≈ −θ̇+(k).

that the wave-packet structure is taken into account. Thus

〈θ̇ (t)〉wp-sc = W−〈θ̇ (t)〉−,wp-sc + W+〈θ̇〉+,wp-sc

= W−
∑
k∈BZ

|c̃k(t)|2θ̇−(k) + W+
∑
k∈BZ

|c̃k(t)|2θ̇+(k)

=
∑
k∈BZ

|c̃k(t)|2[W−θ̇−(k) + W+θ̇+(k)]. (14)

This procedure assumes that the force does not change along
the spatial extent of the wave packet; the spread of the wave
packet in momentum space is taken into account while a
point-particle description is used in real space. Therefore, this
description will break down when the force varies significantly
within the real-space support region of the wave packet
(Sec. V). In addition, note that this is not a computationally
advantageous approximation for the time evolution, since we
are anyway solving the full problem in order to obtain the
Fourier transform c̃k(t). Our purpose here is to investigate
whether (and how much) taking the momentum-space spread
into account improves the semiclassical description.

In this work we focus on parameter regimes such that the
wave packet does not have large displacements in real space
within the time scales t � 20 of interest (Fig. 3). Therefore, we
make a further simplifying assumption and take θ̇ as position
independent, setting r to be the initial position of the wave
packet at t = 0, and use the resulting distribution of θ̇ to
calculate the average. In the following two sections we test
how well this procedure describes the angular motion of the
wave packet.

IV. COMPARISON OF SEMICLASSICAL PREDICTIONS
WITH EXACT DYNAMICS

In this section we compare the angular velocities of the
wave packet obtained from the exact simulations (〈θ̇〉exact) to
those obtained from the semiclassical calculations (〈θ̇〉pp-sc and

〈θ̇〉wp-sc) and discuss the regimes of validity of the semiclassical
framework. In Fig. 6 we plot the angular velocities as a function
of time for the setup corresponding to that shown in Fig. 3(a)
for two different sizes and three different initial wave-packet
momenta �, M2, and K. Before discussing in detail, we make
some general observations.

(i) For the � point and M2 point initial states, 〈θ̇〉pp-sc, cal-
culated using the basic point-particle semiclassical equations
(11), shows similar overall qualitative features as the evolution
of the exact 〈θ̇〉exact, but it generally fails to quantitatively
reproduce the evolution. On the other hand, 〈θ̇〉wp-sc, calculated
using the modified semiclassics of Sec. III (taking into account
the wave-packet structure in momentum space), reproduces
many of the prominent features of the 〈θ̇ (t)〉exact curve. For the
K point initial state, there seems to be no noticeable agreement.

(ii) There is generally better agreement between the
semiclassics and the exact evolution for the wave packet that is
larger in real space (σ 2 = 50, top row) compared to the smaller
wave packet (σ 2 = 0.5, bottom row).

(iii) For the larger wave packet (σ 2 = 50, top row), the �

point initial state is almost completely in the lower band (W− =
0.999) and the M2 point initial state is almost completely in
the upper band (W+ = 0.985). Hence, using only the lower
band � or only the upper band M2 would give very nearly
the same semiclassical curves as the ones shown, which are
W±-weighted mixtures.

For the smaller wave packet (σ 2 = 0.5, bottom row), the
same is true with the � point initial state (W− = 0.99), but the
M2 point initial state now has a significant contribution from
the lower band as well (W+ = 0.74). This leads to cancellation
of the weighted mixtures, so that, comparing Figs. 6(b) and
6(e), we see much smaller values of 〈θ̇〉 for the smaller wave
packet. For the K point initial state, the contributions of the two
bands largely cancel each other, resulting in tiny semiclassical
predictions for 〈θ̇ (t)〉.

We now discuss in more detail the larger (σ 2 = 50) wave
packet Figs. 6(a)–6(c). A wave packet with zero initial
momentum has support almost completely on the lower band
(W− = 0.999), hence the relevant profile of angular velocity is
θ̇−(k). At the zero-momentum (�) point, both the gradient of
the band dispersion and the Berry curvature in the lower band
are zero, leading to a zero angular velocity. As a result, the wave
packet starts with zero θ̇ . From the momentum-space trajectory
in Fig. 4(a) and the Brillouin zone profile of Fig. 5, one can
infer that the wave packet mostly moves through regions of
nearzero θ̇ . As a result, the θ̇ remains relatively small, as
can be seen in Fig. 6(a). The momentum-space shape of the
packet plays a strong role in this case: As the trajectory lies
roughly between positive and negative regions of θ̇−(k), small
variations of the shape can cause θ̇ to vary between positive
and negative values. Accordingly, the dynamics of 〈θ̇ (t)〉exact is
captured notably better by the extended semiclassics 〈θ̇〉wp-sc

