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We study the Anderson localization of atomic gases exposed to simple-cubic optical lattices with a
superimposed disordered speckle pattern. The two mobility edges in the first band and the corresponding
critical filling factors are determined as a function of the disorder strength, ranging from vanishing disorder up
to the critical disorder intensity where the two mobility edges merge and the whole band becomes localized. Our
theoretical analysis is based both on continuous-space models that take into account the details of the spatial
correlation of the speckle pattern, and also on a simplified tight-binding model with an uncorrelated distribution
of the on-site energies. The mobility edges are computed via the analysis of the energy-level statistics, and we
determine the universal value of the ratio between consecutive level spacings at the mobility edge. We analyze
the role of the spatial correlation of the disorder, and we also discuss a qualitative comparison with available
experimental data for interacting atomic Fermi gases obtained in the moderate interaction regime.
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I. INTRODUCTION

Anderson localization, namely, the complete suppression
of wave diffusion due to sufficiently strong disorder [1], is one
of the most important and intriguing phenomena studied in
condensed matter physics [2,3]. Making reliable predictions
for the critical disorder strength required to induce complete
localization is a major theoretical challenge. In the theory
of solid-state systems, studies that aim at a quantitative
comparison between theory and experiments, and thus employ
realistic models taking into account the details of a specific
material, have appeared only recently [4].

Following the first experimental observations of Anderson
localization in quantum matter waves [5–9], ultracold atomic
gases have emerged as the ideal setup to investigate the
effects due to disorder in quantum systems [10,11]. Feshbach
resonances provide experimentalists with a knob to turn off the
interatomic scattering, allowing them to disentangle the effects
due to disorder from those due to interactions. Furthermore,
using the optical speckle fields produced by shining coherent
light through a diffusive plate, they can introduce disorder in
a controlled manner, and even manipulate the structure of its
spatial correlations [12]; this kind of control is not possible
in solid-state devices. Techniques to accurately measure the
mobility edge, namely, the energy threshold which separates
the localized states from the extended states, have also been
implemented [13].

Several previous theoretical studies on Anderson localiza-
tion have disclosed the fundamental role played by the disorder
correlations. In low dimensional systems, the characteristics
of the correlations determine the presence or absence of an
effective mobility edge [14–19]. In three dimensions, varying
the correlation structure drastically changes the localization
length and the transport properties [20,21]. In two recent
studies, the mobility edge of ultracold atoms in the presence
of isotropic and anisotropic optical speckle patterns has
been precisely determined [22,23], highlighting again the
importance of taking into account the details of the disorder
correlations. However, the experimental configuration that
resembles more closely the behavior of electrons in solids is
the one where the atoms are exposed to the deep periodic

potential due to an optical lattice with, additionally, the
disorder due to a superimposed optical speckle pattern (see
intensity profiles in Fig. 1). This configuration with both an
optical lattice and a speckle field has been implemented in
experiments performed with Bose and Fermi gases [24–26],
so far considering interacting atoms.

In this article, we investigate the Anderson localization
of noninteracting atomic gases in a simple-cubic optical
lattice plus an isotropic blue-detuned optical speckle field.
The first two mobility edges and the corresponding critical
filling factors are determined as a function of the disorder
strength. Our computational procedure is based on the analysis
of the energy-level statistics familiar from quantum-chaos
theory [27] and on the determination of the universal critical
adjacent-gap ratio.

We employ both continuous-space models that describe
the spatial correlation of an isotropic speckle pattern, and
also an uncorrelated discrete-lattice model derived within a
tight-binding scheme. This allows us to measure the important
effect of changing the disorder correlations length, and to
shed light on the inadequacy of the simple tight-binding
approximation in the strong disorder regime. Our (unbiased)
results are important as a guide for future experiments
performed with noninteracting atoms in disordered optical
lattices, and also as a stringent benchmark for (inevitably
approximate) theoretical calculations of the properties of
disordered interacting fermions based on realistic models of
disorder.

