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Tunable Chern insulator with optimally shaken lattices

Albert Verdeny and Florian Mintert
Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

(Received 13 April 2015; published 9 December 2015)

Driven optical lattices permit the engineering of effective dynamics with well-controllable tunneling properties.
By specifically designing polychromatic driving forces, we describe how an optimal realization of a tunable Chern
insulator can be achieved with a system of interacting particles on a shaken hexagonal lattice. Its implementation
does not require shallow lattices and favors the study of strongly correlated phases with nontrivial topology.
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I. INTRODUCTION

The manipulation of quantum systems has reached levels
of accuracy that allows controlled variation of their properties.
This permits extremely precise investigations of physical
processes and opens up the opportunity to design materials
for scientific and economic applications. In particular, the
last years have witnessed an increasing interest in topo-
logical phases of matter largely motivated by promising
applications such as topological quantum computing [1] or
physical phenomena such as the quantum spin Hall effect
[2–4].

Systems with topological properties can be classified
with topological invariants whose nonzero values indicate
nontrivial phases [5]. Pioneering work in this field was done
in the context of the integer quantum Hall effect, when it
was shown that the quantization of the Hall conductance is
directly related to the first Chern invariant [6]. Thereafter,
Haldane demonstrated with a model of particles tunneling
on an hexagonal lattice [7] that a net magnetic field is
not necessary for the quantization of the Hall conductance,
owing to the topological nature of the model. Remarkably, the
Haldane model has been recently experimentally implemented
[8] in a shallow shaken optical lattice taking advantage of
an interplay of intrinsic and driving-induced next-nearest-
neighbor tunneling processes.

Periodically driven optical lattices offer an extraordinary
platform to engineer controlled dynamics. A number of
theoretical [9–14] and experimental [8,15–18] works have
demonstrated the possibility to modify the system dynamics
in a controlled fashion and to generate diverse effects that
include coherent destruction of tunneling [15,19] and the
creation of synthetic magnetic fields [16–18] or topological
properties [8].

Even though the effective dynamics that a driven system
undergoes crucially depends on the specific time-dependent
driving force, rather simple driving forces are usually em-
ployed. Nevertheless, as demonstrated in various fields, includ-
ing chemistry [20,21], nuclear magnetic resonance [22,23],
quantum information [24–26], and many-body systems [27],
essentially any desired dynamics can be induced with the ap-
propriate choice of polychromatic driving at desired instances
of time or during an extended time window [28,29].

In this article, we show an optimal implementation of a
Chern insulator in terms of a polychromatically driven, deep
hexagonal lattice. We demonstrate how the parameters of the
system can be tuned with suitably chosen driving forces, which

permits one to access the entire topological diagram. The
possibility to realize topologically nontrivial phases in deep
lattices with accurately tunable system parameters facilitates
the investigation of exotic strongly correlated states by, e.g.,
choosing the system parameters such that the energy band
becomes close to flat [30].

In Sec. II, we briefly introduce the concept of effective
Hamiltonians of driven systems. In Sec. III, we derive the
effective Hamiltonian of particles on a shaken hexagonal
lattice and describe its topological properties. Finally, in
Sec. IV, we employ pulse-shaping techniques to design
polychromatic driving protocols (i.e., driving forces containing
more than one frequency component) that yield an optimal and
tunable realization of a Chern insulator.

II. EFFECTIVE HAMILTONIANS

Driven systems can be used as quantum simulators due
to the possibility to approximate their dynamics in terms of
a time-independent effective Hamiltonian. According to the
Floquet theorem [31], the time-evolution operator of a periodic
Hamiltonian H (t) = H (t + T ) can be written as

U (t) = U
†
F (t)e−iHeff tUF (0), (1)

where UF (t) is a T -periodic unitary and Heff defines a time-
independent effective Hamiltonian. The value of the periodic
unitary at t = 0 is not unambiguously defined by the driven
system but it can be rather chosen for convenience by suitably
transforming the effective Hamiltonian. The decomposition in
Eq. (1) implies that the distance between the exact dynamics
U (t) and the effective dynamics Ueff(t) = e−iHeff t induced by
Heff is bounded,

||U (t) − Ueff(t)|| � ||1 − U
†
F (t)|| + ||1 − UF (0)||. (2)

Consequently, if the unitary UF (t) is sufficiently close to the
identity during an entire period, the dynamics of the system can
be well approximated by the effective time-evolution operator
Ueff(t) for all times. This is typically satisfied in a suitable
fast-driving regime where the driving frequency ω = 2π/T

is the largest energy scale of the system. In this regime,
the periodic unitary UF (t) remains almost constant for all
times [i.e., UF (t) ≈ UF (0)], because it does not have time
to significantly vary during the short time intervals T . If the
unitary UF (0) is chosen to be sufficiently close to the identity,
then UF (t) ≈ 1 and thus U (t) ≈ Ueff(t).

