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Nonequilibrium kinetic theory for trapped binary condensates
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We derive a nonequilibrium finite-temperature kinetic theory for a binary mixture of two interacting atomic
Bose-Einstein condensates and use it to explore the degree of hydrodynamicity attainable in realistic experimental
geometries. Based on the standard separation-of-time-scales argument of kinetic theory, the dynamics of the
condensates of the multicomponent system are shown to be described by dissipative Gross-Pitaevskii equations
self-consistently coupled to corresponding quantum Boltzmann equations for the noncondensate atoms: On
top of the usual mean-field contributions, our scheme identifies a total of eight distinct collisional processes,
whose dynamical interplay is expected to be responsible for the system’s equilibration. In order to provide their
first characterization, we perform a detailed numerical analysis of the role of trap frequency and geometry on
collisional rates for experimentally accessible mixtures of 87Rb - 41K and 87Rb - 85Rb, discussing the extent to
which the system may approach the hydrodynamic regime with regard to some of those processes as a guide for
future experimental investigations of ultracold Bose gas mixtures.
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I. INTRODUCTION

The possibility of unprecedented control over experimental
parameters in ultracold atom experiments, such as the statis-
tics, interactions, and dimensionality of trapped gases [1–4],
offers an opportunity to elucidate novel many-body quantum
effects. At the level of a single-component Bose gas, the study
of the Bose-Einstein condensate (BEC) has already bifurcated
into a plethora of directions. Opportunities now exist to inves-
tigate a broad spectrum of problems, including mimicking the
behavior of atoms in solids using sophisticated optical manip-
ulations [5–7], as well as applications to quantum information
and computation [8–10]. Experimental advances have also
led to the controlled generation of multicomponent [11–23]
and spinor [24–30] condensates, with the dynamical interplay
between different components leading to even richer physics,
including, for example, phase separation [31–33] and spin-
domain formation [25,29]. Recently, condensates have also
been used to simulate gauge theories, which has attracted
intense experimental and theoretical focus due to the strong
analogies with condensed-matter systems [34,35]. The behav-
ior of Bose gas mixtures is also related to the study of doubly
superfluid Bose-Fermi mixtures in the BEC regime [36], where
the Fermi gas forms a molecular condensate.

For the single-component condensates, an understanding of
the dynamics of Bose-condensed systems often relies on the
Gross-Pitaevskii equation, which naturally encompasses the
wavelike behavior of the weakly interacting gas, valid deep
within the ultracold regime. However, to gain insight into the
dynamics of the gas over a broader range of temperatures,
one must explicitly consider the behavior of the normal
component of the system, which leads to a rich nonequilibrium
behavior. Numerous approaches have been devised to describe
the condensate dynamics in the presence of a thermal cloud
(see, e.g., the reviews [37–42]), each with its own merits
and drawbacks. Classical-field methods [41–46] cumulatively
describe the highly occupied low-lying “classical” modes of
the gas, relying on the ergodic relaxation of a nonequilibrium
initial state (to a Rayleigh-Jeans distribution); appropriately
sampled quantum noise could also be added in the initial

states to mimic quantum fluctuations (an approach referred to
as “truncated Wigner”) [47,48]. Explicitly adding a stochastic
coupling to a heat bath, representing the set of high-lying
modes largely unaffected by the condensate, one can also
introduce fluctuating dynamics into the system [49–53]; this
is expected to be mostly relevant for studying equilibrium
fluctuations [54–59] and quenched dynamics [52,60–63].
While such approaches are suited for describing the critical
region, they only describe dynamics up to a (fixed energy or
momentum) cutoff [41] and cannot therefore account for any
perturbations of the high-lying, thermal, modes.

Contrary to such approaches, the dynamics of thermal
modes can be accurately handled by an alternative pertur-
bative method, following the usual route of kinetic theory,
which describes the coupled condensate and thermal cloud
dynamics, based on a separation-of-time-scales argument [64–
73]; while this method relies on symmetry breaking [74],
and thus fails to account for the critical fluctuation region,
it is particularly suited to studying damping of collective
modes and macroscopic excitations, which it has done
very successfully [75–81]. Despite its inherent limitation
in requiring the assumption of a nonzero condensate mean
field (which can, however, be negligibly small), this method
(referred to by many as the “Zaremba-Nikuni-Griffin,” or
ZNG method [67]) has nonetheless been found to perform
very well even on the issue of condensate number growth
following a sudden truncation in the thermal distribution [82]
or on surface evaporative cooling [83], complementing studies
based on other approaches which do not, themselves, require
a symmetry-broken condensate mean-field potential when
initiating the numerical simulations [49,61,84–87].

A somewhat similar kinetic approach, which is explicitly
number conserving and does not invoke symmetry break-
ing [88], has also been successfully implemented for describ-
ing system dynamics [89,90].

In the context of multicomponent condensates, which
have been extensively studied with coupled Gross-Pitaevskii
equations (GPEs) [31–33,91–99] or their dissipative general-
izations [100–102], their finite-temperature dynamics remains
a partly open problem. Approaches considered to date include

1050-2947/2015/92(6)/063607(26) 063607-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.063607


M. J. EDMONDS, K. L. LEE, AND N. P. PROUKAKIS PHYSICAL REVIEW A 92, 063607 (2015)

classical field [103], truncated Wigner [104–106], coupled
stochastic projected GPEs [107–110], or number conserv-
ing [111]. However, the detailed dynamics far from the critical
region are expected to be better described by a model that fully
accounts for all condensate and thermal cloud dynamics. This
is particularly important since, parallel to the internal relax-
ation within each system, the two dynamical thermal clouds
will also need to equilibrate together, thus creating a rather
involved competition of collisional processes, with distinct
time scales. While the promising number-conserving method
of Ref. [111] has not yet been advanced to the self-consistent
dynamical level, all other methods (classical field, truncated
Wigner, and stochastic GPEs) feature a cutoff and thus ignore
the coupling of the high-lying thermal modes within and
across the two systems. Although such an approximation
may be adequate for certain nonequilibrium features (e.g.,
defect formation following a quench [60], persistent current
decay [112]), it is nonetheless known to fail, at least formally,
in some cases. A typical example of this is the Kohn mode of
oscillation set up by a harmonic trap displacement which is
not reproduced by such models [113]. Variants of the kinetic
model described here, whose single-component limit does
not suffer from such a problem [40], have been put forward
in [114–116]. As explained in more detail within the present
paper, the latter work [116] undertaken by the present authors
was specifically designed in order to introduce the collisional
terms not explicitly dealt with in previous kinetic approaches
in a way which facilitates its numerical implementation.

The aim of this work is twofold. (i) First, we provide a
detailed derivation (Secs. II–IV) of our previously proposed
multicomponent kinetic scheme [116], which includes both
condensate and thermal cloud dynamics and all their cross-
collisional terms. (ii) Moreover, we show how numerical ap-
plication of our scheme to near-equilibrium situations (Sec. V)
can be used to map out regimes of near-hydrodynamic behavior
in accessible experimental mixtures, clearly highlighting the
extent to which the relevant degree of “hydrodynamicity” with
respect to different collisional processes can be controlled. For
completeness, we also briefly describe hydrodynamic multi-
component equations (Sec. VI) and summarize the relevance of
our work in the context of existing multicomponent treatments
(Sec. VII). The derivations presented in the main text are also
supplemented by five more-technical appendixes.

II. COUPLED DYNAMICAL EQUATIONS

The starting point for our derivation will be the general
Hamiltonian describing an interacting bosonic binary system,
with the two components labeled a and b, respectively. The
Hamiltonian describing the binary system is written in second-
quantized form as

Ĥ =
∫

dr

⎧⎨
⎩
∑

j

�̂
†
j

[
− �

2

2mj

∇2 + Vj (r)

]
�̂j

⎫⎬
⎭ + ĤI , (1)

and the two-body interactions are given by

ĤI=
∫

dr

⎧⎨
⎩
∑

j

gjj

2
�̂

†
j �̂

†
j �̂j �̂j+

∑
k �=j

gkj �̂
†
j �̂

†
k �̂k�̂j

⎫⎬
⎭, (2)

where �̂j ≡ �̂j (r) is the bosonic annihilation operator for
an atom of species j , which obey the usual commutation
relationships for bosons,

[�̂j (r),�̂†
k (r′)] = δkj δ(r − r′), (3)

[�̂j (r),�̂k(r′)] = [�̂†
j (r),�̂†

k (r′)] = 0. (4)

The s-wave collisions between atoms in different components
are encompassed by gkj = 2π�

2akj /mkj , where akj defines
the scattering length between atoms in components j and
k and m−1

kj = m−1
j + m−1

k defines the reduced mass. The
underlying single-particle Hamiltonian appearing in Eq. (1)
can, in general, contain external potentials, coherent couplings,
and the effective trapping and kinetic energies of the atoms.
Here Vj (r) denotes the trapping potential for atoms of species
j and can be of any form.

In the language of symmetry breaking the condensed and
noncondensed degrees of freedom are separated by means of
the Beliaev decomposition,

�̂j (r) = φj (r) + δ̂j (r). (5)

The condensate of component j is described by the classical
field φj (r) ≡ 〈�̂j (r)〉, while the noncondensate for component
j is encapsulated by the fluctuation operator δ̂j (r), whose
symmetry-breaking average is taken as zero [117], i.e., 〈δ̂(†)

j 〉 ≡
0. Using the equations of motion for the Bose field operators
obtained from the Heisenberg picture and taking averages with
respect to a broken-symmetry nonequilibrium ensemble, one
obtains the equation of motion for component j (for j ∈ {a,b})
of the condensate field φj ≡ φj (r,t) in the form [38,71,74]

i�
∂φj

∂t
=
[
− �

2

2mj

∇2 + Uj
c

]
φj + gjj [〈δ̂j δ̂j 〉φ∗

j + 〈δ̂†j δ̂j δ̂j 〉]

+ gkj [〈δ̂†kδ̂j 〉φk + 〈δ̂k δ̂j 〉φ∗
k + 〈δ̂†kδ̂j δ̂j 〉]. (6)

Here we have defined an effective potential for the component
j condensate to encompass, in addition to the trap potential,
the mean fields of both condensate and thermal clouds of both
components, via

Uj
c (r,t) = Vj (r) + gjj (nc,j + 2ñj ) + gkj (nc,k + ñk), (7)

where nc,j = |φj |2 is the condensate density for component
j , and ñj = ñjj = 〈δ̂†j δ̂j 〉 is the (diagonal) noncondensate
density; we also introduce the off-diagonal noncondensate
density ñkj = 〈δ̂†j δ̂k〉 valid for j �= k. The total density of
component j is defined by

nj = nc,j + ñj = |φj |2 + 〈δ̂†j δ̂j 〉. (8)

Equation (6) can then be written in the simpler form

i�
∂φj

∂t
=
[
− �

2

2mj

∇2 + Uj
c − i(Rjj + Rkj + Rkj )

]
φj , (9)

where the important source terms Rjj , Rkj , and Rkj account
for atomic transport between the condensate and nonconden-
sate for the two components of the gas and are defined in
terms of triplet and pair anomalous averages of the fluctuation
operators δ̂

(†)
j as follows.
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(i) Rjj=−igjj 〈δ̂†j δ̂j δ̂j 〉/φj describes the intracomponent
scattering of condensate and noncondensate atoms, as in the
usual single-component kinetic equations [38,67,71,82];

(ii) Rkj=−igkj 〈δ̂†kδ̂k δ̂j 〉/φj describes scattering between
different components;

(iii) Rkj=−igkj 〈δ̂†kδ̂j 〉φk/φj differs qualitatively from the
first two (see later) and accounts for an important “conden-
sate collisional exchange” process not explicitly included in
previous treatments.

Within the so-called “Popov approximation” (see
Ref. [74]), pair anomalous terms appearing as 〈δ̂j δ̂j 〉 (diagonal)
and 〈δ̂k δ̂j 〉 (off-diagonal) in Eq. (6) are dropped (this is justified
on energy-conservation considerations; see Appendix B for a
discussion of their physical meaning).

The corresponding dynamics of the noncondensate atoms
are encapsulated by coupled quantum Boltzmann equations
for each component of the gas. Adopting the notational
shorthand f jj (r,p,t) ≡ f j for the distribution function, the
kinetic equation for component j is written as

∂

∂t
f j + 1

mj

p · ∇rf
j − ∇pf

j · ∇rU
j
n

= (
C

jj

12 + C
kj

12

) + C
kj

12 + (
C

jj

22 + C
kj

22

)
. (10)

Equation (10) defines the quantum Boltzmann equation for
component j of the binary system, where each of the collision
integrals on the right-hand side describe qualitatively distinct
scattering processes occurring within the multicomponent
partially condensed bosonic mixture. The noncondensate
density associated with component j is given by

ñj (r,t) =
∫

dp
(2π�)3

f j (r,p,t). (11)

A schematic representation of all arising collisional processes
for the binary mixture is shown in Fig. 1. Equations (9) and (10)
represent a closed system of equations, with the three source

terms of Eq. (9) related to the collision integrals in Eq. (10)
via the relationships

Rjj (r,t) = �

2nc,j

∫
dp

(2π�)3
C

jj

12, (12a)

Rkj (r,t) = �

2nc,j

∫
dp

(2π�)3
C

kj

12, (12b)

Rkj (r,t) = �

2nc,j

∫
dp

(2π�)3
C

kj

12. (12c)

In this work we first detail the derivation of the above
equations, which is similar in spirit to the established method-
ology [38,40,67] and subsequently use them to analyze the
relative importance of the emerging collisional processes
and the degree of hydrodynamicity of typical experimental
configurations.