The rest of the article is organized as follows: in Sec. II
we define our model Hamiltonians, illustrating how to take
into account the details of the optical speckle patterns; we
explain our theoretical formalism and analyze the universality
of the critical adjacent-gap ratio; furthermore, we provide
benchmarks of our predictions with previous results for
tight-binding models with box and with exponential disorder-
intensity distributions. In Sec. III our predictions for the
mobility edges and for the critical filling factors are reported,
with an analysis on the role played by the correlation length
and on the validity of the tight-binding approximation. We
also discuss the comparison with a recent transport experiment
performed with atomic Fermi gases in the regime of moderate
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FIG. 1. (Color online) Cross section of the three-dimensional
intensity profiles of a simple-cubic optical lattice with a superimposed
blue-detuned isotropic optical speckle pattern. The optical lattice
intensity is V0 = 4Er and the disorder strength is Vdis = 1.3Er .
The speckle patterns in the two panels have different correlation
lengths: σ = d/π in panel (a) and σ = d in panel (b), where d is
the periodicity of the optical lattice field. The system size is L = 9d .
The color scale represents the potential intensity in units of recoil
energy Er .

interaction strength [26]. Section IV summarizes the main
findings of this article and reports our conclusions.

II. METHODS

We consider noninteracting atoms exposed to a simple-
cubic optical lattice with a superimposed optical speckle
pattern. The single-particle Hamiltonian that describes the
system is

Ĥ = − �
2

2m
� + V (r), (1)

where � is the reduced Planck’s constant, m is the atomic
mass, and the external potential V (r) = VL(r) + VS(r) is the
sum of the simple-cubic optical lattice VL[r = (x,y,z)] =
V0

∑
ι sin2(πι/d) (here, ι = x,y,z, d is the lattice periodicity,

and V0 is the optical lattice intensity), and the disordered
potential VS(r), which represents the isotropic optical-speckle
pattern.

This intensity-based sum corresponds to the incoherent
superposition of the optical-lattice and optical-speckle fields.
In the following, it will be convenient to express V0 in
units of the recoil energy Er = �

2/(2md2). The size L of
the three-dimensional box is chosen to be a multiple of d,
consistently with the use of periodic boundary conditions.

Disordered speckle patterns are realized in cold-atom
experiments by shining lasers through diffusive plates, and
then focusing the diffused light onto the atomic cloud [10,11].
Fully developed speckle fields are characterized by an ex-
ponential distribution of the local intensities [28]. In the
case of a blue-detuned optical field, the atoms experience
a repulsive potential with the local-intensity distribution:
Pbd(V ) = exp (−V/Vdis)/Vdis, if the local intensity is V � 0,
and Pbd(V ) = 0 otherwise. The (global) intensity parameter
Vdis � 0 fixes both the spatial average of the disordered
potential Vdis = 〈VS(r)〉 and also its standard deviation: V 2

dis =
〈VS(r)2〉 − 〈VS(r)〉2. For sufficiently large systems, spatial
averages coincide with averages over disorder realizations.

The spatial correlations of the speckle pattern depend on the
details of the illumination on the plate and of the optical setup

used for focusing. We consider the idealized case of isotropic
spatial correlations described by the following two-point cor-
relation function [22]: �(r = |r|) = 〈VS(r′ + r)VS(r′)〉/V 2

dis −
1 = [sin(r/σ )/(r/σ )]2 (averaging over the position of the first
point r′ is assumed). The parameter σ determines the length
scale of the spatial correlations and, therefore, the typical
size of the speckle grains. The full width at half maximum
of the correlation function �(r) [defined by the condition
�(�c/2) = �(0)/2] is �c

∼= 0.89πσ , while the first zero is at
rz = πσ . To generate this isotropic speckle pattern, we employ
the numerical recipe described in Ref. [23]. For further details
on speckle pattern generation, see Refs. [22,29,30].

We determine the positions of the mobility edges by
analyzing the statistical distribution of the spacings between
consecutive energy levels. The spectrum is obtained via exact
diagonalization of the Hamiltonian matrix represented in
momentum space, using the PLASMA library [31] for large-
scale linear algebra computations on multicore architectures.
Special care is taken in analyzing the convergence of the
results with the basis-set size. Further details on the numerical
procedure can be found in Ref. [23].