In general, the effective Hamiltonian Heff is difficult to
find exactly. Yet, it can be calculated in a perturbative
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expansion

Heff = H
(0)
eff + H

(1)
eff + · · · (3)

in powers of ω−1 using different methods [32–35]. The lowest-
order term H

(0)
eff = H0 corresponds to the average or static

Fourier component of the Hamiltonian H (t). Higher-order
terms of the effective Hamiltonian, on the other hand, explicitly
depend on UF (0). For convenience, we use the choice of UF (0)
that leads to [36]

H
(1)
eff = 1

ω

∞∑
n=1

1

n
[Hn,H−n], (4)

with the Fourier components Hn = 1
T

∫ T

0 H (t)e−inωtdt of the
periodic Hamiltonian H (t) = ∑

n Hne
inωt .

III. SHAKEN HEXAGONAL LATTICE

We start with a system of spinless bosons or fermions on a
shaken hexagonal optical lattice that can be described by the
time-dependent Hamiltonian

H (t) = Hkin(t) + Hint. (5)

The kinetic term reads

Hkin(t) =
∑

i

c†ri
G0(t)cri

+
∑

i

2∑
k=1

(c†ri+bk
Gk(t) cri

+ H.c.) (6)

and characterizes the driving of the system in a suitable
reference frame where the time dependence of the driving is
incorporated in the tunneling rates [10]. The interaction term
Hint describes interparticle interactions of particles in a deep
optical lattice potential [37] and can be expressed as

Hint = U
∑

i

c†ri
c†ri

cri
cri

. (7)

The summations over the index i in Eqs. (6) and (7) are
performed over the positions ri of all unit cells of the hexagonal
lattice, which we consider to be infinite or with periodic
boundary conditions. The vectors

c†ri
= (c†A,i,c

†
B,i), cri

= (cA,i,cB,i)
T (8)

are given in terms of the operators c
(†)
A/B,i , which create

or annihilate a particle at the site A or B of the ith unit
cell (depicted in Fig. 1 with red and green dots, respec-
tively) and satisfy the usual commutation or anticommutation
relations, depending on whether particles are fermions or
bosons. The vectors b1 = a(

√
3,0) and b2 = a

2 (−√
3,3) are

illustrated in Fig. 1 and correspond to two primitive vectors that
span the underlying triangular Bravais lattice, with a denoting
the distance between nearest-neighbor (NN) sites. The matrix
G0(t) in Eq. (6) describes the tunneling (or on-site energies)
within the same unit cell, whereas G1(t) and G2(t) describe the
tunneling among neighboring unit cells. In the basis defined by
the vectors in Eq. (8), the time-dependent matrices in Eq. (6)

A

B

a1

a2

a3

b3

b2

b1

τ3

−τ3

FIG. 1. (Color online) Sketch of the hexagonal lattice con-
structed with a triangular Bravais lattice spanned by two of the three
vectors b1, b2, and b3 and a two-point basis comprising the sites A

(red) and B (green). The vectors a1, a2, and a3 connect the different
neighboring lattice sites. The relative sign between the rates of the
effective next-nearest-neighbor tunneling along the direction b3 is
exemplified in blue.

read

G0(t) =
(

� g∗
a3

(t)
ga3 (t) −�

)
, (9)

G1(t) =
(

0 0
ga2 (t) 0

)
, (10)

G2(t) =
(

0 g∗
a1

(t)
0 0

)
. (11)

The quantities ±� define an on-site energy of the sites such
that there is an overall energy difference 2� between the on-
site energy of the lattice sites A and B. The time-dependent
NN rates read

gak
(t) = j0 eiχak

(t) (12)

and characterize the rate for a particle at a site ri to tunnel
to ri + ak , where the vectors ak are defined to connect
neighboring sites, as depicted in Fig. 1. They read a1 =
a
2 (

√
3,1), a2 = a

2 (−√
3,1), and a3 = −a1 − a2. The time-

dependent tunneling rates in Eq. (12) are thus characterized by
the real NN tunneling rate j0 of the undriven system and the
periodic function

χak
(t) =

∫ t

0
dτF(τ ) · ak − 1

T

∫ T

0
dt

∫ t

0
dτF(τ ) · ak, (13)

defined in terms of the external driving force F(t) that produces
the shaking, and the direction of tunneling ak .