III. KINETIC FORMALISM

In order to correctly account for all of the relevant scattering
channels among atoms in the binary mixture, a careful
microscopic analysis is required. Pioneering work [64–66]
demonstrated how quantum kinetic theory could be used to
understand the dynamics of the noncondensate.

A. Separation of time scales: Identification of slowly varying
“master” variables

Trapped atoms within the gas are treated as undergoing
motion within the trapping potential, which is occasionally
interrupted by the s-wave collisions between particles. As
such, two important collision time scales emerge: the duration
of a single collision event between a pair of particles,
which is defined as τ0 = akj /v, where v is the average
velocity of the particles during the collision event; and the
time between collisions τc = 1/(na2

kj v), where n denotes the
particle density [68]. As the kinetic and interaction energies

FIG. 1. (Color online) Schematic representation of the various scattering processes for the binary system. (Left) The binary system
along with all possible transport pathways. Each component is composed of a condensate (below the dashed line) and a collection of
noncondensate modes (above the dashed line), cumulatively comprising the thermal cloud. Both collisional processes (denoted by C and C)
and condensate-condensate scattering events that contribute to the mean-field potential, Uc, seen by each condensate are clearly highlighted.
(Right) Schematic representation of the coupled equations for the condensates [Eq. (9)] (bottom) and the thermal clouds [Eq. (10)] (top) are
shown for component a; each diagram represents a momentum and energy-conserving collision between condensate a (b) atoms, shown as
solid blue (open red) squares, while thermal a (b) atoms are depicted as solid blue (open red) circles.
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of the particles are typically small, the dynamics of the gas
are encapsulated by a separation of time scales that satisfies
τ0 
 τc, implying that for weak interactions, we can apply
an effective perturbative treatment, which is fully equivalent
to the adiabatic elimination of anomalous averages used in
Refs. [71–73,118].

Such an action requires the explicit identification of a few
slowly varying “master” variables. This task should not be
taken lightly, as it is the key step determining the final form of
the equations. By identifying the slowly varying variables,
one effectively characterizes the mean-field potentials of
relevance in the system (or vice versa), thus also fixing the
form of the unperturbed Hamiltonian. The latter essentially
fixes the “basis” in which the equations are formulated, i.e.,
whether one deals with bare harmonic oscillator states (as, e.g.,
in [68,69,73]), dressed Hartree-Fock states (as most commonly
the case [67]), or even in quasiparticle basis (more challenging,
but see also [119,120]). Clearly, all above are interrelated,
and the importance is to be consistent within a particular
treatment. In any finite-temperature system, we expect to have
non-negligible components of both the condensate and the
thermal cloud of the system: This already defines the two
slowly varying quantities as |φj |2 and ñj .

The important question is whether other quantities should
also be considered as slowly varying; in this context we
should consider the following quantities appearing explicitly
in Eq. (6):

(i) off-diagonal normal pair averages 〈δ̂†j δ̂k〉 (j �= k);

(ii) anomalous pair averages of the form 〈δ̂j δ̂k〉 (for both
j = k and j �= k);

(iii) anomalous triplet averages of the form 〈δ̂†kδ̂j δ̂j 〉.
Reflecting on our knowledge of the single-component

case [67], we note that, as pointed out in [71], the main
condensate kinetics, i.e., its particle exchange with the thermal
cloud should come through the latter term. Pair anomalous
averages could also be included into the treatment through
additional self-consistently coupled equations of motion, as
done, for example, within the context of a bare particle
basis formulation in [68,69,73]. Their role is discussed in
Appendix B, which shows why such terms can, to lowest
order, be neglected due to violating energy conservation.

More generally, their inclusion would describe many-body
effects [72,121], which are, however, not expected to be
significant in weakly interacting atomic condensates. Based
on this, we are thus justified in only including such terms
in the perturbing Hamiltonian, or even dropping such terms
altogether from our formalism (the so-called Popov approxi-
mation [74]).

This leaves us with the off-diagonal normal pair averages
of the form 〈δ̂†j δ̂k〉. In general, these could be thought of
as describing coherences between the two physical systems
and could be treated on equal footing to condensate and
excited-state populations [111,115]. However, in the absence
of any external coupling, one would expect such terms to
evolve on the more rapid collisional time scale and thus be
suitable candidates for adiabatic elimination. The fact that they
give rise to the highly intuitive, but never yet numerically char-
acterized, “condensate exchange collisional process” confirms
a posteriori that such treatment was indeed justified.

Having made such an explicit identification, we can
now proceed with the perturbative treatment, or adiabatic
elimination, of all rapidly varying off-diagonal normal and
anomalous averages.

B. Identification of a perturbing Hamiltonian

To continue, we should now explicitly partition the system
Hamiltonian given by Eq. (1) as

Ĥ = ĤMF + (Ĥ − ĤMF) = ĤMF + Ĥ ′, (13)

where Ĥ ′ defines the perturbation and ĤMF is the quadratic
mean-field (unperturbed) Hamiltonian containing only the
identified slowly varying quantities (condensate mean-field
and diagonal noncondensate densities). To proceed, we
consider the usual separation of the full quartic system
Hamiltonian into terms identified by a label indicating the
number of noncondensate operators appearing in each, i.e.,
from H0 to Ĥ4 (see, e.g., Refs. [38,122]). This takes the form

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (14)

where upon defining ĥ0 = −(�2/2mj )∇2 + Vj (r) as the
single-particle contribution from Eq. (1), one obtains

H0 =
∫

dr

⎧⎨
⎩
∑

j

φ∗
j

[
ĥ0,j + gjj

2
|φj |2

]
φj +

∑
k �=j

gkj |φj |2|φk|2
⎫⎬
⎭, (15a)

Ĥ1 =
∫

dr

⎧⎨
⎩
∑

j

(
φ∗

j

[
ĥ0,j + gjj

2
|φj |2

]
δ̂j + H.c.

)
+
∑
k �=j

gkj

(
φ∗

j |φk|2δ̂j + φk|φj |2δ̂†k + H.c.
)⎫⎬⎭, (15b)

Ĥ2 =
∫

dr

⎧⎨
⎩
∑

j

(
δ̂
†
j

[
ĥ0,j + gjj |φj |2

]
δ̂j + gjj

2
φ2

j δ̂
†
j δ̂

†
j + H.c.

)
+

∑
k �=j

gkj

[|φj |2δ̂†kδ̂k + φ∗
j φ

∗
k δ̂k δ̂j + φ∗

j φkδ̂
†
kδ̂j + H.c.

]⎫⎬⎭, (15c)

Ĥ3 =
∫

dr

⎧⎨
⎩
∑

j

gjj (φ∗
j δ̂

†
j δ̂j δ̂j + H.c.) +

∑
k �=j

gkj (φ∗
j δ̂

†
kδ̂k δ̂j + φ∗

k δ̂
†
j δ̂j δ̂k + H.c.)

⎫⎬
⎭, (15d)

Ĥ4 =
∫

dr

⎧⎨
⎩
∑

j

gjj

2
δ̂
†
j δ̂

†
j δ̂j δ̂j +

∑
k �=j

gkj δ̂
†
j δ̂

†
kδ̂k δ̂j

⎫⎬
⎭. (15e)
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We wish to work with a reduced unperturbed Hamiltonian which is (at most) quadratic, and so we perform conventional (but
not exact) mean-field approximations [73,122] to only include the leading part from the beyond-quadratic Hamiltonian into the
unperturbed Hamiltonian. Our perturbative treatment of the multicomponent gas is motivated by Wick’s theorem [123]. We apply
mean-field approximations to Ĥ3 and Ĥ4 above in order to reduce these terms to quadratic form. These are defined as

δ̂
†
kδ̂k δ̂j � 〈δ̂†kδ̂k〉δ̂j + 〈δ̂†kδ̂j 〉δ̂k + 〈δ̂k δ̂j 〉δ̂†k, (16a)

δ̂
†
j δ̂

†
kδ̂k δ̂j � 〈δ̂†j δ̂j 〉δ̂†kδ̂k + 〈δ̂†kδ̂k〉δ̂†j δ̂j + 〈δ̂†j δ̂k〉δ̂†kδ̂j + 〈δ̂†kδ̂j 〉δ̂†j δ̂k + 〈δ̂†kδ̂†j 〉δ̂j δ̂k

+〈δ̂k δ̂j 〉δ̂†j δ̂†k − [〈δ̂†j δ̂j 〉〈δ̂†kδ̂k〉 + 〈δ̂†j δ̂k〉〈δ̂†kδ̂j 〉 + 〈δ̂†j δ̂†k〉〈δ̂k δ̂j 〉], (16b)

valid for both j = k and j �= k. The reason we like to work with
an approximate quadratic Hamiltonian is because this is, at
least in principle, diagonalizable by a Bogoliubov transforma-
tion to quasiparticle basis. In what follows, we do not, however,
consider the dressing of particles to quasiparticles, but choose
to work instead with dressed single-particle modes in the
Hartree-Fock limit [67]. Hence, our unperturbed mean-field
Hamiltonian defining the energy basis of the system ultimately
takes the form [38,73]

ĤMF ≈ (H0 + δH0) + (Ĥ1 + δĤ1) + (
Ĥ

diag
2 + δĤ

diag
2

)
. (17)

Here the shifts (∝δĤi) that appear in each bracket are found
by applying the mean-field approximations of Eqs. (16a)
and (16b) to Ĥ3 and Ĥ4. The first term in each of the brackets
in Eq. (17) describes a contribution from Eq. (2) above with
the subscript indicating the number of fluctuation operators
appearing within the operator Ĥi [see Eq. (15a)–(15e)], while
the second term δĤi arises from mean-field approximations,
reducing products of three or more fluctuation operators to
quadratic form. The “diag” superscript appearing in the final
terms refer to diagonal contributions with equal component
indices.

The definition of the mean-field Hamiltonian [Eq. (17)]
along with Eqs. (15a)–(15e) and (16a) and (16b) then allow
us to write down the form of the perturbing Hamiltonian, a
detailed account of which is given in Appendix A.

C. Perturbative description of condensate and thermal clouds

The chosen perturbing Hamiltonian Ĥ ′
i (t) [see Appendix A,

Eqs. (A4a)–(A4d)] will allow us to construct our multicom-
ponent kinetic theory. It is straightforward to check that the
definitions of Ĥ ′

i (t) along with our choice of mean-field
Hamiltonian of Eq. (17) recovers the Schrödinger equation
given by Eq. (6),

i�
∂φj

∂t
= 〈[�̂j ,ĤMF]〉 + 〈[�̂j ,Ĥ

′(t)]〉. (18)

Indeed, it can be seen that the first term on the right-hand
side of Eq. (18) generates the condensate potential, mean-
field potentials and anomalous pair averages which go into the
definition of U

j
c , while the second yields the two triplet terms,

in agreement with Eq. (6).
To describe the dynamical evolution of the noncondensed

degrees of freedom, we define the multicomponent single-

particle Wigner operator as [114,115]

f̂ kj ≡
∫

dr′eip·r′/�δ̂
†
j (r + r′/2,t)δ̂k(r − r′/2,t), (19)

where the corresponding phase-space distribution function is
defined as f kj (r,p,t) ≡ Tr ρ̃(t,t0)f̂ kj (r,p,t0) and ρ̃(t,t0) de-
fines the general density matrix of the system, which is related
to the initial density matrix ρ̂(t0) by the unitary transformation
ρ̃(t,t0) = Û (t,t0)ρ̂(t0)Û †(t,t0). The unitary evolution operator
satisfies the equation of motion,

i�
∂

∂t
Û (t,t0) = Ĥ (t)Û (t,t0), (20)

while the density matrix ρ̃(t,t0) evolves according to

i�
∂

∂t
ρ̃(t,t0) = [Ĥ (t),ρ̃(t,t0)]. (21)

In general, the coherences of the noncondensate are nonzero
only when an optical or magnetic coupling exists be-
tween states |a〉 and |b〉. This particular case was explored
in [114,115] for spinor Bose gases. In those works it was
assumed that the (matrix valued) noncondensate potential
Un(r,t) along with the optical coupling strength �n(r,t)
vary slowly in space, which leads to a qualitatively different
expression for the kinetic equation. Within this approximation
the off-diagonal terms in the Wigner operator f̂ kj are explicitly
computed within the perturbing Hamiltonian, leading to
matrix valued kinetic equations describing the noncondensate
dynamics. For the two cases of optically coupled condensates
with either spin- 1

2 or spin-1 internal degrees of freedom, the
relevant kinetic equations are given by Eqs. (52) and (41)
in Refs. [114] and [115], respectively. We are, however,
interested in understanding an incoherent binary mixture;
hence, for j �= k we set in the final calculations f kj (r,p,t) = 0,
i.e., no explicit long-lived coherences between off-diagonal
normal pair averages. The Wigner operator directly allows
us to calculate relevant nonequilibrium expectation values
for the multicomponent system. The corresponding equation
of motion for the diagonal elements of the phase-space
distribution function f j (r,p,t) is written