The mobility edges can be identified as the energy thresh-
olds where the level-spacing distribution transforms from the
Wigner-Dyson distribution characteristic of chaotic systems
in the ergodic phase, to the Poisson distribution characteristic
of localized systems, or vice versa [27]. To distinguish the
Wigner-Dyson and the Poisson distributions, it is convenient
to consider the parameter r = min {δn,δn−1}/ max {δn,δn−1},
where δn = En+1 − En is the spacing between the (n + 1)th
and the nth energy levels, ordered for ascending energy
values [32]. Its average over disorder realizations (later on
referred to as adjacent-gap ratio) is known to be 〈r〉WD �
0.5307 for the Wigner-Dyson distribution and 〈r〉P � 0.38629
for the Poisson distribution [33].

While in an infinite system 〈r〉 would change abruptly
at the mobility edge Ec, in finite systems one observes a
smooth crossover from 〈r〉P to 〈r〉WD, or vice versa. The
critical point can be determined from the crossing of the
curves representing 〈r〉 versus energy E corresponding to
different system sizes L. We fit the data using the scaling
function 〈r〉 = g[(E − Ec)L1/ν] (universal up to a rescaling
of the argument) [3], where ν is the critical exponent of the
correlation length. We Taylor expand the function g[x] up to
second order and obtain Ec from the best-fit analysis.

This procedure to determine the mobility edges, which
was previously employed in Ref. [23] for speckle patterns
without optical lattices [corresponding to the case V0 = 0 in
Eq. (1)], requires several datasets, corresponding to different
system sizes, with very small statistical error bars. A less
computationally expensive procedure is obtained by exploiting
the universal properties of the critical point. Indeed, the
level-spacing distribution at the critical point differs both from
the Wigner-Dyson and from the Poisson distributions [34,35];
it is expected to be system-size independent and universal,
meaning that it does not depend on the details of the disorder.
This implies a universal value of the critical adjacent-gap
ratio, which we denote as 〈r〉C, different from 〈r〉WD and
from 〈r〉P. We verified this universality by performing the
finite-size scaling analysis for various models, determining
〈r〉C as the value of the scaling function at vanishing argument
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FIG. 2. (Color online) Ensemble-average adjacent-gap ratio 〈r〉 as a function of the energy E for the continuous-space Hamiltonian (1).
Left panel: Simple-cubic optical lattice with intensity V0 = 4Er plus an isotropic optical speckle pattern with correlation length σ = d/π and
intensity Vdis = Er . Right panel: Optical speckle field with intensity Vdis = Eσ (without an optical lattice, namely, V0 = 0). The three datasets
correspond to different system sizes. The horizontal cyan solid line indicates the value for the Wigner-Dyson distribution 〈r〉WD and the dashed
magenta line the one for the Poisson distribution 〈r〉P. The dash-dotted black line indicates the universal critical adjacent-gap ratio 〈r〉C , and
the light-gray bar represents its error bar. The energy units are the recoil energy Er and the correlation energy Eσ (see text).

g[0]. In Fig. 2 we report the finite-size scaling analysis for
a simple-cubic optical lattice with a superimposed speckle
pattern, and also for a speckle pattern without the optical lattice
(data from Ref. [23]). The critical adjacent-gap ratios 〈r〉C of
the two models (for the disordered optical lattice we consider
the first two mobility edges) agree within statistical error bar.
Furthermore, we verified that 〈r〉C does not depend on the
disorder strength Vdis, and that a compatible value of 〈r〉C
is obtained also for red-detuned optical speckle fields, which
have the same spatial correlations of blue-detuned speckle
fields �(r) defined above, but the opposite local-intensity
distribution Prd(V ) = Pbd(−V ).