As theoretically expected and experimentally confirmed
[8], the dynamics of the system in a fast driving regime can be
captured very well by the truncated effective Hamiltonian

Hdh = H
(0)
eff + H

(1)
eff . (14)

Since the leading-order effective Hamiltonian H
(0)
eff is given

by the temporal average of H (t) in Eq. (5), it contains the
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same physical processes as the undriven system. The on-site
energies ±� and the interactions Hint remain unchanged, but
the effective NN tunneling rates become the directionality-
dependent quantities g0

ak
= 1

T

∫ T

0 dt gak
(t). On the contrary,

the first-order term H
(1)
eff contains new tunneling processes and

reads

H
(1)
eff =

∑
i

c†ri
B0 cri

+
∑

i

3∑
k=1

(
c†ri+bk

Bk cri
+ H.c.

)
, (15)

where b3 = −(b1 + b2) and the effective tunneling matrices

Bk =
(

τk 0
0 −τk

)
, (16)

k = 0,1,2,3, are given in terms of the on-site energy τ0 =∑3
i=1 β(ai , − ai) and the tunneling rates

τ1 = β(a2, − a3), (17)

τ2 = β(a3, − a1), (18)

τ3 = β(a1, − a2). (19)

The quantity

β(ai ,aj ) =
∞∑

n=1

1

nω

(
g−n

ai
gn

aj
− g−n

aj
gn

ai

)
(20)

that defines the effective rates is expressed in terms of
the Fourier components gn

aj
= 1

T

∫ T

0 gaj
(t)e−inω of the time-

dependent tunneling rates in Eq. (12). The rates τk with
k = 1,2,3 describe emergent next-nearest-neighbor (NNN)
tunneling processes that result from a virtual tunneling process
over a neighboring site. The relative sign in Bk between
the different rates τk and −τk , exemplified in Fig. 1, is a
fundamental symmetry that is independent of the specific
driving force F(t) [38]. Due to this symmetry, the emergent
NNN tunneling rates discussed above are, in general, not
equivalent to those of the paradigmatic Haldane model [7],
where the two tunneling rates are complex conjugated with
respect to each other. Only for purely imaginary rates τ ∗

k =
−τk , k = 1,2,3, do the NNN tunneling rates of the two models
coincide. Consequently, it is fundamentally impossible to
implement the full topological diagram of the Haldane model
with the present lattice shaking approach without nonvanishing
real NNN tunneling rates in the undriven system.

Topological band structure

Despite the differences between the Haldane model Hamil-
tonian and the effective Hamiltonian in Eq. (14), the two
models share similar topological properties. As we shall later
demonstrate, it is possible to find a driving force F(t) yielding
isotropic tunneling rates, namely, g0

ak
= j1 and τk = j2e

iφ

for all directions k = 1,2,3, where j1 and j2 are positive
real numbers and φ is defined in the interval (−π,π ].
The noninteracting part of the effective Hamiltonian can
then be written in quasimomentum space as Hdh − Hint =∑

k c†kH (k)ck, where c(†)
k are the vector momentum creation

C = 0

φ π−π

C = +1C = −1

−π/2 π/2

6

−6

Δ
j2

FIG. 2. (Color online) Phase diagram of the isotropic effective
Hamiltonian in Eq. (21) (black lines and dark colors) overlapped with
the phase diagram of the Haldane model [39] (gray lines and lighter
colors), giving the Chern number C of the lowest-energy band as a
function of the phase φ and ratio �/j2. Orange represents C = −1,
blue C = 1, and white C = 0. For φ = ±π/2 the Chern number of
the two Hamiltonians coincide independently of �/j2.

and annihilation operators and

H (k) =
3∑

i=1

hi(k)σi (21)

is defined in terms of the Pauli matrices σi and

h1(k) = j1[1 + cos(k · b1) + cos(k · b2)], (22)

h2(k) = j1[sin(k · b1) − sin(k · b2)], (23)

h3(k) = � + 2j2

3∑
i=1

cos(k · bi + φ). (24)

The topological diagram of this model, displaying the Chern
number [5] as a function of the Hamiltonian parameters �/j2

and φ, can be readily calculated [40] and it is shown in
Fig. 2. The transition between different topological phases—
indicated with a solid black line—corresponds to parameters
of the Hamiltonian for which the gap between the two energy

bands ε±(k) =
√

h2
1(k) + h2

2(k) + h2
3(k) closes. For compar-

ison, we also display the analogous topological diagram
of the isotropic Haldane model Hamiltonian [39]. Only for
φ = ±π/2 do the two Hamiltonians coincide, consistently
with the diagram in Fig. 2.