∂

∂t
f j (r,p,t) = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),ĤMF(t)]

+ 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′(t)], (22)

where the first term on the right-hand side gives the free
streaming terms and the second term generates the individual
collisional integrals.
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IV. DERIVATION OF COLLISIONAL INTEGRALS

A. Mathematical formalism

In order to calculate a closed set of equations describing
the finite-temperature dynamics of the bosonic mixture, the
collision integrals appearing in the dissipative Schrödinger
equation (9) and the quantum Boltzmann equation (10) are
derived using the perturbation Hamiltonian, Ĥ ′, defined by
Eqs. (A4a)–(A4d) in Appendix A. This is, in turn, accom-
plished by expanding the fluctuation operators in terms of
their Fourier components and calculating the nonequilibrium
expectation values of the various products of such operators.
The nonequilibrium average of an arbitrary time-dependent
operator Ô(t) can be computed using the general density
matrix ρ̃(t,t0) defined previously, as well as the mean-field
evolution operator Ŝ(t,t0) that satisfies the equation of motion,

i�
∂

∂t
Ŝ(t,t0) = ĤMF(t)Ŝ(t,t0). (23)

It can then be shown that the expectation value of the operator
Ô(t) can be written as [67]

〈Ôt 〉 = Tr ρ̂t0

{
Ŝ
†
t,t0Ôt0 Ŝt,t0

− i

�

∫ t

t0

dt ′Ŝ†
t ′,t0 [Ŝ†

t,t ′Ôt0 Ŝt,t ′ ,Ĥ
′
t ′ ]Ŝt ′,t0

}
, (24)

where Ât1,t2 ≡ Â(t1,t2) has been used here and in what follows
to abbreviate the time dependence of time evolution operators.
We use Eq. (24) to compute closed expressions for the source
terms appearing in Eq. (9), along with the collision integrals
appearing in Eq. (10) above. The first term on the right-hand
side of Eq. (24) can be dropped, as it is assumed that for long
times any initial correlations present in the system vanish (the
Markov approximation). Thus, Eq. (24) becomes

〈Ôt 〉 � − i

�

∫ t

t0

dt ′〈Ŝ†
t ′,t0 [Ŝ†

t,t ′Ôt0 Ŝt,t ′ ,Ĥ
′
t ′]Ŝt ′,t0〉, (25)

where 〈· · · 〉 ≡ Tr ρ̃t0 (· · · ) for the right-hand side. Since we
have identified the condensate and noncondensate fields as
slowly varying, we write nc,j (r′,t ′) � nc,j (r,t), ñj (r′,t ′) �
ñj (r,t), and U

j
n (r′,t ′) � U

j
n (r,t). It is useful to write the

condensate wave function for component j in the density-
phase representation using the Madelung transformation φj =√

nc,j exp(iθj ), in which case θj (r′,t ′) can be expressed as

θj (r′,t ′) � θj (r,t) + ∂θj

∂t
(t ′ − t) + ∇θj · (r′ − r), (26)

� θj (r,t)−ε
j
c (r,t)

�
(t ′ − t)+pj

c

�
· (r′ − r). (27)

In writing Eq. (27) we have used the Euler equation for
component j [see Eq. (80) in Sec. VI] in order to introduce
the local condensate energy,

εj
c (r,t) = μj

c (r,t) + 1
2mvj

c

2
. (28)

Finally, the Fourier transform of Ĥ ′(t) allows us to derive
nonequilibrium expectation values for arbitrary products of
operators in the following sections. In order to calculate

closed expressions for the collisional integrals appearing in
Eqs. (9) and (10), we must express the higher-order correlation
functions (those formed from nonequilibrium expectation
values of products of fluctuation operators) in terms of
the distribution functions f j (r,p,t). As such, the perturbing
Hamiltonian Ĥ ′(t) is used to extract collision integrals to
second order in the scattering length akj , while maintaining
the effect of interactions in the collective mode energies and
chemical potentials to first order in akj , in the spirit of the
single-component ZNG approach [124].

The evaluation of nonequilibrium quantities requires the
Fourier expansion of the noncondensate field operators, which
for component j is given by

δ̂j (r,t0) = 1√
V

∑
p

âj,pe
ip·r/�. (29)

The expansion defined by Eq. (29) allows us to write the
Fourier transform of the Wigner operator defined by Eq. (19)
above. This is best handled by switching to the center of mass
and relative momenta for the two-component system. Hence,
the general Wigner operator in momentum space for a binary
mixture is written as

f̂ kj (r,p,t0) = ei2
mk−mj

M
r·p/�

×
∑

q

â
†
j,2(mj /M)p−q/2âk,2(mk/M)p+q/2e

ir·q/�,

(30)

and the total mass is M = mj + mk . Since we are only
interested in the (incoherent) processes involving the diagonal
elements of the Wigner operator (see Refs. [114,115] for
generalizations that include the off-diagonal contributions to
the Wigner operator), we work in what follows with Eq. (30)
in the limit j = k. Hence,

f̂ j (r,p,t0) =
∑

q

â
†
j,p−q/2âj,p+q/2e

ir·q/�. (31)

Equation (31) will be used to calculate the collision integrals
in the following sections.

B. Source terms from anomalous averages

1. Condensate growth terms R j j and Rk j (from triplet anomalous
correlations)

We begin by considering the triplet contributions to Eq. (9),
Rjj and Rkj . We explicitly compute Rkj , using Eq. (24). The
triplet contributions can be decomposed as

〈δ̂†kδ̂k δ̂j 〉 = 〈δ̂†kδ̂k δ̂j 〉(1) + 〈δ̂†kδ̂k δ̂j 〉(3). (32)

The two terms in Eq. (32) above require the computation
of averages from the perturbation Hamiltonian involving
one [Eqs. (A6a) and (A6b) for j = k] and those for three
[Eqs. (A6e) and (A6f) for j �= k] fluctuation operators,
respectively. We first compute 〈δ̂†j δ̂j δ̂k〉(3), i.e., those contri-
butions arising exclusively from commutations involving the
perturbing Hamiltonian Ĥ ′

3,kj (t). As such, we first calculate

〈δ̂†kδ̂k δ̂j 〉(3)= − i

�

∫ t

t0

dt ′〈Ŝ†
t ′,t0 [Ŝ†

t,t ′ δ̂
†
kδ̂k δ̂j Ŝt,t ′ ,Ĥ

′
3,kj ]Ŝt ′,t0〉.

(33)
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After using the definition of the Fourier transform of Ĥ3,kj (t) defined as

Ĥ ′
3,kj (t) = 1√

V

∑
k �=j

∑
p2,p3,p4

gkj

√
nc,j

{
δpj

c+p2,p3+p4
e−i(θj −ε

j
c (t ′−t)/�−pj

c ·r/�)â
†
k,p2

âk,p3 âj,p4 + H.c.
}
, (34)

Eq. (33) becomes

〈δ̂†kδ̂k δ̂j 〉(3)=− iπ

V 2
gkjφj

∑
p2,p3,p4

δ
(
εj
c + εk

p2
− εk

p3
− εj

p4

)
δpj

c+p2,p3+p4

[
f k

2

(
f k

3 + 1
)(

f
j

4 + 1
)−(

f k
2 + 1

)
f k

3 f
j

4

]
, (35)

where the shorthand f k
ν ≡ f k(r,pν,t) has been used in the above and what follows and ε

j
c = μ

j
c + 1

2mjv
2
c,j and ε

j
p = p2/2mj +

U
j
n define the nonequilibrium condensate and thermal energy for atoms in component j , respectively. By writing Eq. (35) we let

t0 → ∞ in order to evaluate the integral over t ′ in Eq. (33) [see Eq. (C19) and discussion in Appendix C for an explanation of
this important step]. Calculation of 〈δ̂†kδ̂k δ̂j 〉(1) allows us to write the first term in Eq. (33). Then by taking the continuum limit,
we obtain the source terms

Rkj = g2
kj

2(2π )5�6

∫
dp2

∫
dp3

∫
dp4 δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c + εk

p2
− εk

p3
− εj

p4

)[
f k

2

(
f k

3 + 1
)(

f
j

4 + 1
)− (

f k
2 + 1

)
f k

3 f
j

4

]
,

(36)

Rjj = g2
jj

(2π )5�6

∫
dp2

∫
dp3

∫
dp4 δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c + εj

p2
− εj

p3
− εj

p4

)[
f

j

2

(
f

j

3 + 1
)(

f
j

4 + 1
)− (

f
j

2 + 1
)
f

j

3 f
j

4

]
.

(37)

Here Eq. (37) has been obtained by repeating the steps following Eq. (32) for Rjj .

2. Condensate exchange terms Rk j (from off-diagonal normal pair averages)

The final dissipative source termRkj appearing in Eq. (9) is composed of a normal average of an off-diagonal pair of fluctuation
operators, 〈δ̂†kδ̂j 〉. Hence, we calculate

〈δ̂†kδ̂j 〉=− i

�

∫ t

t0

dt ′〈Ŝ†
t ′,t0 [Ŝ†

t,t ′ δ̂
†
kδ̂j Ŝt,t ′ ,Ĥ

′
2,kj ]Ŝt ′,t0〉. (38)

Computation of Eq. (38) requires the Fourier transform of Ĥ ′
2,kj (t), the relevant contribution being

Ĥ ′
2,kj (t) =

∑
k �=j

∑
p1,p2

gkj

√
nc,jnc,k

{
δp1+pj

c ,p2+pk
c
e−i[(θj −θk)−(εj

c −εk
c )(t ′−t)/�−(pc

j −pk
c )·r/�]â

†
k,p1

âj,p2 + H.c.
}
. (39)

Using Eqs. (38) and (39) yields the expression

〈δ̂†kδ̂j 〉 = − iπ

V
gkjφjφ

∗
k

∑
p1,p2

δ
(
εk
c + εj

p1
− εj

c − εk
p2

)
δpk

c+p1,p
j
c+p2

[(
f

j

1 + 1
)
f k

2 − f
j

1

(
f k

2 + 1
)
]. (40)

By taking the continuum limit of Eq. (40), the off-diagonal pair average becomes

Rkj = g2
kj

2(2π )2�3
nc,k

∫
dp1

∫
dp2 δ

(
pk

c + p1 − pj
c − p2

)
δ
(
εk
c + εj

p1
− εj

c − εk
p2

)[(
f

j

1 + 1
)
f k

2 − f
j

1

(
f k

2 + 1
)]

. (41)

The three expressions derived in this section—Eqs. (36), (37), and (41)—are the important source terms that appear in the
dissipative Schrödinger equation. Equation (41) arises due to our explicit separation of slowly and rapidly varying quantities in
the system Hamiltonian and can be understood as a collisional energy exchange process between the two condensates, whereby
a condensate and thermal atom in differing components scatter into corresponding thermal and condensed states, respectively.

C. Quantum Boltzmann contributions

1. Collisional C j j
12 and Ck j

12 terms

To complete the derivation, we require the collision integrals appearing on the right-hand side of Eq. (10). These are computed
using the definition of the multicomponent single-particle Wigner operator [Eq. (19)], along with the Fourier transform of
Ĥ ′

3,kj (t), as defined by Eq. (34). The multicomponent nature of the problem leads us to partition the “C12” collision integral into

two parts, the first C
jj

12 defines the intracomponent scattering of atoms, while the second C
kj

12 gives the intercomponent collision
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rate. We wish to calculate both

C
jj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

3,j (t)] (42)

and

C
kj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

3,kj (t)]. (43)

As before, let us illustrate the derivation of these two terms by computing the off-diagonal contribution, Eq. (43). This is
accomplished by using Eqs. (34) and (43), giving

C
kj

12 = gkj

i�
√

V

∑
q

eiq·r/�
∑

p2,p3,p4

{
δpk

c+p2,p3+p4φ
∗
k

(
δp2,p+q/2〈â†

j,p−q/2âj,p3 âk,p4〉 − δp3,p−q/2〈â†
j,p2

âj,p+q/2âk,p4〉
)

− δpj
c+p2,p3+p4

φ∗
j δp4,p−q/2〈â†

k,p2
âk,p3 âj,p+q/2〉 − H.c.

}
. (44)

Then, by using the definition of the multicomponent three-field correlation function, the continuum limit can be obtained as
before by replacing the summations with integrations, giving

C
kj

12 = g2
kj

(2π )2�4
nc,k

∫
dp2

∫
dp3

∫
dp4δ

(
pk

c + p2 − p3 − p4
)
δ
(
εk
c + εj

p2
− εj

p3
− εk

p4

)
× [(

f
j

2 + 1
)
f

j

3 f k
4 − f

j

2

(
f

j

3 + 1
)(

f k
4 + 1

)]
[δ(p − p2) − δ(p − p3)]

− g2
kj

(2π )2�4
nc,j

∫
dp2

∫
dp3

∫
dp4δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c + εk

p2
− εk

p3
− εj

p4

)
× [(

f k
2 + 1

)
f k

3 f
j

4 − f k
2

(
f k

3 + 1
)(

f
j

4 + 1
)]

δ
(
p − p4

)
, (45)

C
jj

12 = 2g2
jj

(2π )2�4
nc,j

∫
dp2

∫
dp3

∫
dp4δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c + εj

p2
− εj

p3
− εj

p4

)
× [(

f
j

2 + 1
)
f

j

3 f
j

4 − f
j

2

(
f

j

3 + 1
)(

f
j

4 + 1
)][

δ
(
p − p2

) − δ(p − p3) − δ(p − p4)
]
, (46)

with Eq. (46) obtained by repeating the same steps for the collisional integral defined by Eq. (42). It can be seen that Eq. (46) is
equivalent to the C12 collision integral from the single-component kinetic theory [40,67].