A further verification of the universality of the critical
adjacent-gap ratio 〈r〉C can be obtained by considering single-
band models in a tight-binding scheme. The corresponding
discrete-lattice Hamiltonian can be written in Dirac notation
as

Ĥd = −t
∑

〈i,j〉
|i〉〈j | +

∑

i

Vi |i〉〈i|, (2)

where the indices i,j = 1, . . . ,L label the sites of the cubic
discrete lattice of adimensional volume 
 = L3, t is the hop-
ping energy, and the brackets 〈i,j 〉 indicate nearest-neighbor
sites. The on-site energies Vi are chosen according to a
random probability distribution. The most commonly adopted
choice in the theory of Anderson localization is the box
distribution Pb(Vi) = θ (|Vi − V d

dis|)/(2V d
dis). The parameter

V d
dis � 0 determines the disorder strength. We also consider

the exponential distribution Pe(Vi) = exp (Vi/V d
dis)/V d

dis, anal-
ogous to the exponential distribution Pbd(V ) described above
for blue-detuned speckle patterns in the continuous-space
Hamiltonian. This discrete-lattice model with the exponential
on-site energy distribution is relevant to describe deep optical
lattices with superimposed weak and uncorrelated speckle
patterns, as explained more in detail in the Sec. III.

The finite-size scaling analyses for these two lattice models
(box and exponential distributions) are shown in Fig. 3.
The spectrum is obtained via exact diagonalization of the

matrix representing the Hamiltonian Ĥd, defined on the three-
dimensional lattice. The universality of the critical adjacent-
gap ratio is, again, confirmed within statistical uncertainty.
The inset in the left panel of Fig. 3 shows the scaling of
the adjacent-gap ratio with the inverse system size 1/L,
highlighting the opposite behaviors for energies just below
the first mobility edge E < Ec1, where 〈r〉 approaches 〈r〉P
in the thermodynamic limit, and just above the first mobility
edge E > Ec1, where 〈r〉 approaches 〈r〉WD.

The average of the critical adjacent-gap ratios of the various
models described above, including both the continuous-space
models with correlated speckle patterns and the uncorrelated
tight-binding models, is 〈r〉C = 0.513 ± 0.05; the error bar
represents the standard deviation of the population. This
prediction provides us with a computationally convenient
criterion to locate the transition, consisting in identifying
the mobility edge Ec as the energy threshold at which the
adjacent-gap ratio crosses the critical value 〈r〉C ; the standard
deviation of 〈r〉C will be used to define the error bar on Ec.
By applying this criterion to the isotropic speckle pattern
(without optical lattice) analyzed in Fig. 2, we obtain Ec =
0.562(10)Eσ (Eσ = �

2/mσ 2 is the correlation energy), in
agreement with the transfer matrix theory of Ref. [22], which
predicts Ec = 0.570(7)Eσ . We further confirm the validity of
this criterion by reproducing the complete phase diagram of the
discrete-lattice model with box disorder distribution (typically
refereed to as Anderson model), making a comparison with
older results obtained using transfer-matrix theory [36] and
multifractal analysis [37], as well as with the recent data from
Ref. [38] obtained using the typical medium dynamical cluster
approximation (see Fig. 4). Furthermore, in the case of the
exponential disorder distribution, our results perfectly agree
with the very recent transfer-matrix theory from Ref. [39]
(see Fig. 5).

It is worth specifying that our prediction for the universal
critical adjacent-gap ratio 〈r〉C applies to a cubic box with
periodic boundary conditions. In fact, it has been predicted
that the critical energy-level distribution, and so possibly the
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FIG. 3. (Color online) Ensemble-average adjacent-gap ratio 〈r〉 as a function of the energy E for the tight-binding Hamiltonian (2). Left
panel: Three-dimensional Anderson model with box disorder distribution with intensity V d

dis = 5t . Right panel: Three-dimensional Anderson
model with the exponential distribution with intensity V d

dis = 7t . The three datasets correspond to different system sizes. The horizontal cyan
solid line indicates the value for the Wigner-Dyson distribution 〈r〉WD and the dashed magenta line the one for the Poisson distribution 〈r〉P.
The dash-dotted black line indicates the universal critical adjacent-gap ratio 〈r〉C , and the light-gray bar represents its error bar. The energy unit
is the hopping energy t . The inset in the left panel shows the scaling of 〈r〉 with the inverse system size 1/L for the box disorder distribution, at
the energies E = −7.75t < Ec1 (brown solid circles, left vertical axis) and E = −7.25t > Ec1 (dark-green solid squares, right vertical axis),
where Ec1 is the first mobility edge.

corresponding value of 〈r〉C , depends on the box shape [40]
and on the boundary conditions [41,42].