IV. OPTIMAL DESIGN OF DRIVING

In order to assess to what extent the entire parameter
regime of the topological diagram in Fig. 2 can be realistically
explored, it is necessary to correctly identify driving forces F(t)
that lead to isotropic effective tunneling rates with controllable
amplitudes and phase φ. Since the topological band structure
emerges as a consequence of the interplay between the NN and
NNN tunneling processes, it is important that the relative effect
of the NNN tunneling with respect to NN tunneling, given
by the ratio j2/j1, is sufficiently large. Nevertheless, these
two tunneling processes are of different orders of magnitude,
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since j1 ∝ j0 and j2 ∝ j 2
0 /ω. As the ratio j2/j1 is proportional

to j0/ω, it could easily be increased through a decrease of
the driving frequency ω. This, however, could compromise
the validity of the high-frequency expansion of the effective
Hamiltonian. For this reason, we consider a small fixed ratio
j0/ω to be determined according to the experimental setup
and aim at finding a driving force with a set of parameters p
that maximize the proportionality factor j2

j1

ω
j0

between j2/j1

and j0/ω. Since the amplitude j2 is directly related to φ, we
introduce φ = φtg as a constraint for the maximization, where
φtg is the desired phase that we target. Additionally, j1 should
be sufficiently large with respect to the bare tunneling rate
j0 in order to avoid that the effective tunneling processes
appear at the expense of slowing down the dynamics as
compared to the undriven system. We therefore introduce the
additional constraint j1/j0 � rth, where the threshold value
rth can be chosen from the interval 0 � rth � 1. We thus aim
at finding a driving force targeting: (i) isotropy g0

ak
= j1 and

τk = j2e
iφ , k = 1,2,3; (ii) controllability of the phase φ; and

(iii) enhancement of the NNN tunneling rates through the
maximization

R(φtg,rth) =
{

max
p

j2

j1

ω

j0

∣∣∣∣ j1

j0
� rth; φ = φtg

}
, (25)

performed over a set of free driving parameters p.
For a monochromatic driving force [8,41–43], the effective

NNN tunneling rates τk become purely imaginary and, thus,
only the points φ = ±π/2 in Fig. 2 can be accessed. How-
ever, this strong limitation can be overcome by specifically
designing the driving pulse to satisfy our requirements.

Despite the highly nonlinear dependence that the effective
tunneling rates have on the driving force, we find analytic
expressions for g0

ak
and τk in terms of driving parameters by

using multidimensional Bessel functions, which we introduce
in Appendix A. This allows us to identify the structure of
two driving forces F+(t) and F−(t) that lead to isotropic
tunneling rates independently of their free parameters, as
derived in Appendix B. Consequently, requirement (i) above
is automatically satisfied [44], which allows the examination
of the subsequent target properties. The general form of
the driving forces F±(t) containing N different frequency
harmonics reads

F±(t) =
N∑

n=1

An[cos(ωnt − δn)e1 + cos(ωnt − δ±
n )e2], (26)

with the two perpendicular vectors e1 = (a1 − a2)/
√

3 and
e2 = −a3, the phases

δ±
n = δn ± (−1)nπ/2, (27)

and the frequencies

ωm = 1
4 [6m − (−1)m − 3]ω, (28)

which parametrize all positive integer multiples of ω except
those that are multiples of 3ω. The fact that no multiples of 3ω

are present in the driving force is a consequence of the 2π/3
rotational symmetry of the lattice, as described at the end of
Appendix B. Because the overall phase of the driving force
is irrelevant in the fast-driving regime, we choose δ1 = 0 in
the following. The remaining 2N − 1 driving parameters (N

FIG. 3. (Color online) Phase φ of the complex effective next-
nearest-neighbor tunneling rates as a function of A1/ω and A2/ω for
a force F+(t) with N = 2 and δ2 = π/2. All phases can be explored
with a suitable choice of A1 and A2. The dashed and solid white lines
indicate the contour lines for j1/j0 = 0.5 and j1/j0 = 0.25 and limit
the region of accessible phases given a constraint with rth = 0.5 or
rth = 0.25, respectively.

amplitudes and N − 1 phases) comprise the set p and need to
be chosen so that the requirements (ii) and (iii) are satisfied.