2. Exchange collisional term Ck j
12

To complete our discussion of collisions involving condensate and noncondensate particles, we compute the exchange
collisional integral, which is defined by

C
kj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

2,kj (t)]. (47)

Following the methodology discussed above, the Fourier-transformed Wigner operator along with Eq. (39) allows us to compute
an expression for Ckj

12 given by

C
kj

12 = 2gkj

i�

∑
p1,p2

δpj
c+p1,pk

c+p2

(
φjφ

∗
k

〈
â
†
j,p2

âk,p1

〉 − φ∗
j φk

〈
â
†
k,p1

âj,p2

〉)
, (48)

upon inserting the pair correlation function into Eq. (48) and taking the continuum limit yields the exchange integral Ckj

12, given
by

C
kj

12 = 2πg2
kj

�
nc,k nc,j

∫
dp1

∫
dp2δ

(
pj

c + p1 − pk
c − p2

)
δ
(
εj
c + εk

p1
− εk

c − εj
p2

)[
f k

1

(
f

j

2 + 1
) − (

f k
1 + 1

)
f

j

2

]
δ(p − p2).

(49)

3. Collisional Ck j
22 and C j j

22 terms

The final collisional processes described by Eq. (10) are the terms that account for interactions exclusively between
noncondensate atoms, C

kj

22 and C
jj

22 . The quantities we wish to evaluate are given by

C
jj

22 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

4,j (t)] (50)
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and

C
kj

22 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

4,kj (t)]. (51)

As with the C
jj

12 and C
kj

12 collision integrals, the commutation of the Wigner operator f̂ j (p,r,t) with Ĥ ′
4,j (t) and Ĥ ′

4,kj (t) generates

the intra- (Cjj

22) and inter- (Ckj

22) collision integrals, respectively. We illustrate the derivation by considering the collisional integral
C

kj

22. This requires the Fourier transform of Ĥ ′
4,kj (t), which is given by

Ĥ ′
4,kj (t) = 1

V

∑
k �=j

gkj

{ ∑
p1,p2,p3,p4

δp1+p2,p3+p4 â
†
j,p1

â
†
k,p2

âk,p3 âj,p4 − ñjk

∑
p1,p2

δp1,p2 â
†
j,p1

âk,p2 − ñkj

∑
p1,p2

δp1,p2 â
†
k,p1

âj,p2

}
. (52)

By inserting Eq. (52) into Eq. (51) and taking the continuum limit, the collisional integral C
kj

22 is found to be

C
kj

22 = g2
kj

(2π )5�7

∫
dp2

∫
dp3

∫
dp4δ(p + p2 − p3 − p4)δ

(
εj
p + εk

p2
− εk

p3
− εj

p4

)
× [

(f j + 1)
(
f k

2 + 1
)
f k

3 f
j

4 − f jf k
2

(
f k

3 + 1
)(

f
j

4 + 1
)]

, (53)

C
jj

22 = 2g2
jj

(2π )5�7

∫
dp2

∫
dp3

∫
dp4δ(p + p2 − p3 − p4)δ

(
εj
p + εj

p2
− εj

p3
− εj

p4

)
× [(

f j + 1
)(

f
j

2 + 1
)
f

j

3 f
j

4 − f jf
j

2

(
f

j

3 + 1
)(

f
j

4 + 1
)]

. (54)

Equation (54) is obtained by repeating the above steps for the collisional integral defined by Eq. (50). This formally
completes the derivation of all collisional integrals appearing on the right-hand side of Eq. (10). The expressions given by
Eqs. (45), (46), (49), (53), and (54) will be used in the subsequent sections to study the equilibrium properties of binary condensates.

V. NUMERICAL SIMULATIONS

At finite temperatures, the various collisional processes
have a heavy influence on the coupled dynamics between the
condensates and the noncondensed atoms, such as the damping
of collective modes [76,125,126], the decay of solitons [79]
and vortices [81], as well as the growth of the conden-
sate [82,83], as seen in the corresponding single-component
kinetic theory. In this section, after obtaining our equilibrium
distribution (Sec. V A), we compare the roles of different
collisional processes under the variation of isotropic trap
frequencies (Sec. V D) and trap geometries (Sec. V E). This
is achieved by calculating the collisional rates (Sec. V B) and
hydrodynamic parameters (Sec. V C) for various equilibrium
binary systems. We show and explain the scaling relations
between the hydrodynamic parameters and isotropic trap
frequency in Sec. V D. In Sec. V E, we demonstrate the generic
dominance of the exchange collisional process C12 across
the different trap geometries, even though all collision rates
strongly depend on the relevant scattering lengths. Importantly,
our results in Secs. V D and V E illustrate different ways
to control the hydrodynamicity of the collisional processes,
which can be of high interest to experiments. These include

(i) bringing the hydrodynamic parameters of the various
processes closer in magnitude by increasing the trap frequency
and the temperature;

(ii) increasing the hydrodynamicity of all processes to-
wards the hydrodynamic regime by changing trap geometry;

(iii) controlling the hydrodynamicity of the intraspecies
and interspecies collisional processes by tuning the relevant
scattering lengths through inter- or intraspecies Feshbach
resonances.

In the final section V F, we briefly explore the validity of
the usual high-temperature approximation [β(ε − μ) 
 1] in

the context of collisional rates, specifically for the exchange
collision C12.

Our numerical analysis focuses on experimentally relevant
equilibrium 87Rb - 41K and 87Rb - 85Rb mixtures with a total
atom number Nj = 105 in each component trapped in har-
monic potentials,

Vj (r) = mj

2

[
ω2

⊥(x2 + y2) + ω2
zz

2
]
. (55)

These mixtures were chosen as their tunable scat-
tering lengths (a87Rb = 99a0, a41K = 60a0, a87Rb−41K = 20a0

or 163a0 [14,127]; a87Rb−85Rb = 213a0,a85Rb = 900a0 or
51a0 [16]) enable the probing of both miscible (� =
g12/

√
g11g22 < 1) and immiscible (� > 1) regimes. In a

previous work [116], we have presented our numerical results
for such systems in an isotropic harmonic trap (frequency
ω = ω⊥ = ωz = 2π × 20 Hz). In particular, we have high-
lighted the dominance of the exchange collisions C12 over
the other collisional processes within the temperature range
0.3 < T/Tc < 0.9. Here we perform a more detailed analysis
that compares rates for different isotropic trap frequencies
and different trap geometries, using our results for ω =
2π × 20 Hz as a reference.

A. Equilibrium solutions and condensate fractions

The equilibrium density distributions at temperature
T are numerically obtained by setting the source terms
(Rjj ,Rkj ,Rkj ) and the collision integrals (C12,C12,C22) to
zero and self-consistently solving Eqs. (9) and (10). In order
to speed up the computation, we adopt the semiclassical
approximation [128] for the local noncondensate density,

ñj (r,t) =
∫

dp
(2π�)3

f j (p,r,t) = 1

λ3
j

g3/2(zj ), (56)
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FIG. 2. (Color online) Condensate fractions of 87Rb - 41K (top) and 87Rb - 85Rb (bottom) mixtures at different temperatures in an isotropic
harmonic trap (trap frequency ω = 2π × 20 Hz) with scattering lengths a87Rb−87Rb = 99a0, a41K−41K = 60a0, a87Rb−41K = 20a0 (miscible) or
163a0 (immiscible) [14,127]; a87Rb−85Rb = 213a0 and a85Rb−85Rb = 900a0 (miscible) or 51a0 (immiscible) [16] (each species has a total of N =
105 atoms). Dashed lines give the prediction for noninteracting single-component trapped gas, with condensate fraction Nc/N = 1 − (T/T 0

c )3,
with critical temperature T 0

c = 42 nK. The solid lines represent our numerical fit using the condensate fraction Nc/N = 1 − (T/Tc)α , where
the extracted Tc (indicated in the legend) are lower than the mean-field single-component Tc [129] by, at most, 5%.

where λj = √
2π�2/(mjkBT ) is the thermal de Broglie

wavelength, zj (r) = exp{[μj
c − U

j
n (r)]/(kBT )} is the local

fugacity, and the chemical potential μ
j
c is obtained from the

imaginary-time evolution of the condensate equation (9),[
− �

2

2mj

∇2 + Uj
c

]
φj = μj

cφj . (57)

We start our analysis by first considering the condensate
fractions of the binary mixture at different temperatures T , as
shown in Fig. 2. While our method is strictly not valid for T

close to the critical temperature Tc due to critical fluctuations,
we can nevertheless extract Tc by fitting the fractions with
Nc/N = 1 − (T/Tc)α [130] and compare the extracted Tc to
the expected shift in Tc due to finite-size corrections [131] and
mean-field corrections [132].

For a single-component Bose gas and using our simulation
parameters, Tc decreases by approximately 0.73N

−1/3
j = 2%

due to the finite number of atoms. The mean-field shift,
calculated by −1.3(a/aho)N1/6

j , where a is the relevant
scattering length and aho is the relevant harmonic length,
further decreases our Tc by 1%–2%. However, for the Tc of
85Rb in the miscible mixture, the mean-field shift amounts
to approximately 17% due to the large scattering length
a85Rb−85Rb = 900a0. Note that we did not take into account
many-body effects beyond mean-field theory [133], which
can instead increase the critical temperature. Overall, our
extracted Tc are close to the mean-field predictions for a
single-component gas [129].

Typical density profiles of binary systems are shown in
the top panels of Figs. 3 ( 87Rb - 41K) and 4 ( 87Rb - 85Rb),

where the two condensates (dashed lines) mix (left columns)
or phase-separate (right columns), but always sit on top
of more diffused noncondensate clouds (solid lines). These
noncondensate clouds have long tails that extend much further
than the condensate clouds, a feature that is also seen in the
single-component Bose gas [126,130]. However, in contrast
to the single-peak structure in a single-component gas, mean-
field repulsion from both condensates in a binary mixture leads
to a double-peaked thermal structure at the condensate edges,
where the effective mean-field potentials of the noncondensed
atoms are local minima. The middle and bottom panels
give the spatial collisional rates involving collisions between
thermal-condensate atoms (�12 and �C) and thermal-thermal
atoms (�22), respectively. These spatial rates depend strongly
on the condensate and thermal cloud density profiles. In the
next section, we give more details on the calculation and
analysis of these collisional rates.

B. Collisional rates

With the equilibrium density profiles, we can proceed to
evaluate the local collision integrals (45), (46), (49), (53),
and (54) (where the condensate energy ε

j
c = μ

j
c and the

condensate momentum pj
c = 0 at equilibrium). Since these

integrals are identically zero at equilibrium, we reexpress them
in the form

C
kj

12 = C
kj,out
12 − C

kj,in
12 (58)

(and analogously for C12 and C22) to explicitly identify the
“in” and “out” scattering rates. In this way, we can assess the
importance of the various collisional processes by comparing
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FIG. 3. (Color online) Miscible (left) and immiscible (right) 87Rb - 41K mixtures in an isotropic harmonic trap (frequency ω = 2π × 20 Hz)
at temperature 21 nK. Other simulation parameters (scattering lengths and total numbers of atoms) are the same as Fig. 2. The reference harmonic
length is �ho = √

�/(m87Rbω). (Top) Condensate and thermal densities. (Middle) Spatially resolved collision rates between condensate and
thermal atoms. (Bottom) Spatially resolved collision rates between thermal atoms.

either their in rates or their out rates. By integrating over
momentum space, we obtain the collisional rate

�
kj,out
12(22) =

∫
dp

(2π�)3
C

kj,out
12(22) (59)

that measures the number of noncondensed atoms that have
collided through a particular out process per unit volume per
unit time. The mathematical steps needed to compute Eq. (59)
are given in Appendix D. In the following, we only give the
final formulas used in our numerical computation.