III. RESULTS

The continuous-space Hamiltonian (1) accurately describes
atomic gases exposed to optical lattices with superimposed
optical speckle patterns, for any optical lattice intensity V0 and
disorder strength Vdis. In particular, it takes into account the
spatial correlations of the optical speckle pattern. In order to
make a comparison with recent experimental data, we consider
the intermediate optical lattice intensity V0 = 4Er , and we
determine the lowest two mobility edges as a function of the
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FIG. 4. (Color online) Mobility edge Ec as a function of the
disorder strength V d

dis for the three-dimensional Anderson model with
box disorder distribution. Our data computed via the analysis of the
energy-level spacings statistics (ELSS, red diamonds) are compared
with previous results obtained via transfer-matrix method (TMM,
green circles, from Ref. [36]), via multifractal analysis (MFA, blue
squares, from Ref. [37]), and via typical medium dynamical cluster
approximation (TMDCA, black crosses, from Ref. [38]). The energy
unit is the hopping energy t .

disorder strength Vdis, up to the critical value where the two
mobility edges merge and the whole band becomes localized.

We consider two isotropic speckle patterns with correlation
lengths σ = d/π and σ = d. We recall that the first zero of the
spatial correlation function �(r) (see definition in Sec. II) is
at rz = σπ . Beyond this distance the speckle-field intensities
are almost uncorrelated. The intensity profiles of the total
potential V (r) corresponding to these two correlation lengths
are shown in Fig. 1. The deformation of the regular structure
of the simple-cubic optical lattice due to the speckle pattern is
evident in both cases. In the first case the intensity values in
nearest-neighbor wells of the optical lattice are only weakly
correlated, while in the second case the correlations extend to
a few lattice sites.

The phase diagram obtained using the methods presented
in Sec. II, namely, the analysis of the energy-level spacing
statistics and the universality of the critical adjacent-gap ratio,
is presented in Fig. 5. The empty symbols indicate the lowest
mobility edge Ec1, where the orbitals transform from localized
(for energies E < Ec1) to extended (for E > Ec1), while the
solid symbols indicate the second mobility edge Ec2 > Ec1,
where the orbitals transform from extended (for E < Ec2)
to localized (for E > Ec2). Other mobility edges are located
at significantly higher energies, outside the energy range
investigated in this article.

The data reported in Fig. 5 shed light on the fundamental
role played by the spatial correlations of the disorder pattern.
The critical disorder strength beyond which the first band
is fully localized strongly depends on the correlation length.
Indeed, for the short correlation length σ = d/π , full local-
ization occurs already at the disorder strength Vdis � 1.32Er ,
while for the longer correlation length σ = d full localization
occurs only at Vdis � 1.95Er . This indicates that the disorder is
more effective in inhibiting particle diffusion if the correlation
length is short compared to the lattice spacing; also, it implies
that, in order to quantitatively describe experiments performed
with noninteracting atomic gases exposed to disordered optical
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FIG. 5. (Color online) Phase diagrams of an atomic gas exposed
to three-dimensional simple-cubic optical lattices with a superim-
posed blue-detuned isotropic disordered speckle pattern: (a) First
two mobility edges Ec as a function of the disorder strength Vdis/Er