A. Bichromatic driving force

In order to ease an experimental implementation, we
consider the simplest polychromatic force with two frequency
harmonics (i.e., N = 2), which contains three driving pa-
rameters: two amplitudes A1 and A2, and a relative phase
δ2. We analytically find that, if δ2 = 0, ± π , the real part
of τk again vanishes, similarly to the monochromatic case.
However, for δ2 �= 0, ± π and an appropriate choice of driving
amplitudes, the entire range of phases φ ∈ (−π,π ] can be
realized, satisfying thus requirement (ii), as illustrated in Fig. 3.
Consequently, in a deep optical lattice implementation of the
system where interactions are present, only the use of, at
least, bichromatic driving permits one to achieve any desired
phase φ of the effective NNN tunneling rates. The possibility
to tune the effective Hamiltonian parameters and scan the
different regions of the topological diagram is especially
relevant for the interacting system of particles we consider,
since the emergence of strongly correlated many-body ground
states importantly depends on the details of the system’s
implementation [30,45,46].

The maximization described in point (iii) leads to a
significant effective NNN tunneling rate for any desired
phase, which strongly suggests that NNN tunneling rates
with an arbitrary phase could be experimentally detected. Yet,
considerably different results are obtained depending on the
phase φtg and threshold rate rth that we target. In order to
discuss this behavior, we plot in Fig. 4 the real and imaginary
part of R(φtg,rth)eiφtg for two different values of rth and for a
discrete set of angles φtg ∈ (−π,π ]. Each data point is obtained
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R(φtg, rth) cos(φtg)

R
(φ

tg
,r

th
)s

in
(φ

tg
)

FIG. 4. (Color online) Plot of the real and imaginary part of
R(φtg,rth)eiφtg calculated numerically as a function of a discrete set
of target phases φtg and for two different values of rth. In polar
coordinates, the radius and argument of each data point coincide
with R(φtg,rth) and φtg, respectively. Dots correspond to rth = 0.25,
and crosses to rth = 0.5. The results in blue have been obtained with
a driving force F+(t) and the results in orange with F−(t).

with a numerical constrained optimization over the set of free
parameters p = (A1/ω,A2/ω,δ2). Overall, we observe two
main features.

First, for a given threshold value rth, the largest values of
R(φtg,rth) are obtained for a range of phases close to ±π/2.
The lowest values correspond to phases 0 and ±π , for which
the effective Hamiltonian Hdh is time-reversal invariant. This
indicates that experimentally it is easier to access the areas of
the topological diagram in Eq. (2) that are near φ = ±π/2.
Noteworthy, we find that for φtg = ±π/2 the optimal solution
of the two-frequency pulse reduces to a monochromatic force,
i.e., A2 = 0, independently of rth. Nonetheless, the maximum
of R(φtg,rth) does not always correspond to φtg = ±π/2 for a
fixed rth, as can be seen in the results for rth = 0.25 in Fig. 4.

Second, the lower the threshold value rth is for a fixed
target phase φtg, the larger R(φtg,rth) can be, as a larger region
in the parameter space, given by the driving parameters, can
be accessed (see the contour lines in Fig. 3). Thus, there is a
trade-off between the lower values of the threshold rth for the
ratio j1/j0 and a higher relative enhancement j2

j1

ω
j0

of NNN
tunneling. It is thus advisable to choose a small value of
rth, provided that it is sufficiently large so that tunneling is
dominant in the dynamics of the system and processes such
as interaction or heating can be neglected on the time scale on
which tunneling occurs.

As a result of the maximization in Eq. (25), the optimal
driving parameters that yield the maximum enhancement
of the NNN tunneling are also obtained. We find that the
optimal driving amplitudes strongly depend on the target

parameters φtg and rth. For instance, it can be observed in
Fig. 3 that different values of the constraint rth restrict the
driving amplitudes to distinct regions, which has a clear
effect on the values of the optimal driving amplitudes. In
particular, optimal driving amplitudes with the constraint
rth = 0.5 are equal to or smaller than those with the constraint
rth = 0.25. For all the results shown in Fig. 4, we find that
the corresponding driving amplitudes are of a similar order of
magnitude as the driving frequency, specifically, |A2| < |A1|
and |A1/ω| < 3.5. Additionally, we observe a discontinuous
behavior of the optimal driving parameters as a function of φtg,
which leads to a discontinuity in R(φtg,rth), as manifested with
the rth = 0.25 results in Fig. 4. This can be understood in terms
of the constraint j1/j0 > rth, which restricts the parameter
space to disjoint regions, as can be seen in the contour line
j1/j0 = 0.25 in Fig. 3. Depending on the targeted phase, the
driving parameters might change from one region to another,
yielding a discontinuity in the driving parameters and in the
corresponding value of R(φtg,rth).