To calculate the collision rates between noncondensed
atoms (for both k = j and k �= j ), it is convenient to transform

to the center-of-mass frame. We therefore obtain

�
kj,out
22 =

∫
dp1

(2π�)3
f

j

1

∫
dp2

(2π�)3
f k

2

×
∫

d�

4π
σkj |v1 − v2|

(
f k

3 + 1
)(

f
j

4 + 1
)
, (60)

where σkj = (1 + δkj )4πa2
kj is the cross section, v1 and v2 are

the initial velocities of atoms j and k, respectively, and �

specifies the solid angle of the final relative velocity v4 − v3.
For collisions between condensate and noncondensate

atoms, we first look at the C
kj

12 process (for both k = j and
k �= j ) which is present even in a single-component Bose gas.
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We specifically evaluate the out collision rate that represents
the scattering of a noncondensed atom from a condensate to
produce two noncondensed atoms,

�
kj,out
12 =

∫
dp2

(2π�)3
f k

2 nc,j σkj v
out
r

∫
d�

4π

(
1 + f k

3 + f
j

4

)
,

(61)

where vout
r =

√
|vc,j − v2|2 − 2(Uj

n − μ
j
c )/mkj is the relative

speed of the initial states corrected to take into account the
local conservation of energy. The reverse process, where two
noncondensed atoms collide such that one of them goes into a
condensate, is given by the in rate as

�
kj,in
12 =

∫
dp4

(2π�)3
f

j

4

nc,j σkj (mk/mkj )3

4π (1 + mj/mk)
∣∣vin

r

∣∣
∫

dṽf k
3 , (62)

where vin
r = vj

4 − vj
c is the velocity of thermal atom j relative

to the local condensate velocity while the second integral is a
two-dimensional integral over the velocity vector ṽ which is
in a plane normal to vin

r . The velocity of the other incoming
thermal atom vk

3 is then given by

vk
3 = vj

c + (1 − mj/mk)

2
vin

r + ṽ +
(
U

j
n − μ

j
c

)
v̂in

r

mj

∣∣vin
r

∣∣ (63)

and the outgoing velocity of the thermal atom is given by

vk
2 = (mj/mk)vin

r + vk
3. (64)

Note that we follow [126] and drop the cubic term f2f3f4 in
numerical simulations as it cancels exactly between the in and
the out rates.

Finally, we consider the exchange collisions C
kj

12 (k �= j

only) novel to our treatment of the binary Bose gas, which
describes a process whereby one condensate atom (say atom
k) collides with a noncondensed atom j and are then scattered
into a thermal (atom k) and condensed (atom j ) state. The
collision rate is

�out
C = σkj

(Mkj

mkj

)2

nc,k nc,j ṽr

∫
d�

4π
f

j

2

(
f k

1 + 1
)
, (65)

where M−1
kj = m−1

k − m−1
j plays the role of an effective

reduced mass while the effective relative speed is

ṽr=
√

|vc,j−vc,k|2−2
([

Uk
n −μk

c

]− [
U

j
n −μ

j
c

])/
Mkj . (66)

Equations (60), (61), and (65) are the key quantities computed
in our simulations once the equilibrium densities are obtained.
The first two are evaluated using Monte Carlo sampling of the
integrals, while an exact expression (see Sec. V F for detailed
discussions) can be obtained for Eq. (65) because vc,j = vc,k =
0 at equilibrium.

Examples of these spatially resolved collision rates are
shown in the middle (�12 and �C) and bottom (�22) panels
of Figs. 3 and 4. Note that �12 are drawn on a larger scale
compared to �22. Typically, the rates between condensed and
noncondensed atoms (both �12 and �C) feature localized
peaks at the condensate edges where the thermal cloud and
condensate overlap the most, while the rates between noncon-
densed atoms (�22) follow closely the shape of the thermal
density profiles. This is because �12 and �C are approximately
proportional to the product of condensate densities and thermal

cloud densities, while �22 is approximately proportional to the
product of two thermal cloud densities. These observations are
important to understand the variation of these collision rates
with respect to the trap frequency; see Sec. V D.

On the other hand, comparison among the C22 or C12

processes shows that the relative peak values of � can be
estimated by the relevant cross section σ ∝ a2

s . For example,
87Rb intraspecies collisions (red dashes) and the 87Rb - 41K
interspecies collisions (black dots and black dash-dots) have
comparable peak heights in the immiscible case (Fig. 3) be-
cause of similar cross sections, whereas the 85Rb intraspecies
collisions (blue thick dashes) dominate over both 87Rb - 85Rb
interspecies collisions (black dots and black dash-dots) and
87Rb intraspecies collisions (red dashes) in the miscible case
(Fig. 4) because of the large 85Rb scattering length a85Rb =
900a0.

Finally, for the case of a 87Rb - 85Rb mixture, the sharp peak
for the interspecies exchange collision �C (green curves in the
right middle panels of Fig. 4) is a consequence of the small
mass difference between the two different atomic species. This
is most easily seen if we consider a small spatial region around
a critical radius rc, at which ṽr = 0. In this case, we can
approximate ṽr = √

C(r − rc)/Mkj for some constant C and
substitute this into Eq. (65) to show that the spatial width of
�C is proportional to M−1

kj . For small mass difference, while
�C is sharply peaked in space, it is nevertheless possible to
obtain the total number of interspecies exchange collisions, a
physically meaningful and experimentally relevant quantity,
by integrating �C over the full cloud volume.

C. Hydrodynamic analysis

From the collision rates, we can further extract the mean
free time τ as [40]

1

τ
= 1

Ncoll

∫
dr�(r), (67)

where Ncoll is the relevant number of available noncondensed
atoms taking part in collisions for each process. For example,
with �

kj

12 in Eq. (61),

Ncoll =
∫

dr dp
(2π�)3

f k(p,r,t) =
∫

drñk(r,t). (68)

In the case of thermal-thermal collisions (C22 processes)
that involve two different components, Ncoll refers to the
number of noncondensed 87Rb atoms. This choice has no
significant impact as, for our simulation parameters, the
condensate fraction of 87Rb differs from the fraction of the
other component ( 41K or 85Rb) by less than 10%, except for
the miscible 87Rb - 85Rb mixture due to the strong mean-field
corrections to the 85Rb fraction; see Fig. 2.

We would like to mention that one could also use an
alternative time scale defined by τ̃ [124]

1

τ̃
= 1

Ncon

∫
dr �(r), (69)

where Ncon is the relevant number of condensed atoms. The
key difference lies in Ncoll and Ncon, which simply reflects
our interest with respect to the change in the number of either
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noncondensed or condensed atoms. These two time scales
therefore differ by the order of condensate fraction.

When τ is compared with the trap frequency, which governs
the oscillation frequency of a collisionless classical particle in
the harmonic trap, we obtain the dimensionless hydrodynamic
parameter

η = 1

ωτ
. (70)

If η > 1, a noncondensed atom will experience, on average,
at least one collision before completing an oscillation in
the harmonic trap; hence, the system is in a hydrodynamic
regime. Otherwise, the system is in the collisionless regime.
These hydrodynamic parameters are highly relevant to cold-
atom experiments as they determine the thermalisation rates
[134–137]. In particular, the interspecies hydrodynamic pa-
rameters are crucial to the efficiency of sympathetic cool-
ing [135]. Understanding these parameters can therefore help
to optimize future studies of the various cooling stages.

In the following sections, we analyze the collisional pro-
cesses using the hydrodynamic parameter given by Eq. (67).

D. Trap frequency variation

Our previous work [116] has shown that the hydrodynamic
parameter ηC = 1/(ωτC) of the exchange process can be one
to two orders of magnitude larger than the corresponding
parameters of the C12 and C22 processes. In this section, we
show that by varying the isotropic trap frequency, it is possible
to bring η of the various processes closer in magnitude. We
provide a further explanation based on the scaling of length,
energy, and condensate densities.

In order to make meaningful comparisons, we scale the
trap frequency ω and the temperature T simultaneously by the

same factor κ such that the condensate fractions of the binary
mixtures remain approximately the same as ω and T are varied.
This can be easily understood for the noninteracting Bose gas,
where the single-particle energies appear as multiples of �ω

and the thermal occupation (determined by the ratio �ω/kBT )
thus remain unchanged.

We use ω0 = 2π × 20 Hz and T0 = 25 nK as references
for trap frequency and temperature and consider four different
sets of isotropic trap frequency and temperature, (ω,T ) =
κ × (ω0,T0), κ ∈ {1,2,4,8}. The numerically obtained hydro-
dynamic parameters are shown in Fig. 5, which clearly shows
that

η

η0
= κα, (71)

where

α ≈

⎧⎪⎨
⎪⎩

1 (C22),

1/2 (C12),

0 (C12),

(72)

and η0 = 1/(ω0τ0) is the reference hydrodynamic parameter
(different numerical values for different processes), while τ0

is the mean free time of the various processes at κ = 1. In
order to understand Eq. (72), we rewrite Eqs. (60), (61),
and (65) in terms of dimensionless variables for position r̄ =
r/�, momentum p̄ = p�/�, and velocity v̄ = v/(�ω), where
� = √

�/(mRbω) is the harmonic length for 87Rb atoms and
we choose the mass of 87Rb here simply as a reference. For
the C22 processes, we have

1

ωτ
kj

22

= 1

�2Ncoll

∫
d r̄ dp̄1 dp̄1

(2π )6

×
∫

d�

4π
σkj |v̄1 − v̄2|f j

1 f k
2

(
f k

3 + 1
)(

f
j

4 + 1
)
. (73)

100

101

η 2
2/

(η
22

) 0

Miscible (Λ = 0.3)
87Rb-87Rb
87Rb-41K
41K-41K

100 101

κ

100

101

η 1
2/

(η
12

) 0

87Rb-87Rb
41K-87Rb
87Rb-41K
41K-41K

Immiscible (Λ = 2.3)

100 101

κ

100

101

Miscible (Λ = 0.7)
87Rb-87Rb
87Rb-85Rb
85Rb-85Rb

100 101

κ

100

101

87Rb-87Rb
85Rb-87Rb
87Rb-85Rb
85Rb-85Rb

Immiscible (Λ = 3)

100 101

κ

87Rb-41K 87Rb-85Rb

FIG. 5. (Color online) Variation of hydrodynamic parameters η = 1/(ωτ ) of 87Rb - 41K (left) and 87Rb - 85Rb (right) mixtures with respect
to the scaling of trap frequency and temperature, (ω,T ) = κ(ω0,T0) for C22 (top), C12 (bottom), and C12 (bottom, green inverted triangles)
processes. Scattering lengths and atom numbers are the same as Figs. 3 and 4. The reference frequency and temperature are ω0 = 2π × 20 Hz
and T0 = 25 nK, respectively. Each data set of η has been normalized by its value η0 at κ = 1. The solid lines give our predictions (72) for
α = 1 (top) and α = 1/2 (bottom). 1/(ωτC) departs from our prediction (α = 0) in the miscible 87Rb - 41K case (first column, bottom) because
our assumption of localized C12 process is no longer valid; see Fig. 3 for an example.
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Since the phase-space distribution f as a function of r̄
and p̄ remains approximately unchanged as we vary κ , the
sole dependence on κ in 1/(ωτ22) comes from the prefactor
1/�2 ∝ ω ∝ κ and thus α = 1, a result consistent with those
from [135].

We perform the same transformations on the C12 collisional
process and arrive at

1

ωτ
kj

12

= 1

�2Ncoll

∫
d r̄ dp̄2

(2π )3
f k

2 n̄c,j σkj v̄
out
r

×
∫

d�

4π

(
1+f k

3 +f
j

4

)
. (74)

It is now important to realize that �
kj

12(r) is strongly peaked
around the condensate edges; hence, it is sufficient to consider
the scaling of the dimensionless condensate density n̄c,j =
nc,j �

3 in this region. To obtain a quantitative estimate, we
approximate the condensate by a Thomas-Fermi profile and
use the density at a healing length from the Thomas-Fermi
radius as a reference to conclude that n̄c,j ∝ � as κ varies.
The net result is that 1/(ωτ

kj

12 ) ∝ 1/� ∝ √
ω ∝ √

κ; hence,
α = 1/2.

It is now straight forward to see that 1/(ωτC) does not
scale with � because of the product nc,jnc,k in Eq. (65); hence,
α = 0. For the miscible Rb-K mixture in Fig. 5, this prediction
breaks down because the assumption that �C(r) is localized in
space is not longer valid; see the left middle panel of Fig. 3.

While the scaled hydrodynamic parameter η/η0 appears
to be small for the exchange collisional process C12 when
compared to other C12 and C22 processes, the actual numerical
values of η are, in fact, large; hence, C12 remains a dominant
process in the situation considered by Fig. 5.

E. Trap geometry

Besides variation of the isotropic trap frequency, a highly
relevant possibility, both experimentally and theoretically, is
the variation of the trap aspect ratio λtrap = ωz/ω⊥, where
ωz (ω⊥) is the axial (radial) trap frequency, so as to probe
the physics of reduced dimensionality. If λtrap < 1, we have
a cigar-shaped condensate that can be used to study, e.g.,
solitons [138,139] and solitonic vortices [140]; if instead,
λtrap > 1, the condensate cloud is pancake-shaped and it is
commonly used to study vortices [12,141,142].

In the following, we choose a reference frequency
ω = 2π × 20 Hz and fix ωz(ω⊥) = ω for cigar (pancake)
clouds and consider miscible mixtures with two different
aspect ratios for each trap geometry: 1/λtrap = √

8,10 for
a cigar-shaped cloud (columns 1 and 2 in Figs. 6 and 7)
and λtrap = √

8,10 for a pancake-shaped cloud (columns
4 and 5 in Figs. 6 and 7). We have also checked that
our conclusions are applicable to immiscible mixtures (not
shown).