(or V d
dis/t for the discrete-lattice model, in the top axis), measured

from the bottom of the band of the clean system E0 � 4.64Er

(E0 = −6t for the discrete-lattice model, in the right axis). Empty
symbols correspond to the first mobility edge Ec1 and full symbols
to the second mobility edge Ec2 (see text). The red rhombi and the
green circles correspond to the continuous-space Hamiltonian (1)
with correlation lengths σ = d/π and σ = d , respectively. The blue
squares correspond to our results for the tight-binding model with
exponential on-site energy distribution, obtained via analysis of
the energy-level spacings statistic (TBELSS). The results obtained in
Ref. [39] using the transfer-matrix method (TBTMM) are represented
by pink crosses. The optical lattice intensity is V0 = 4Er , and the
corresponding hopping energy t ∼= 0.0855Er is used to compare the
continuous-space data (bottom-left axes) with the discrete-lattice data
(top-right axes). (b) Critical filling factors Ns/
 as a function of the
disorder strength, corresponding to the mobility edges represented in
panel (a). Ns is the number of states below the mobility edge and 


is the adimensional volume.

lattices, it is necessary to take into account the details of
the optical speckle pattern. In Fig. 5, we report the two
critical filling factors [defined as the number of eigenstates Ns

per adimensional volume 
 = (L/d)3 with energies E < Ec1

and E < Ec2] as a function of the disorder strength. The
role of the spatial correlations is again manifest. Both the
mobility-edge data and the critical filling-factors data display
a strong asymmetry around the band center; this originates

from the asymmetry of the exponential intensity distribution
of the optical speckle pattern Pbd(V ).

Most theoretical studies of atomic gases exposed to
clean optical lattices are based on single-band tight-binding
Hamiltonians analogous to the one defined in Eq. (2). The
conventional procedure to map optical lattice systems to
tight-binding models is based on the computation of the
maximally localized Wannier function from the band-structure
analysis of the periodic system. For sufficiently deep optical
lattices V0 � Er , the effect of higher Bloch bands and of
hopping processes between nonadjacent Wannier orbitals can
be ignored, leading to single-band tight-binding models in the
discrete-lattice form defined by Eq. (2). At the optical lattice
intensity addressed in this article, namely, V0 = 4Er , the deep-
lattice condition is marginally fulfilled, with a next-nearest-
neighbor hopping energy |t2| ∼= 6.1 × 10−3Er , which is only
one order of magnitude smaller than the nearest-neighbor
hopping energy t ∼= 0.0855Er .

In the presence of additional disordered optical fields,
the conventional mapping procedure [43,44] based on band-
structure calculation cannot be applied. A more generic
approach, valid also in the presence of weak optical speckle
patterns with intensity Vdis � V0, has been developed in
Ref. [45]; this method allows one to construct an orthonormal
basis of localized Wannier-like orbitals that describes the cor-
rect low-energy properties of weakly disordered optical-lattice
systems. In the corresponding discrete-lattice Hamiltonian,
the on-site energies Vi have, with good approximation, the
exponential distribution Pe(Vi), with a disorder intensity V d

dis �
Vdis, essentially coinciding with the intensity of the optical
speckle field Vdis [45]. The on-site energies on nearby lattice
sites have significative correlations that depend on the details
of the optical speckle pattern. Also, the nearest-neighbor
hopping energies have an (asymmetric) random distribution,
characterized by strong correlations with the difference be-
tween the on-site energies of the corresponding lattice sites.
In first approximation, one might neglect the hopping-energy
fluctuations and the on-site energy correlations, and retain only
the exponential on-site energy distribution. This approximate
model of optical lattices with superimposed speckle patterns—
which leads (in the noninteracting case) to the tight-binding
Hamiltonian (2) with the on-site energy distribution Pe(Vi)—
has been adopted in Ref. [46] to describe a recent transport
experiment performed with interacting ultracold atoms [46].
In this experiment, a drifting force was applied by introducing
a magnetic-field gradient for a short interval of time; after
this impulse, the confining potential was switched off, and the
velocity of the center of mass of the atomic cloud was measured
by absorption imaging and band mapping techniques after a
time of flight; the measurement was repeated with different
intensities of the optical speckle field. Also, various optical
lattice intensities were considered, ranging from V0 = 4Er to
V0 = 7Er . The authors of Ref. [46] considered mainly the
case of the deep optical lattice V0 � 7Er , where the Hubbard
interaction energy of two opposite-spin fermions on the same
lattice site is large: U � 9t . They argue that in this strongly
interacting regime the details of the correlations of the hopping
and of the on-site energies are not relevant, since transport is
dominated by effective quasiparticles (not the original particles
which are obviously relevant in the noninteracting case),
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which experience correlated hopping and interaction processes
even in the simplified model. They indeed found satisfactory
agreement between the computed center-of-mass velocities
and the experimental data.