B. Trichromatic driving force

When increasing the number of frequency harmonics of
the force F±(t), more driving parameters become accessible.
These additional degrees of freedom can be exploited, e.g., to
further increase the maximum value of R(φtg,rth) targeting
specific phases. A three-frequency driving force contains
the set of driving parameters p = (A1/ω,A2/ω,A3/ω,δ2,δ3),
where A3 and δ3 correspond to the amplitude and phase
associated with the frequency component ω3 = 4ω in Eq. (28).
Analogously to the two-frequency results, we obtain the
optimal choice of p with the constrained maximization in
Eq. (25), with the target functional and constraints expressed
analytically in terms of three-dimensional Bessel functions.

In Fig. 5, we display optimal results obtained and compare
them with the N = 2 results. We observe that, for the entire
range of target phases φtg except for φtg = ±π/2, optimally

R(φtg, 0.5)

n

FIG. 5. (Color online) Plot of R(φtg,rth = 0.5) calculated numer-
ically as a function of a discrete set of target phases φtg = φn = nπ/40
indexed by n = 0,1, . . . ,20. Thus, the labels n = 0 and n = 20
refer to φtg = 0 and φtg = π/2, respectively. The results in green
correspond to a driving force F+(t) with N = 3, while in blue crosses
we display for comparison the results for N = 2.
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chosen forces with N = 3 lead to larger values of R(φtg,rth)
than for bichromatic driving. Moreover, the maximum relative
enhancement of the tunneling appears for small values of φtg,
which is precisely where the enhancement is most desired.
Similarly to the N = 2 case, we find that the optimal driving
force targeting φtg = ±π/2 corresponds to the monochromatic
force, i.e., A2 = A3 = 0.

Remarkably, the enhancement of the effective NNN tun-
neling (of order ∼ω−1) as compared to the NN tunneling (of
order ∼1) relies on the use of a higher-frequency component.
This strongly suggests that the use of driving forces F±(t) with
even higher-frequency harmonics, that is, with N > 3, and op-
timally chosen driving parameters could still further improve
on the value of R(φtg,rth). Nonetheless, our results show that
already a very low number of frequency components is suf-
ficient to significantly outperform the monochromatic driving
and yield significant NNN tunneling rates for any phase φ.

V. CONCLUSIONS

The results we have presented show that even a very low
number of frequency components is sufficient to completely
outperform the monochromatic driving and yield significant
NNN tunneling rates with any desired phase φ. This exempli-
fies the fact that the usually considered monochromatic driving
can strongly limit the accessible effective dynamics and that
only suitably chosen driving protocols enable the exploration
of the entire accessible dynamics of the system.

Typically, polychromatic driving would induce more heat-
ing than a monochromatic realization, because a growing
number of frequencies makes it harder to ensure that no
undesired transitions to higher-energy bands are driven non-
negligibly [47]. However, since the present prescription is
based on driving patterns with very few frequencies, there
is substantial freedom to identify suitable parameters that
suppress such transitions. Indeed, a driving profile Fsc(t)
composed of a sine and constant intervals has been successfully
realized in experiments [48] and has led to the observation
of coherent dynamics over a substantial number of periods
of time. The profile Fsc(t) contains, in addition to the two
leading amplitudes corresponding to the first two frequency
harmonics, a tail of finite amplitudes associated with higher
frequencies. Since this tail is missing for the present driving
force, it is thus expected that the presently described driving
protocol induces rather less heating than driving schemes
whose experimental viability has been verified.

The realization of the model we describe does not require
NNN tunneling in the underlying undriven system, which is
a necessary requirement for the implementation of the system
with deep optical lattices, where NNN tunneling is negligible
and interactions are not. Moreover, the possibility to tune
the parameters of the effective Hamiltonian and access its
entire topological diagram is especially relevant for the study
of strongly correlated many-body phases, since the specific
details of the band structure are crucial in order to determine
the many-body ground state [30,45,46]. We believe, thus,
that the possibility to experimentally implement the effective
Hamiltonian introduced in Eq. (14) naturally warrants further
investigations on, e.g., the emergence of fractional quantum
Hall states in this system.

Moreover, the optimal control methods used in this work
can also be applied to a broad range of driven lattice systems,
including, e.g., a system of spinful particles driven with a time-
dependent magnetic gradient [49]. The use of optimal control
techniques for driving-induced effective dynamics has thus
the potential of advancing the field of quantum simulations
by enabling a reliable implementation of different physical
models.
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APPENDIX A: MULTIDIMENSIONAL BESSEL
FUNCTIONS

The effective tunneling rates of the Hamiltonian Hdh in
Eq. (14) are given in terms of the Fourier components gn

ai
of

the time-dependent tunneling rates; they are defined through
the relation

gak
(t) = j0e

iχak
(t) =

∞∑
n=−∞

gn
ai
einωt , (A1)

with the T -periodic function χak
(t) in Eq. (13). Motivated

by the need for analytical expressions to target the properties
described in points (i)–(iii) in Sec. IV, we introduce multidi-
mensional Bessel functions as a generalization of ordinary and
two-dimensional Bessel functions [50].