Figures 6 shows the variation of the hydrodynamic param-
eters of 87Rb - 41K mixtures for various collisional processes
as a function of T/T 0

c , where T 0
c is chosen to be the critical

temperature of the noninteracting single-component Bose gas
for the convenience of comparison. For each binary mixture,
in going from left to right, the trap geometry changes from
a quasi-1D geometry to an isotropic system, then to a quasi-
2D geometry. As the geometry changes, all hydrodynamic
parameters increase like λ−1

trap for the cigar-shaped cloud and
like

√
λtrap for the pancake-shaped cloud, meaning that the

collisional time scale is mainly determined by the tighter
trap frequency. This can be understood as a consequence that
atoms are confined to a smaller region in space with a tighter
trap, hence, an increased probability of collisions. Despite the

λtrap = 10

th. 87Rb - th. 87Rb
th. 87Rb - th. 41K
th. 41K- th. 41K

0.4 0.6 0.8

T/T 0
c

th. 87Rb - con. 87Rb
th. 41K - con. 87Rb
th. 87Rb - con. 41K
th. 41K- con. 41K

12

quasi-2D
λtrap =

√√
8

0.4 0.6 0.8

T/T 0
c

87Rb-41K

λtrap = 1

0.4 0.6 0.8

T/T 0
c

quasi-1D
λtrap = 1√√

8

0.4 0.6 0.8

T/T 0
c

10−4

10−3

10−2

10−1

100

1/
(ω

τ 2
2
)

λtrap = 1
10

0.4 0.6 0.8

T/T 0
c

10−4

10−3

10−2

10−1

100

1/
(ω

τ 1
2
)

FIG. 6. (Color online) Variation of the hydrodynamic parameters 1/(ωτ ) with increasing aspect ratio λtrap = ωz/ω⊥ (left to right) for
miscible 87Rb - 41K mixtures. The scattering lengths are the same as Fig. 3. The reference frequency is ω = 2π × 20 Hz and the axial (radial)
trap frequency ωz (ω⊥) is equal to ω for the quasi-1D (quasi-2D) system. For the ease of comparison, T 0

c is chosen to be the critical temperature
for the noninteracting single-component trapped gas.

063607-14



NONEQUILIBRIUM KINETIC THEORY FOR TRAPPED . . . PHYSICAL REVIEW A 92, 063607 (2015)

10−2

10−1

100

101

102

1/
(ω

τ 2
2
)

λtrap = 1
10

0.4 0.6 0.8

T/T 0
c

10−2

10−1

100

101

102

1/
(ω

τ 1
2
)

quasi-1D
λtrap = 1√√

8

0.4 0.6 0.8

T/T 0
c

87Rb-85Rb

λtrap = 1

0.4 0.6 0.8

T/T 0
c

quasi-2D
λtrap =

√√
8

0.4 0.6 0.8

T/T 0
c

λtrap = 10

th. 87Rb - th. 87Rb
th. 87Rb - th. 85Rb
th. 85Rb - th. 85Rb

0.4 0.6 0.8

T/T 0
c

th. 87Rb - con. 87Rb
th. 85Rb - con. 87Rb
th. 87Rb - con. 85Rb
th. 85Rb - con. 85Rb

12

FIG. 7. (Color online) Same as Fig. 6 but computed for 87Rb - 85Rb mixtures. The scattering lengths are the same as Fig. 4.

change in the collisional time scales, the relative magnitudes
of η when compared among the different processes remain
roughly unchanged. In other words, if the 87Rb intraspecies
scattering is the dominant C22 process in an isotropic trap
(third column of top panels in Fig. 6), it remains so even if
we tighten either the radial or the axial trap frequency. It also
means that the C12 collisional process (bottom green solid
lines) remains the dominant interspecies collisional process
(others are indicated by black dots and dash-dots) when the
aspect ratio is changed. Similar observations can be made on
87Rb - 85Rb mixtures (Fig. 7). However, a comparison between
Figs. 6 and 7 reveals another important feature: The relative
magnitudes of η, when compared between intraspecies and
interspecies collisional processes, are largely determined by
the scattering lengths, as we have already noted in our analysis
of the spatial collisional rates (see the end of Sec. V B). For
this reason, 85Rb intraspecies collisions (blue dashes in the
right panels of Fig. 7) dominate both the C12 and the C22

processes.
We would like to caution the reader that our numerical

results are obtained by assuming that the noncondensed atoms
behave like classical particles in three-dimensional space. This
is certainly not true when the confining trap frequency is much
larger than the thermal energy, �ω⊥ � kBT (cigar-shaped
cloud) or �ωz � kBT (pancaked-shaped cloud). Our results
here serve only as a general guide in changing trap geometry
and should not be extended to extremely large or small aspect
ratios.

F. Temperature-dependence of �C

The final question that we would like to address with our
equilibrium simulations concerns the temperature dependence
of the exchange collisional process C12. At equilibrium,
the spatially resolved collision rate (65) can be simplified

to

�C = σkj

(Mkj

mkj

)2

nc,k nc,j ṽ
′
rf

′(f ′ + 1), (75)

where ṽ′
r =

√
2([Uj

n − μ
j
c ] − [Uk

n − μk
c])/Mkj is the effec-

tive relative speed and the phase-space distribution is

f ′ = 1

exp
[(

p2

2mj
+ U

j
n − μ

j
c

)/
(kBT )

] − 1
(j = a,b), (76)

with p chosen such that Eq. (76) holds for both j = a,b.
Since the C12 collisional process is localized around the

condensate edge, where U
j
n − μ

j
c tends to be small, it is

tempting to assume that the spatially resolved collision rate
�C(r) lies within the high-temperature region (p2/2mj +
U

j
n − μ

j
c 
 kBT ). In this case, Taylor expansion of f ′ in

orders of 1/(kBT ) then leads to a temperature-dependent
rate

�C ∼ A(c1T + c2T
2), (77)

where A, c1, and c2 are factors to be determined (see
Appendix E).

In Fig. 8, we show �C (bottom solid) and the estimation
parameter (top)

ζ = (
p2/2mj + Uj

n − μj
c

)/
(kBT ) (78)

as a function of distance r from the trap center. We have
87Rb - 41K (left) and 87Rb - 85Rb (right) mixtures in an isotropic
harmonic trap (frequency ω = 2π × 20 Hz) at a temperature
T = 21 nK ≈ 0.5Tc. For better comparison and a somewhat
indirect link to approaches based on “classical” distribution
functions [107–110], we also expand the phase-space distribu-
tion to leading order in 1/T , i.e., f ′ ≈ kBT /( p2

2mj
+ U

j
n − μ

j
c ),

and plot the approximated �C as dashed lines in the bottom
panels. For each mixture, the left and right columns show
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FIG. 8. (Color online) The estimation parameter ζ = (p2/2mj + Uj
n − μj

c )/(kBT ) (top) and the exchange collision rate �C (75) evaluated
with the exact phase-space distribution (76) (bottom black solid line) or a phase-space distribution expanded to leading order in 1/T (bottom
red dashed line) as a function of distance r from the trap center. Shaded regions in the top panels give the regime where the high-temperature
expansion is inapplicable (ζ > 1). Simulation parameters of 87Rb - 41K (left) and 87Rb - 85Rb (right) mixtures are the same as Figs. 3 and 4 at a
temperature T = 21 nK ∼ 0.5Tc.

data for the miscible and immiscible phases, respectively.
The bottom panels clearly indicate that the high-temperature
expansion is valid for the immiscible but not for the miscible
phase. In the latter case, this is mainly because �C extends
over a broader region in space.

VI. TWO-FLUID HYDRODYNAMICS

In this section we derive the hydrodynamic equations for the
normal components of the multicomponent system. One of the
key theoretical successes of the single-component ZNG theory
is its agreement with the hydrodynamic (Landau-Khalatnikov)
equations representing the interaction of the condensed and
noncondensed components of the system [124,143]. This
coupling of the two fluids has recently been explored for a two-
component Bose system [144], as well as for spin-orbit coupled
thermal Bose gases [145]. The hydrodynamic equations for the
condensate are obtained using the Madelung transformation
along with Eq. (9), yielding

∂

∂t
nc,j + ∇ · (nc,j v

c,j
) = −

(
�

jj

12 + �
kj

12 + �
kj

C

)
, (79)

where vc,j = (�/mj )∇θj defines the superfluid velocity of
component j . Equation (79) above defines the continuity
equation. The Euler equation for component j takes the form

mj

(
∂

∂t
vc,j + 1

2
∇v2

c,j

)
= −∇μj

c , (80)

where μ
j
c = �

2(∇2√nc,j )/(2m
√

nc,j ) + U
j
c is the nonequi-

librium chemical potential for component j . To obtain the
corresponding equations for the noncondensate, we take
moments with respect to the powers of the momentum p, i.e.,∫

dp pn (where n = 0,1,2) of the kinetic equation, Eq. (10).
This leads to a set of three coupled nonlinear equations for
the noncondensate that can be used to describe the limit where

collisions dominate, i.e., the hydrodynamic regime. The first
of these describes the conservation of mass of component j ,

∂

∂t
ñj + ∇ · (ñj vn,j ) = �

jj

12 + �
kj

12 + �
kj

C , (81)

where the velocity of component j is defined as vn,j (r,t),
while the noncondensate density is ñj (r,t). The velocity of
component j of the normal fluid is

vn,j (r,t) ≡
∫

dp
(2π�)3

p
mj

f j (r,p,t)

ñj (r,t)
, (82)

and ñj (r,t) has been defined previously by Eq. (11). The cor-
responding conservation law for the momentum of component
j (or Navier-Stokes equation) appears as

mj ñj

(
∂

∂t
+ vn,j · ∇

)
vnμ,j

= − ∂

∂xν

Pμν,j − ñj

∂U
j
n

∂xμ

+
∫

dp
(2π�)3

(p − mj vnμ,j )

× (
C

jj

12 + C
kj

12 + C
kj

12

)
, (83)

and (ν,μ) subscripts refer to spatial components here and in
what follows. Meanwhile, the conservation law for the energy
density of component j, εj (r,t) is written

∂εj

∂t
+ ∇ · (εj vn,j )

= −∇ · Qj − Dμν,jPμν,j +
∫

dp
(2π�)3

(p − mj vnμ,j )2

2mj

× (
C

jj

12 + C
kj

12 + C
kj

12

)
. (84)
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The symmetric rate-of-strain tensor appearing in Eq. (84)
above is defined as

Dμν,j (r,t) = 1

2

(
∂vnμ,j

∂xν

+ ∂vnν,j

∂xμ

)
, (85)

and obeys
∑

ν Dνν,j = ∇ · vn,j. The set of equations (81), (83),
and (84) introduce the three important local hydrodynamic
quantities—the stress tensor Pμν,j (r,t), the heat current
Qj (r,t), and the energy density εj (r,t)—defined, respectively,
for component j as [40]

Pμν,j ≡ mj

∫
dp

(2π�)3

[
pμ

mj

−vnμ,j

][
pν

mj

−vnν,j

]
f j , (86)

Qj ≡ mj

2

∫
dp

(2π�)3

[
p
mj

−vn,j

]2[ p
mj

−vn,j

]
f j , (87)

εj ≡
∫

dp
(2π�)3

1

2mj

[
p − mj vn,j

]2

f j . (88)

Note that there is no dependence on the thermal-thermal
collisional rates �

kj

22 in these equations, a consequence of
the conservation of number, energy, and momentum of the
thermal atoms. To demonstrate this, we can calculate the
(time-dependent) number of condensate and thermal atoms
in component j as

Nc,j (t) =
∫

drnc,j (r,t), (89)

Ñj (t) =
∫

dr
∫

dpf j (p,r,t), (90)

respectively. Using Eqs. (79) and (81) one finds in turn that

∂

∂t
[Nc,j (t) + Ñj (t)] = 0. (91)

The conservation of energy and momentum is slightly differ-
ent, as these quantities are conserved over both components,
which is reflected in the fact that the δ functions appearing
throughout the kinetic theory depend generally on both the j

and the k indices.
Equations (79) and (80) for the condensates and (81), (83),

and (84) for the noncondensates are a direct generalization
of the equivalent expressions (see Ref. [143]) for the single-
component case, albeit now for a dynamically coupled system
comprising two condensates and two thermal clouds. Due to
their inherent complexity, the study of these coupled equations
lies beyond the scope of the present work.

It is anticipated in future works that the hydrodynamic
equations will yield novel physics, particularly for the case
of the full Landau-Khalatnikov theory, where the entropy of
the normal component will cause additional effects not present
in single-component thermal Bose gases.

VII. COMPARISON OF SCHEMES

Here we present a brief overview of the different ap-
proaches used to describe the dynamical evolution of coupled
multicomponent condensates. In our scheme, we have, as
usual, separated the slowly evolving degrees of freedom
from those evolving on more rapid time scales. In particular,
having identified the condensate and (diagonal) noncondensate

density as the slowly varying “mean-field” quantities, we
obtained a coupled kinetic theory for both condensate and
noncondensate that includes all relevant scattering channels.
An important point here, similar, to some extent, to Ref. [107]
is that we have treated diagonal elements of the normal pair
density (corresponds to thermal population) separately from
their off-diagonal elements (corresponds to “coherences”).
Such a rationale is valid only in the absence of optical
couplings, where collisions are expected to be the dominant
process, which is certainly the case for mixtures of different
species, such as 87Rb - 85Rb and 87Rb - 41K considered here,
where no interconversion is possible. Indeed, for the physically
distinct case of condensates with internal spin degrees of
freedom, such an adiabatic treatment has to be modified
in order to self-consistently account also for the (internal)
coherent coupling of spin degrees of freedom [114,115].

There are several other complementary approaches to tack-
ling the coupled dynamics of multicomponent condensates,
including the number-conserving approach [111], the stochas-
tic Gross-Pitaevskii formalism [107–110], as well as classical
field [103] and truncated Wigner [104–106] treatments.