Our findings indicate that in the absence of interactions
the details of the speckle pattern are, instead, important. The
mobility edges of the uncorrelated tight-binding model (2)
(with the exponential on-site energy distribution) are shown
in Fig. 5, together with the results for the continuous-space
model (1). To make a comparison between the two models,
the energies in the lattice model have to be converted using
the hopping energy t ∼= 0.0855Er corresponding to the optical
lattice intensity we consider, namely, V0 = 4Er . One observes
that certain qualitative features of the phase diagram are
captured also by the tight-binding model. However, while at
very weak disorder Vdis ≈ 0.2Er the continuous-space and
the discrete-lattice models quantitatively agree, important
discrepancies appear at strong disorder. In particular, the
critical disorder strength where the whole band is localized in
the discrete-lattice model, namely, V d

dis � 12t (corresponding
to Vdis � 0.95Er ), significantly underestimates the results
obtained with the more accurate correlated continuous-space
models.

In principle, the details of the speckle pattern could be
included also in a discrete-lattice Hamiltonian, following the
numerical procedure of Ref. [45]. This approach has been
adopted in Ref. [47] to investigate an interacting Anderson-
Hubbard model with correlated speckle fields. However,
the dynamical mean-field theory employed in Ref. [47]
does not correctly describe the Anderson localization in the
noninteracting limit, probably due to the assumed Bethe-lattice
structure. More recently, the dynamical mean-field theory
has been improved using the typical medium dynamical
cluster approximation [38], allowing researchers to give
more accurate predictions for the localization transition of
noninteracting particles in the (uncorrelated) Anderson model
with box distribution; the data from Ref. [38] are reported in
Fig. 4.

Nevertheless, it should be emphasized that the numerical
technique of Ref. [45] converges only as long as there is a well
defined gap between the first and the second band. As shown
in Fig. 6, in our optical lattice the gap is well defined only for
very weak disorder, while it is substantially filled when the
intensity of the optical speckle field approaches the strength
required to localize the whole band, making that numerical
technique inapplicable.

Experimental data for noninteracting atomic gases in
disordered optical lattices are not available. However, in
the experiment of Ref. [26] (see description above), which
was performed with interacting atoms, rather shallow op-
tical lattices were also considered, including the moderate
optical-lattice intensity V0 = 4Er . This value corresponds to
a relatively small Hubbard interaction parameter, namely,
U � 2.3t . In this regime, one expects the role of interactions to
be considerably less important. It is then reasonable to discuss
the comparison of these latter results (obtained at V0 = 4Er )
with our theoretical predictions. It should be taken into account
that the optical speckle pattern employed in the experiment is
anisotropic, with an axial correlation length approximately
five times larger than the radial correlation length, and that its
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FIG. 6. (Color online) Density of states (dos) (in arbitrary units)
as a function of the energy E measured from the bottom of the first
band of the clean system E0. The energy unit is the recoil energy
Er . The continuous red, dashed green, and the double-dashed black
curves correspond to the continuous-space model (1) with different
correlation lengths σ and disorder intensities Vdis. The dotted blue
curve corresponds to the tight-binding (TB) model.