Ordinary nth order Bessel functions Jn(a) can be defined
as Fourier components of the generating function

eia sin(b) =
∞∑

n=−∞
Jn(a)einb. (A2)

Here, we generalize the Bessel functions introduced above and
consider N -dimensional Bessel functions J z

n (c; d) defined by
the generating function

ei
∑N

k=1 ck sin(zkτ−dk ) =
∞∑

n=−∞
J z

n (c; d)einτ , (A3)

with the real vectors c = (c1, . . . ,cN ) and d = (d1, . . . ,dN ),
and the integer vector z = (z1, . . . ,zN ). The Fourier transform
of Eq. (A3) leads to the integral representation

J z
n (c; d) = 1

2π

∫ 2π

0
dτei

∑N
k=1 ck sin(zkτ−dk )−inτ . (A4)

Inserting Eq. (A2) into Eq. (A4) permits one to expand
N -dimensional Bessel functions in terms of ordinary one-
dimensional Bessel functions,

J z
n (c; d) =

∑
x

Jx1 (c1) · · ·JxN
(cN )e−id·x

× 1

2π

∫ 2π

0
dτeiτ (z·x−n) (A5)
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=
∑

x

Jx1 (c1) · · ·JxN
(cN )e−id·xδz·x,n (A6)

=
∑

s

Js1 (c1) · · ·JsN
(cN )e−id·s, (A7)

where x = (x1, . . . ,xN ) denotes all possible integer vectors
and s = (s1, . . . ,sN ) all integer solutions of the Diophantine
(i.e., integer) equation

z · s = z1s1 + · · · + zNsN = n. (A8)

A linear Diophantine equation of the form in Eq. (A8)
can be solved if and only if the greatest common divisor
gcd(z1, . . . ,zN ) divides n [51]. Since the driving force will al-
ways contain the fundamental driving frequency, at least one of
the elements of z equals 1, which implies that Eq. (A8) can be
trivially solved for all n. Without loss of generality we order the
elements such that z1 = 1. The solution of Eq. (A8) then reads

s1 = n −
N∑

i=2

zisi, (A9)

where s2, . . . ,sN are N − 1 integer free parameters that
characterize the general solution. Consequently, since z1 = 1,
N -dimensional Bessel functions can be expressed as

J z
n (c; d) =

∞∑
s2,...,sN =−∞

Js1 (c1)Js2 (c2) · · ·JsN
(cN )e−id·s,

(A10)

where s1 is defined in Eq. (A9).
A numerical evaluation of N -dimensional Bessel functions

can be implemented by truncating the infinite sums in
Eq. (A10). Specifically, in the numeral implementation of
the maximization described in the main text, we examine
amplitudes with magnitudes |ci | < 5, for which a truncation
of |si |, i = 1, . . . ,N , up to ∼ 7 is sufficient. We find that,
over a wide range of parameters, this implementation is com-
putationally more efficient than other numerical approaches,
such as a Taylor series truncation of the generating function in
Eq. (A3). Nonetheless, the dimension of the Bessel function
rapidly becomes a limiting factor since the number of terms
to evaluate grows with N . For this reason, it is convenient to
work with the lowest dimension possible, which is given by
the number of elements in z that are different. If a subset z′
of z contains the same elements, i.e., z′ = (z, . . . ,z), then the
polar parametrization

re−iα ≡
∑

i

c′
ie

−id ′
i (A11)

allows one to express∑
i

c′
i sin(zτ − d ′

i) = r sin(zτ − α), (A12)

where r is real (but not necessarily positive) and c′
i ,d

′
i are the

elements of c and d associated with z′. In this manner, the
dimension of z can be reduced by dim(z′) − 1. This process
can be repeated until all the elements of z are different.

APPENDIX B: ISOTROPIC TUNNELING RATES

In this Appendix we will demonstrate how the driving
forces F±(t) introduced in Eq. (26) lead to isotropic nearest-
neighbor (NN) tunneling rates g0

ak
and next-nearest-neighbor

(NNN) tunneling rates τk defined after Eqs. (14) and (15),
respectively. For this purpose, we shall first find analytical
expressions of the Fourier components gn

ak
defined after

Eq. (20) by means of multidimensional Bessel functions.
We start by considering the force F+(t) in Eq. (26). The

quantity χak
(t) introduced in Eq. (13) reads

χak
(t) =

N∑
m=1

Am

ωm

[sin(ωmt − δm)ak · e1

+ sin(ωmt − δ+
m)ak · e2]. (B1)