than by the point-particle approximation 〈θ̇〉pp-sc.
As discussed in Sec. II B, the wave packet with initial

momentum at M2 has support almost entirely on the upper
band (W− = 0.015), hence the upper band characteristics are
more relevant here. At the M2 point, although the gradient
of the band dispersion vanishes, the Berry curvature has a
sharp peak [see Fig. 1(c)]. As a result, the wave packet gains a
finite angular velocity almost immediately at t ≈ 0. (Note that
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FIG. 6. (Color online) Angular velocity from exact simulations 〈θ̇〉exact, compared with point-particle semiclassics 〈θ̇〉pp-sc and with extended
semiclassics taking the momentum-space structure into account 〈θ̇〉wp-sc. The initial wave-packet size (a)–(c) σ 2 = 50 and (d)–(f) σ 2 = 0.5.
Three different initial momenta are shown: (a) and (d) k0 = �, (b) and (e) k0 = M2, and (c) and (f) k0 = K. For k0 = � and k0 = M2, 〈θ̇〉wp-sc

agrees quantitatively with 〈θ̇〉exact, whereas 〈θ̇〉pp-sc shows qualitative agreement at best. For k0 = K, 〈θ̇〉exact shows oscillations that are not
captured by semiclassics. In (c) the Fourier transform of the oscillations in 〈θ̇〉exact is shown in the inset.

the semiclassical approximations, by construction, start with
nonzero θ̇ at t = 0, which is the value of θ̇ at the M2 point. The
physical or exact θ̇ starts at zero.) Considering the trajectory
Fig. 4(b) and the Brillouin zone profile of Fig. 5, we note that
the trajectory moves through regions of large θ̇ ; this is reflected
in the larger absolute values of Fig. 6(b). The trajectories in
momentum space intersect regions of θ̇+(k) < 0 for t � 10 to
explore regions θ̇+(k) > 0 at later times. The change of sign
can be seen in Fig. 6(b) in all three curves.

For the wave packet with k0 = K, the dynamics of 〈θ̇〉exact

shows pronounced oscillations, which preclude meaningful
comparison with the semiclassical predictions. The oscilla-
tions are due to the fact that the initial state created according
to Eq. (3) has significant weight on both lower and upper
bands (W− = 0.457), with a relatively-well-defined energy
gap between eigenstates occupied in the lower band and
eigenstates occupied in the upper band. This can be seen
through the overlaps plotted in Fig. 2(a). A Fourier transform
of the 〈θ̇ (t)〉exact [Fig. 6(c) inset] shows that the dominant
frequency (peak around ≈2.8 with width ≈0.3) matches
the energy difference (≈2.6) between eigenstates of high
overlap [Fig. 2(a), top right]. The weighted band averages
shown as semiclassical predictions stay near zero, which
could be thought of as the value around which the exact
〈θ̇ (t)〉exact oscillates, but it is currently unclear whether this
is a coincidence. It is also currently unclear whether a more
sophisticated way of incorporating multiple bands might allow
the semiclassics to reproduce the oscillatory behavior or the
average curve around which 〈θ̇ (t)〉exact oscillates.

In Figs. 6(d)–6(f) we have used an initial wave packet with
σ 2 = 0.5. The Gaussian wave packet is centered at the center
of a hexagon in real space, so that even with such a small

σ there are six sites equally occupied. The exact 〈θ̇ (t)〉exact

now deviates significantly from the point-particle semiclassics
〈θ̇〉pp-sc. The extended semiclassics 〈θ̇〉wp-sc continues to
describe the overall behavior for the � point and M2 point
initial states. The exact dynamics now shows oscillations for
all three initial momenta. This can be understood through the
overlap distribution, shown in Fig. 7. For the smaller packet,
the overlaps are spread out more in energy and also are far more
biased toward more equal occupancies of the two bands (W−
values are closer to 1

2 compared to the corresponding values
for the bigger packet). As a result, interference oscillations
are visible also for the � point and M2 point initial states
[Figs. 7(d) and 7(e)].