spatial correlations decay as a Gaussian function. However, the
propagation axis of the optical speckle field is disaligned with
respect to the optical lattice axes; this is expected to strongly
reduce the role of the correlation anisotropy. If we consider
the geometrically averaged correlation length, we obtain a
Gaussian correlation function with similar full width at half
maximum as our speckle pattern with σ = d (within ≈15%).
Furthermore, in the experiment the density is inhomogeneous
due to the confinement (with approximately 0.3–0.7 particles
per lattice well in the trap center, per spin component) and
the energy distribution is not precisely characterized. In Fig. 7
we plot the center-of-mass velocities vc.m. measured in the
experiment, as a function of the disorder strength. The critical
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FIG. 7. (Color online) Experimental data from Ref. [26]: center-
of-mass velocity vc.m. of the atomic cloud (black squares) as a function
of the disorder strength Vdis/Er (or V d

dis/t for the tight-binding model,
in the top axis). The vertical lines represent our predictions for the
critical disorder strength where the whole band becomes localized in
the continuous-space Hamiltonian (1) (dashed red and dotted green
lines) and in the uncorrelated tight-binding model (2) with exponential
disorder distribution (dot-dashed blue line). The gray band represents
the experimental resolution in detecting a vanishing velocity.
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point where vc.m. vanishes has been interpreted in Ref. [26]
as the average disorder strength required to localize the whole
band, since all extended states are expected to contribute to
transport. We indeed observe that vc.m. reaches negligible
values (compatible with the experimental resolution) in the
regime where we predict full localization to occur, depending
on the details of the optical speckle pattern. Clearly, a quan-
titative comparison with the experimental data would require
a precise characterization of the experimental atomic density
and energy distribution. This would also allow us to clarify
the potential role played by states in higher-energy bands.
Nevertheless, this qualitative agreement between experimental
data and theoretical predictions is encouraging, and should
stimulate further experimental efforts aiming at observing
Anderson localization in noninteracting atomic gases in dis-
ordered optical lattices. The regime of vanishing interatomic
interactions can be reached using Feshbach resonances, or
considering single-component Fermi gases. All details of the
optical speckle pattern could be included in our theoretical
formalism. A detailed verification of our theoretical predic-
tions could be obtained by measuring the complete trajectory
of the mobility edges in the disorder-energy plane, using
the technique implemented in Ref. [13]. In this experiment,
which was performed with speckle pattern only (i.e., without
the optical lattice, V0 = 0), the atomic gas was prepared in
a low-energy state with a narrow energy distribution. The
atoms were then excited using a rapid time modulation of
the disorder strength, and the mobility edge was inferred from
the excitation energy required to populate extended states, thus
restoring atoms mobility. An analogous experiment performed
with both the optical lattice and the superimposed speckle field
could be compared with the phase diagram in Fig. 5.

IV. CONCLUSIONS

In summary, we have investigated the Anderson localization
of noninteracting atomic gases in disordered optical lattices.
We considered both continuous-space models that describe
the effect of a simple-cubic optical lattice with a superim-

posed isotropic blue-detuned optical speckle field, taking into
account the spatial correlations of the disorder, and also an
uncorrelated discrete-lattice Hamiltonian in a tight-binding
scheme.

Our predictions for the mobility edges and for the critical
filling factors indicate that the details of the speckle pattern
play an important role; the critical disorder intensity where
the whole band becomes localized strongly depends on the
disorder correlation length. The tight-binding model with an
uncorrelated (exponential) disorder distribution significantly
underestimates this critical disorder strength.

Our theoretical formalism is based on the analysis of
the energy-level statistics familiar from random-matrix and
quantum-chaos theories and on the determination of the
universal critical adjacent-gap ratio. The prediction for this
universal value will be useful also in future studies of
Anderson localization in different models belonging to the
same universality class.

We have shown that the findings of a recent transport
experiment performed with an atomic gas in the moderate
interaction regime [26] are qualitatively consistent with our
predictions; this encouraging comparison should stimulate
further experimental efforts to accurately measure the critical
point of the Anderson transition in noninteracting atomic gases
exposed to controlled and well characterized disordered fields.
Such experiments would allow us to quantitatively benchmark
sophisticated theories for Anderson localization based on
realistic models that take into account all details of the disorder.
This would be beneficial for the field of ultracold atoms, and
likely beyond, possibly including the research on disordered
materials, on randomized optical fibers [48], and on disordered
photonic crystals [49].
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