Following the same arguments as in Appendix A, we introduce
the polar representation

cme−idk
m = Am

ωm

(e−iδmak · e1 + e−iδ+
m ak · e2) (B2)

= Am

ωm

e−iδm [ak · e1 − i(−1)mak · e2]. (B3)

Importantly, since relative phases δ(±)
m in Eq. (27) have been

chosen to satisfy δ+
m − δm = (−1)mπ/2, the quantities cm read

cm = Am

ωm

|ak| (B4)

and, therefore, do not depend on the direction specified by the
index k because the amplitude of the vectors ak is independent
of k. Moreover, from Eq. (B3) we find that the directionality-
dependent phases dk

m can be expressed as

dk
m = δm + (−1)mφk, (B5)

where φk denotes the angle of the vector ak with respect to e1

and they read φ1 = π/6, φ2 = 5π/6, and φ3 = 3π/2 with the
convention introduced in Fig. 1.

Using this representation, the number of terms in Eq. (13)
is reduced from 2N to N such that it can be rewritten as

χak
(t) =

N∑
m=1

cm sin
(
ωmt − dk

m

)
. (B6)

With the isotropic tunneling rates j0 of the undriven system,
the Fourier components gn

ak
can be expressed in terms of N -

dimensional Bessel functions as

gn
ak

= j0 J z
n (c; dk), (B7)

where c = (c1, . . . ,cN ), dk = (dk
1 , . . . ,dk

N ), and z =
(z1, . . . ,zN ) of the Bessel functions, with zm = ωm/ω.

The directionality dependence of the Fourier components
gn

ak
appears only in the exponential e−idk ·s of the Bessel

function [see Eq. (A10)]. In fact, due to Eq. (B5), the
only possible directionality dependence originates from pk ≡
[−φk, . . . ,(−1)Nφk] through

e−ipk ·s = exp

[
i

(
n −

N∑
m=2

zmsm

)
φk − i

N∑
n=2

(−1)mφksm

]

= exp

[
iφk

(
n −

N∑
m=2

[zm + (−1)m]sm

)]
, (B8)
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with the integer vector

s =
(

n −
N∑

m=2

smzm,s2, . . . ,sN

)
. (B9)

From Eq. (B8), the isotropy of the NN tunneling rates g0
ak

directly follows. For n = 0, Eq. (B8) reduces to

e−ipk ·s = exp

(
−i3φk

N∑
m=2

[zm + (−1)m]

3
sm

)
. (B10)

Because of our choice of ωm in Eq. (28), the quantity
[zm + (−1)m] appearing in Eq. (B8) is always a multiple of 3
and, thus, [zm + (−1)m]/3 is an integer number. Consequently,
since the phases φk satisfy

e−i3φ1q = e−i3φ2q = e−i3φ3q (B11)

for arbitrary integers q, we obtain that J0(c; dk) and hence g0
ak

are independent of the direction k.
Next, we will demonstrate the isotropy of the NNN

tunneling rates τk by showing that

e−ip1·se−ip2·s′ = e−ip2·se−ip3·s′

= e−ip3·se−ip1·s′
, (B12)

with the integer vectors s in Eq. (B9) and

s′ =
(

−n −
N∑

m=2

s ′
mzm,s ′

2, . . . ,s
′
N

)
, (B13)

which implies

J z
n (c; d1)J z

−n(c; d2) = J z
n (c; d2)J z

−n(c; d3)

= Jn(c; d3)J−n(c; d1), (B14)

and hence τ1 = τ2 = τ3.
The quantities e−ipi ·se−ipj ·s′

in Eq. (B12) can be obtained
with Eq. (B8) and read

e−ipi ·se−ipj ·s′ = exp

(
−i3φi

N∑
m=2

[zm + (−1)m]

3
sm

)

× exp

(
−i3φj

N∑
m=2

[zm + (−1)m]

3
s ′
m

)

× ein(φi−φj ). (B15)

Then, Eq. (B12) directly follows from Eq. (B15) by using
Eq. (B11) and the relation ein(φ1−φ2) = ein(φ2−φ3) = ein(φ3−φ1),
which demonstrates the isotropy of the NNN tunneling rates.
The same result can by readily derived for F−(t) by noting that
F−(t) is obtained from F+(t) with the substitution ω → −ω

and δn → −δn.
As a final remark, we would like to mention that the fact

that the parametrization of zm does not contain multiples of 3
is a result of the 2π/3 rotational symmetry of the hexagonal
lattice, as one can infer from Eqs. (B10), (B11), and (B15).
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