FIG. 7. (Color online) Overlaps as in Fig. 2(a), for a smaller wave
packet σ 2 = 0.5. Compared with the case of σ 2 = 50 [Fig. 2(a)], this
smaller wave packet has a much more spread-out distribution of
weights on the eigenstates of HHM. The weight of the wave packets
in the lower band W− (provided in each panel) are all closer to
1/2 compared to the larger wave packet of Fig. 2, where we had
W− = 0.999, 0.015, and 0.457 for these three momenta.
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V. SEMICLASSICS IN A TIGHT TRAP

In Sec. IV we showed that, as the spread of the initial wave
packet in real space is made bigger, the agreement between
the results from the semiclassical approximations and exact
simulations improves. The idea is that, increasing size in
real space corresponds to decreasing size in momentum space
(as reflected also in decreasing spread in energy space); thus
the point-particle approximation in momentum space is more
justified. However, increasing real-space size can also lead
to violation of semiclassics, as the semiclassical equations of
motion also assume sharply defined position. One effect is that
the finite spread of the wave packet in real space could lead
to different potential gradients (different forces) at different
points within the wave packet. This effect would not play a
role for a constant gradient but can occur in a harmonic trap.
This kind of tidal force makes the point-particle notion less
justified in real space.

In order to characterize this effect, we consider the
geometry of Fig. 8(a) with V0 = 0.02, one order of magnitude

stronger than that in Fig. 3. The distance between the center
of the trap and the center of the wave packet is adjusted such
that the force at the center of the wave packet remains the
same as the geometry shown in Fig. 3(a). It can be seen
from Fig. 8(a) that, in the course of time evolution, the wave
packet breaks apart, spreads out, and does not keep the notion
of a well-defined wave packet as compared to the shallower
trap (Fig. 3). This is also reflected in the evolution of the
wave packet in momentum space as shown in Fig. 8(b). For
time scales similar to those studied in previous sections, the
wave packet in momentum space gets distorted and diffuses
completely, unlike the case in Fig. 3(c) where there is still a
notion of a well-defined peak centered around some value of
momentum. Quite surprisingly, our semiclassical calculation
does not seem to fail completely even in this extreme case since
〈θ̇〉wp-sc and 〈θ̇〉exact still agree qualitatively (see Fig. 8). Even
the point-particle semiclassics 〈θ̇〉pp-sc reproduces qualitatively
some of the peaks and dips of the exact curve. As in
previous cases, for k0 = K there are strong oscillations due
to occupancies in both bands.

FIG. 8. (Color online) Dynamics in a tight trap, with V0 = 0.02, initial position |r0 − rc| = 16.45, and initial size σ 2 ≈ 10. (a) and (b)
Snapshots for k0 = �. (a) Real-space occupancies |cl(t)|2. Solid lines are equipotential contours of the trap potential. (b) Corresponding
momentum space occupancies |c̃k(t)|2 in the Brillouin zone. (c) Comparison between the angular velocities calculated from full simulations
〈θ̇〉exact with the two types of semiclassics 〈θ̇〉pp-sc and 〈θ̇〉wp-sc.
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VI. SUMMARY AND DISCUSSION

In this work we have explored the dynamics of a Gaussian
wave packet, with and without initial crystal momentum, on
the Haldane honeycomb Chern-band lattice in the presence
of external forces provided by a harmonic potential. We have
focused on short-time dynamics and compared to semiclassical
treatments. Semiclassical descriptions of wave-packet dynam-
ics are obviously appealing, but the range of applicability
is poorly explored. This work can be regarded as a step
toward obtaining detailed information on the regimes of
validity of the semiclassical manner of predicting trajectories.
We have formally treated single-particle dynamics, but our
considerations should be applicable to noninteracting Bose
condensates and approximately to weakly interacting Bose
condensates.

We have found that the point-particle semiclassics re-
produces many qualitative features even for wave functions
that are quite small in real space and hence extended over
non-negligible portions of the Brillouin zone. When this
momentum-space extent is taken into account, the agreement
can be excellent even when the point-particle approximation
fails. This shows that the basic idea of semiclassics, following
position and momentum simultaneously, can correctly embody
quantum dynamics even when the point-particle approach
fails. Using a tight trap, we have also shown that this extended
semiclassical approach can function reasonably even when
the wave packet is completely distorted or even torn apart
(Fig. 8). While this is reassuring for the philosophy behind
semiclassics, it does not immediately lead to a computationally
advantageous approximation, since to obtain the momentum-
space structure we first evolved the complete system in time
(i.e., solved the problem computationally). However, one can
envision an extended semiclassics where the wave packet in
momentum space is assumed to have fixed shape and the center
moves according to the point-particle equations (9).