The starting point of the number-conserving method is
the Penrose-Onsager criterion, in which the single-particle
density matrix is written in terms of quantum field operators.
One then expands the field operators with the Beliaev
decomposition explicitly, maintaining their operator form and
condensate-noncondensate orthogonality, in order to identify
the small parameter of the theory, namely the (number)
ratio of noncondensate to condensate population. This, in
turn, allows a set of dynamical equations to be extracted
which describe the condensate through a set of generalized
Gross-Pitaevskii equations (GGPs) and the noncondensate
with modified Bogoliubov-de Gennes equations. However,
the purely dynamical single-component case [89] has yet to
be extended to the multicomponent setting.

In contrast, stochastic treatments of condensate dynamics
are appropriate for describing the high-temperature regime,
where the number of atoms in the noncondensate fraction
is large compared to those in the condensate, such that
the energetic parameter ζ defined by (78) is less than one.
Interestingly, the nature of multicomponent systems means
that novel transport processes, for example spin-changing
collisions will contribute to both damping processes as well
as noise for these systems. Both the stochastic (projected)
GPE and the closely related classical field [103] and truncated
Wigner [104–106] approaches have an explicit cutoff in
energy, with all higher-lying (pure thermal) atoms treated as
stationary. In contrast to these, the ZNG formalism explicitly
treats all modes dynamically and self-consistently, but it does
not include the effect of fluctuations of the phase of the
noncondensate atoms, which, in turn, limits its applicability
to temperatures not too close to the transition.

It is interesting to note that both the multicomponent
number-conserving work of [111] as well as the stochastic
treatment of [107] have independently identified a condensate-
to-noncondensate “exchange” collisional event, physically
analogous to that presented in this work by C

kj

12. In the
former case such terms appear as in the present work as
off-diagonal normal pair averages of fluctuation operators
in the corresponding generalized Gross-Pitaevskii equation,
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however, with such averages defined in terms of number-
conserving operators; for example, see Eq. (66a) in [111].
In the stochastic treatment, the exchange process enters as a
novel scattering amplitude representing an extension to the
“scattering term” of single-component stochastic GPE, which,
however, involves multimode classical-field populations, as
opposed to those of the single-mode condensates arising within
our current treatment; see Eqs. (73) and (74) in [107]. Clearly,
each of these nonequilibrium theories is quite different in
origin, assumption, and applicability, yet all three nonetheless
demonstrate universal aspects of quantum transport theory in
low-temperature multicomponent Bose gases.

One should also explicitly comment on the link of our
present approach to the earlier works of Nikuni et al. [114,115].
Both works were aimed at discussing spinor condensates, for
which the Hamiltonian contains additional terms explicitly
maintaining the coupling between the two (spin- 1

2 ) or three
(spin-1) different states of the system. Clearly, in the case
of explicit coupling between different states, which enables
interconversions (i.e., particles from one state transferred to
another state through external coupling), our fundamental
assumption of treating the off-diagonal normal pair averages
〈δ†j δk〉 (j �= k) differently from 〈δ†j δj 〉 could break down.
This, in turn, would imply that we should revisit our “slowly
varying master” variables and include 〈δ†j δk〉 at the same

footing as 〈δ†j δj 〉 and |φj |2. This is precisely what has been
shown in Refs. [114,115] and would presumably apply to
any single-species multicomponent condensates |F,mF 〉, in
identical F and different mF states, under the presence of
internal or external coupling between those states. Due to
the added complexity of dealing with an off-diagonal Wigner
distribution operators, such a model has, however, never been
numerically analysed, remaining nonetheless an impressive
analytical work for such immensely complicated systems.

In contrast, our present multicomponent treatment is in-
tended for mixtures of two systems of different species, such
as a the case of 87Rb - 85Rb and 87Rb - 41K we have analyzed
here, with the full dynamical treatment pending.

VIII. CONCLUSIONS

We have demonstrated how a finite-temperature theory
describing the out-of-equilibrium dynamics of binary Bose
gases can be derived using quantum kinetic theory. In
particular, it was demonstrated how dissipative GPEs for the
binary system feature three types of collision exchange terms
with the noncondensate atoms of the multicomponent system.
The noncondensates, on the other hand, are modeled with
quantum Boltzmann equations coupled to collision integrals
which describe atomic scattering between the condensate and
noncondensate atoms. It was shown in detail how all of
these transport processes are derived, including the important
“exchange” term as well as the triplet correlation functions,
which are explicitly computed for the multicomponent system.

We also presented results from numerical simulations of
various binary condensate systems in both miscible and im-
miscible regimes. In particular, the condensate fractions were
estimated for mixtures consisting of 87Rb - 41K and 87Rb - 85Rb,
which showed a slight deviation from the estimations based

on the single-component Bose gas due to mean-field effects.
The role of time scales on collisions was elaborated on; in
particular, the collisionless and hydrodynamic regimes were
studied through the hydrodynamic parameters of the various
collisional processes.

Our numerical results demonstrate the interesting possibil-
ity to access different hydrodynamic regimes. For example,
thermal-thermal collisions and thermal-condensate collisions
can occur on comparable or vastly distinct time scales through
scaling the trap frequency and the temperature by the same
factor, because the various collisional integrals obey different
scaling laws. On the other hand, the intraspecies collisions
can dominate over the interspecies collisions because of the
large intraspecies scattering lengths, as demonstrated by the
miscible 87Rb - 85Rb mixture, such that Feshbach resonances
within and between components could prove useful in inves-
tigating different regimes. It is also possible to increase the
hydrodynamic parameters of all processes by changing the
trap geometry. However, it is important to note that this only
changes overall values, rather than the relative estimations of
different collisional processes, which remain unaffected with
the C12 process remaining as the dominant one. We have also
investigated the extent to which a commonly implemented
phase-space expansion to leading order in 1/T is appropriate,
finding it to be a rather poor estimation in the miscible case.

The possibility of controlling the hydrodynamicity allows
us to explore the interplay of the various collisional processes.
The hydrodynamic equations developed in Sec. VI show
the added complexity due to the extra scattering channels
present in the binary system. With the presence of eight
collisional processes (three C22 processes, four C12 processes
and a C12 process) in a binary system compared to two
collisional processes (a C22 process and a C12 process) in
a single-component Bose gas, it is not a priori clear how
an out-of-equilibrium binary mixture would relax to its final
state and at what time scales, especially if several collisional
processes were close to the hydrodynamic regime and were
competing with each other. A definitive answer requires careful
numerical simulations of the full nonequilibrium dynamics,
which is a subject under our active investigation.
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APPENDIX A: PERTURBING HAMILTONIAN

The purpose of this appendix is to detail the steps required to arrive at the perturbing Hamiltonian. After applying Wick’s
theorem to Ĥ3 and Ĥ4, it can be shown that the nonquadratic terms appearing in the full system Hamiltonian Ĥ can be recast in
the form Ĥ3 → δĤ1 and Ĥ4 → δĤ2 + δH0, respectively, where

δH0 = −
∫

dr

⎧⎨
⎩
∑

j

gjj

2

[
2ñ2

jj + |m̃jj |2
] +

∑
k �=j

gkj

[
ñjj ñkk + ñjkñkj + |m̃jk|2

]⎫⎬⎭, (A1a)

δĤ1 =
∫

dr

⎧⎨
⎩
∑

j

gjj

(
φ∗

j

[
2ñjj δ̂j + m̃jj δ̂

†
j

] + H.c.
) +

∑
k �=j

gkj

(
φ∗

j

[
ñkkδ̂j + ñjk δ̂k + m̃kj δ̂

†
k

]

+φ∗
k

[
ñjj δ̂k + ñkj δ̂j + m̃jkδ̂

†
j

] + H.c.
)⎫⎬⎭, (A1b)

δĤ2 =
∫

dr

⎧⎨
⎩
∑

j

gjj

2

(
4ñjj δ̂

†
j δ̂j + [

m̃jj δ̂
†
j δ̂

†
j + H.c.

])+
∑
k �=j

gkj

(
ñjj δ̂

†
kδ̂k + ñk δ̂

†
j δ̂j + [

ñkj δ̂
†
kδ̂j + m̃kj δ̂

†
kδ̂

†
j + H.c.

])⎫⎬⎭, (A1c)

where ñkj = 〈δ̂†j δ̂k〉 and m̃kj = 〈δ̂j δ̂k〉. Here Eqs. (A1a)–(A1c) are generated by inserting Eqs. (16a) and (16b) into Eqs. (15d)
and (15e). The term given by Eq. (A1a) constitutes a mean-field shift to the chemical potential of the system. However, as
we follow the usual prescription of keeping interaction effects within the chemical potential to linear order in the scattering
length [124], these terms need not be considered any further. With the definitions of Eq. (A1a)–(A1c), one can show that the
resulting perturbing Hamiltonian,

Ĥ ′(t) = Ĥ − ĤMF, (A2)

can be broken into contributions comprising different numbers of fluctuation operators. Using Eq. (17), the perturbing Hamiltonian
can be expressed in the form [40,124]

Ĥ ′(t) = Ĥ ′
1(t) + Ĥ ′

2(t) + Ĥ ′
3(t) + Ĥ ′

4(t), (A3)

where

Ĥ ′
1(t) = −δĤ1 = −

∫
dr

⎧⎨
⎩
∑

j

gjj (φ∗
j [2ñjj δ̂j + m̃jj δ̂

†
j ] + H.c.) +

∑
k �=j

gkj (φ∗
j [ñkkδ̂j + ñjk δ̂k + m̃kj δ̂

†
k]

+φ∗
k [ñjj δ̂k + ñkj δ̂j + m̃jkδ̂

†
j ] + H.c.)

⎫⎬
⎭, (A4a)

Ĥ ′
2(t) = Ĥ2 − Ĥ

diag
2 =

∫
dr

⎧⎨
⎩
∑

j

gjj

2

(
φ2

j δ̂
†
j δ̂

†
j + H.c.

) +
∑
k �=j

gkj (φ∗
j φ

∗
k δ̂k δ̂j + φ∗

j φkδ̂
†
kδ̂j + H.c.)

⎫⎬
⎭, (A4b)

Ĥ ′
3(t) = Ĥ3 =

∫
dr

⎧⎨
⎩
∑

j

gjj (φ∗
j δ̂

†
j δ̂j δ̂j + H.c.) +

∑
k �=j

gkj (φ∗
j δ̂

†
kδ̂k δ̂j + φ∗

k δ̂
†
j δ̂j δ̂k + H.c.)

⎫⎬
⎭, (A4c)

Ĥ ′
4(t) = Ĥ4 − δĤ

diag
2 =

∫
dr

⎧⎨
⎩
∑

j

gjj

2
(δ̂†j δ̂

†
j δ̂j δ̂j − 4ñjj δ̂

†
j δ̂j ) +

∑
k �=j

gkj (δ̂†j δ̂
†
kδ̂k δ̂j − ñjk δ̂

†
j δ̂k − ñkj δ̂

†
kδ̂j )

⎫⎬
⎭. (A4d)

The full expression for the Fourier transformed perturbing Hamiltonian becomes

Ĥ ′(t) = Ĥ ′
1(t) + Ĥ ′

2(t) + Ĥ ′
3(t) + Ĥ ′

4(t), (A5)

which are used to derive the collision integrals in the body of the text. Next, each term in Eq. (A5) is decomposed into an intra-
Ĥ ′

n,j (t) and an inter- Ĥ ′
n,kj (t) component contribution so that for n = 1–4 one has the decomposition Ĥ ′

n(t) = Ĥ ′
n,j (t) + Ĥ ′

n,kj (t).
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Then using the Fourier expansion of the fluctuation operator δ̂j (r,t0) one obtains

Ĥ ′
1,j (t) = −

√
V
∑

j

∑
p

gjj

{√
nc,j e

−i[θj −ε
j
c (t ′−t)/�−pj

c ·r/�]
[
2δp,pj

c
ñjj âj,p + δp,−pj

c
m̃jj â

†
j,p

] + H.c.
}
, (A6a)

Ĥ ′
1,kj (t) = −

√
V
∑
k �=j

∑
p

gkj

{√
nc,j e

−i[θj −ε
j
c (t ′−t)/�−pj

c ·r/�][δp,pj
c
ñkkâj,p + δp,pj

c
ñjkâk,p + δp,−pj

c
m̃kj â

†
k,p

]

+√
nc,ke

−i[θk−εk
c (t ′−t)/�−pk

c ·r/�]
[
δp,pk

c
ñjj âk,p + δp,pk

c
ñkj âj,p + δp,−pk

c
m̃jkâ

†
j,p

] + H.c.
}
, (A6b)

Ĥ ′
2,j (t) = 1

2

∑
j

gjj

∑
p1,p2

{δp1+p2,2pj
c
nc,j e

2i[θj −ε
j
c (t ′−t)/�−pj

c ·r/�]â
†
j,p1

â
†
j,p2

+ H.c.}, (A6c)

Ĥ ′
2,kj (t) =

∑
k �=j

∑
p1,p2

gkj

√
nc,jnc,k

{
δp1+p2,p

j
c+pk

c
e−i[(θj +θk )−(εj

c +εk
c )(t ′−t)/�−(pj

c+pk
c )·r/�]âk,p1 âj,p2

+ δp1+pj
c ,p2+pk

c
e−i[(θj −θk )−(εj

c −εk
c )(t ′−t)/�−(pc

j −pk
c )·r/�]â

†
k,p1

âj,p2 + H.c.
}
, (A6d)

Ĥ ′
3,j (t) = 1√

V

∑
j

∑
p2,p3,p4

gjj

√
nc,j

{
δpj

c+p2,p3+p4
e−i[θj −ε

j
c (t ′−t)/�−pj

c ·r/�]â
†
j,p2

âj,p3 âj,p4 + H.c.
}
, (A6e)

Ĥ ′
3,kj (t) = 1√

V

∑
k �=j

∑
p2,p3,p4

gkj

√
nc,j

{
δpj

c+p2,p3+p4
e−i[θj −ε

j
c (t ′−t)/�−pj

c ·r/�]â
†
k,p2

âk,p3 âj,p4 + H.c.
}
, (A6f)

Ĥ ′
4,j (t) = 1

V

∑
j

gjj

2

{ ∑
p1,p2,p3,p4

δp1+p2,p3+p4 â
†
j,p1

â
†
j,p2

âj,p3 âj,p4 − 4ñjj

∑
p1,p2

δp1,p2 â
†
j,p1

âj,p2

}
, (A6g)

Ĥ ′
4,kj (t) = 1

V

∑
k �=j

gkj

{ ∑
p1,p2,p3,p4

δp1+p2,p3+p4 â
†
j,p1

â
†
k,p2

âk,p3 âj,p4 − ñjk

∑
p1,p2

δp1,p2 â
†
j,p1

âk,p2 − ñkj

∑
p1,p2

δp1,p2 â
†
k,p1

âj,p2

}
. (A6h)

The expressions given above by Eqs. (A6a)–(A6h) allow us to derive the collisional integrals in the body of the text.