This study was directly motivated by recent developments
such as the experimental realization of Haldane’s honeycomb
model in a cold-atom system [13], the experimental and theo-
retical interest in the response of a localized wave packet to an
applied force (potential gradient) [13,22,27,29,44], and recent
theoretical studies of dynamics in various backgrounds using
semiclassics [29,54,56,58–62]. In two-dimensional lattices, a
potential gradient will of course lead to Bloch oscillations
in the gradient direction (as widely studied, e.g., in [62–
65,65–68]), but may also induce a transverse response. This
can happen even without Berry curvature [62], simply due
to the structure of the energy band. In the presence of Berry
curvature, the transverse response occurs due to a combination
of the two effects.

The present study opens up many new questions. First,
we have focused on time scales such that the wave-packet
displacements are of the order of the wave-packet size. It
remains an open question to see how well semiclassics works
when the trajectories are long compared to the wave-packet
size. For example, Refs. [29,54] have predicted a dramatic
turning point in the trajectory of a wave packet traveling
through a honeycomb (graphene) lattice with a constant
potential gradient. It is unclear how closely a finite-sized quan-
tum wave packet would follow such a prediction, especially

when the position dynamics couples to internal distortion
dynamics of a realistic wave packet. Second, it remains
an open question whether some version of our extended
semiclassics can be fashioned into a computationally useful
approximation scheme. Third, our treatment of multiple-band
occupancies is rather primitive (an incoherent average) and
is unable to account for interference oscillations. Clearly,
development of multiple-band semiclassics for such time-
evolution phenomena, perhaps along the lines of Ref. [59], is
called for. Finally, since cold-atom experiments are more likely
to track interacting Bose condensates or fermionic clouds
rather than single-particle wave packets, it is of interest to
find out in which situations the dynamics of many-fermion
and many-boson clouds resemble single-particle wave-packet
dynamics.
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APPENDIX: MOMENTUM SPACE PROPERTIES
OF THE HALDANE MODEL

The semiclassical equations of motion (9) take the gradient
of the energy dispersion and the Berry curvature in momentum
space as input. In this Appendix we give some details of
these momentum-space properties of the Haldane model, for
completeness. Being realized on a lattice with a two-site basis,
the Haldane model Hamiltonian in momentum space can be
written as a collection of 2 × 2 Hamiltonians h(k):

HHM =
∑

k∈BZ

�
†
kh(k)�k, (A1)

with

h(k) = σ 0B0(k) + σ · B(k), (A2)

where �
†
k = (b̂†A,k,b̂

†
B,k) and b̂

†
A(B),k creates a Bloch state

with momentum k on sublattice A(B). The σ ’s are Pauli
matrices with σ 0 being the identity matrix. We label the
vectors connecting the nearest-neighbor sites as a1 = (0, − 1),
a2 = (

√
3/2,1/2), and a3 = (−√

3/2,1/2) and the vectors
connecting the next-nearest neighbors as b1 = a2 − a3, b2 =
a3 − a1, and b3 = a1 − a2. With this notation, B0 and B turn
out to be

B0(k) = 2J2 cos φ

3∑
i=1

cos k · bi , (A3a)

Bx(k) = J1

3∑
i=1

cos k · ai , (A3b)

By(k) = J1

3∑
i=1

sin k · ai , (A3c)

Bz(k) = −2J2 sin φ

3∑
i=1

sin k · bi . (A3d)
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The energy dispersions of the two bands are

E±(k) = B0(k) ± |B(k)|2, (A4)

where + (−) denotes the upper (lower) band.
The eigenstates of the Hamiltonian (A2) for a given

momentum k can be written as

u+,k =
(

e−i
ζk
2 cos ηk

2

e+i
ζk
2 sin ηk

2

)
, u−,k =

(
e−i

ζk
2 sin ηk

2

−e+i
ζk
2 cos ηk

2

)
, (A5)

where ηk and ζk are defined via

ηk = cos−1 Bz(k)

|B(k)| , ζk = tan−1 By(k)

Bx(k)
. (A6)

With this notation, the Berry curvature is given by


± = ∓ 1

4π
εμν[∂kμ

cos ηk][∂kν
ζk], (A7)

where εμν is the two-dimensional Levi-Cività symbol and

− (+) refers to the Berry curvature of the lower (upper)
band.
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