APPENDIX B: ANOMALOUS PAIR CORRELATION FUNCTIONS

In this appendix the anomalous pair correlation functions of the form 〈δ̂j δ̂j 〉 and 〈δ̂k δ̂j 〉 appearing in Eq. (6) are calculated.
Following the steps detailed in the body of the paper, one can shown that the pair anomalous terms take the form

〈δ̂k δ̂j 〉 = − iπgkjφkφj (1+δkj )
1

2

∑
p1,p2

δ
(
εj
c +εk

c−εk
1−ε

j

2

)
δpj

c+pk
c ,p1+p2

[(
f k

1 + 1
)(

f
j

2 + 1
) − f k

1 f
j

2

]
. (B1)

By taking the continuum limit, one finds that Eq. (B1) becomes the collisional integral

〈δ̂k δ̂j 〉 = − igkjφjφk

4(2π )2�3
(1+δkj )

∫
dp1

∫
dp2δ

(
pj

c + pk
c − p1 − p2

)
δ
(
εj
c + εk

c − εk
1 − ε

j

2

)[(
f k

1 +1
)(

f
j

2 +1
)−f k

1 f
j

2

]
, (B2)

valid for both j = k and j �= k This integral describes a collision process whereby a pair of condensate particles collide to give
two thermal particles and its inverse process. Such terms have not been included in our theory as they violate energy conservation.
For this reason, these terms are conventionally dropped due to the Popov approximation [74]. Figure 9 shows schematically the
different kinetic scattering processes represented by Eq. (B2). Squares represent condensate and circles represent noncondensate
(thermal) atoms, while the blue and red colors represent the a and b components, respectively.

APPENDIX C: EVALUATION OF NONEQUILIBRIUM AVERAGES

Here the form of various nonequilibrium averages used in the intermediate steps of deriving the full collisional theory are
listed. We begin by writing out in full the triplet anomalous averages which are used in the definitions of the condensate growth
terms Rjj and Rkj as

〈δ̂†kδ̂k δ̂j 〉(1) = − i

�

∫ t

t0

dt ′〈Ŝ†(t ′,t0)[Ŝ†(t,t ′)δ̂†kδ̂k δ̂j Ŝ(t,t ′),Ĥ ′
1,kj (t)]Ŝ(t ′,t0)〉 (C1)
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and

〈δ̂†kδ̂k δ̂j 〉(3) = − i

�

∫ t

t0

dt ′〈Ŝ†(t ′,t0)[Ŝ†(t,t ′)δ̂†kδ̂k δ̂j Ŝ(t,t ′),Ĥ ′
3,kj (t)]Ŝ(t ′,t0)〉, (C2)

with similar expressions for j = k. Meanwhile, the condensate exchange terms Rkj are calculated as (for j �= k)

〈δ̂†kδ̂j 〉 = − i

�

∫ t

t0

dt ′〈Ŝ†(t ′,t0)[Ŝ†(t,t ′)δ̂†kδ̂j Ŝ(t,t ′),Ĥ ′
2,kj (t)]Ŝ(t ′,t0)〉. (C3)

This expression, based on symmetry-breaking, did not appear in previous works for spinor gases [114,115], but does formally
appear in the related classical-field approach of Ref. [107].

Next we give the form of the quantum Boltzmann contributions C
jj

12 and C
kj

12 required to give the final form of the associated
collision integrals. These are

C
jj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

3,j (t)] (C4)

and

C
kj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

3,kj (t)]. (C5)

Using the Fourier transform of the Wigner operator

f̂ j (r,p,t0) =
∑

q

â
†
j,p−q/2âj,p+q/2e

ir·q/�, (C6)

along with Ĥ ′
3,kj (t) [Eq. (A6f)], it can be shown that the right-hand side of Eq. (C5) can be written as

C
kj

12 = gkj

i�
√

V

∑
q

eiq·r/�
∑

p2,p3,p4

{
δpk

c+p2,p3+p4φ
∗
k

(
δp2,p+q/2

〈
â
†
j,p−q/2âj,p3 âk,p4

〉 − δp3,p−q/2

× 〈
â
†
j,p2

âj,p+q/2âk,p4

〉) − δpj
c+p2,p3+p4

φ∗
j δp4,p−q/2

〈
â
†
k,p2

âk,p3 âj,p+q/2
〉 − H.c.

}
. (C7)

The expression given above contains two distinct types of three-field correlation functions, both of which can be computed using
the definition of the nonequilibrium average along with the relevant contribution from the perturbing Hamiltonian, Eq. (A6f).
One can, in particular, show that〈

â
†
j,p2

âj,p3 âl,p4

〉 = π

i
√

V
gljφl(1+δlj )δ

(
εl
c+εj

p2
−εj

p3
−εl

p4

)
δpl

c+p2,p3+p4

[
f

j

2

(
f

j

3 + 1
)(

f l
4 + 1

)− (
f

j

2 + 1
)
f

j

3 f l
4

]
, (C8)

and the corresponding expression for 〈â†
l,p4

â
†
j,p3

âj,p2〉 can be obtained by taking the Hermitian conjugate of Eq. (C8). To simplify
the first summation over the center-of-mass momentum q appearing in Eq. (C7), we can expand the sum and note that terms with
q �= 0 make zero overall contribution. After that, inserting Eq. (C8) into Eq. (C7) results in the final expression given by Eq. (45)
of Sec. IV C 1.

Meanwhile, the exchange collisional term C
kj

12 is computed as (for j �= k)

C
kj

12 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

2,kj (t)], (C9)

which, after using the definition Ĥ ′
2,kj (t) given by Eq. (A6d), gives

C
kj

12 = 2gkj

i�

∑
p1,p2

δpj
c+p1,pk

c+p2

(
φjφ

∗
k

〈
â
†
j,p2

âk,p1

〉 − φ∗
j φk

〈
â
†
k,p1

âj,p2

〉)
. (C10)

Then two quadratic correlation functions are required in order to write a final expression for the collision integral, Eq. (C10).
As before, we can use the expression for the nonequilibrium average, Eq. (25), along with the relevant part of the perturbing
Hamiltonian, Eq. (A6d). This gives〈

â
†
k,p1

âj,p2

〉 = −iπgkjφjφ
∗
k δ
(
εj
c + εk

p1
− εk

c − εj
p2

)
δpj

c+p1,pk
c+p2

[(
f

j

2 + 1
)
f k

1 − f
j

2

(
f k

1 + 1
)]

. (C11)

Inserting Eq. (C11) into (C10) above allows us to write the discrete form of the exchange collision integral, Eq. (49) of Sec. IV C 2
of the text.

The final nonequilibrium average that is required consists of those terms describing scattering exclusively between thermal
atoms, C

jj

22 and C
kj

22, which is given by the expressions

C
jj

22 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

4,j (t)] (C12)
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and

C
kj

22 = 1

i�
Tr ρ̃(t,t0)[f̂ j (r,p,t0),Ĥ ′

4,kj (t)]. (C13)

Proceeding, we can write an expression for C
kj

22 using Ĥ ′
4,kj (t) [Eq. (A6h)], which takes the form

C
kj

22 = gkj

2i�V

∑
p1p2p3p4

δp1+p2,p3+p4

(
[δp1,p − δp4,p]

〈
â
†
j,p1

âk,p2 âk,p3 âj,p4

〉+ [
δp2,p − δp3,p

]〈
â
†
k,p1

â
†
j,p2

âj,p3 âk,p4

〉)
. (C14)

Again, to simplify Eq. (C14), we require the quartic correlation function composed of equal numbers of creation and annihilation
operators. This is computed using the definition given by Eq. (25) along with Ĥ ′

4,kj (t), as defined by Eq. (A6h). This gives〈
â
†
j,p1

â
†
k,p2

âk,p3 âj,p4

〉 = πgkj

iV
(1 + δkj )δ

(
εj
p1

+εk
p2

− εk
p3

−εj
p4

)
δp1+p2,p3+p4

[
f

j

1 f k
2

(
f k

3 + 1
)(

f
j

4 + 1
)− (

f
j

1 + 1
)(

f k
2 + 1

)
f k

3 f
j

4

]
.

(C15)
Interchanging the dummy summation variables over momentum in Eq. (C14) and inserting the expression given by Eq. (C15)
leads to Eq. (53) of Sec. IV C 3 of the main text.

To obtain all of the collision integrals appearing in the body of the text, one also requires the approximations

Ŝ†(t,t ′)ân,pŜ(t,t ′) � ân,p exp
[−iεn

p(t − t ′)/�
]
, (C16)

as well as

〈â†
n,pân′,p′ 〉t0 = δn,n′δp,p′f n(r,p,t), (C17)

and taking the continuum limit requires replacing the summations with

1

V

∑
p

→
∫

dp
(2π�)3

and V δp,0 → (2π�)3δ(p). (C18)

Finally, in evaluating the integrals over time appearing in all of the collisional integrals, an identity has been used,

1

�

∫ t

−∞
dt ′ei(εj

p1 +εk
p2

−εl
p3

−εm
p4

)(t−t ′)/� = πδ
(
εj
p1

+ εk
p2

− εl
p3

− εm
p4

) + iP
(

1

ε
j
p1 + εk

p2
− εl

p3
− εm

p4

)
, (C19)

where P(· · · ) represents the Cauchy principle value in Eq. (C19) above and is conventionally dropped [114,115].

APPENDIX D: TRANSFORMATION BETWEEN LABORATORY FRAME AND CENTER-OF-MASS FRAME

In the numerical evaluation of the collisional rates (60), (61), and (62), it is useful to transform the momenta from the laboratory
frame to the center-of-mass frame. To this end, we define the center-of-mass and relative momenta, (P,pr ) and (P′,p′

r ), such that(
P
pr

)
=
(

1 1
mk

mj +mk
− mj

mj +mk

)(
p1

p2

)
, (D1a)

(
P′
p′

r

)
=
(

1 1
mk

mj +mk
− mj

mj +mk

)(
p4

p3

)
. (D1b)

The two Dirac δ functions then enforce P = P′,|pr | = |p′
r | because of energy and momentum conservation.

The collision rates between noncondensed atoms (for both k = j and k �= j ) is

�
kj,out
22 = (1+δkj )g2

kj

(2π )8�10

∫
dp1

∫
dp2

∫
dp3

∫
dp4δ(p1 + p2 − p3 − p4)δ

(
εj
p1

+ εk
p2

− εk
p3

− εj
p4

)
f

j

1 f k
2

(
f k

3 + 1
)(

f
j

4 + 1
)
, (D2)

which is conveniently evaluated with Eq. (D1) to obtain

�
kj,out
22 =

∫
dp1

(2π�)3
f

j

1

∫
dp2

(2π�)3
f k

2

∫
d�

4π
σkj |v1 − v2|

(
f k

3 + 1
)(

f
j

4 + 1
)
, (D3)

where σkj = (1 + δkj )4πa2
kj is the cross section, v1 and v2 are the initial velocities of atoms j and k, respectively, and � specifies

the solid angle of the final relative velocity v4 − v3.
For collisions between condensate and noncondensate atoms, we first consider the C

kj

12 process (for both k = j and k �= j ),
the out collision rate that represents the scattering of a noncondensed atom from a condensate to produce two noncondensed
atoms is given by

�
kj,out
12 = (1+δkj )g2

kj

(2π )5�7
nc,j

∫
dp2

∫
dp3

∫
dp4δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c +εk

p2
−εk

p3
−εj

p4

)
f k

2

(
f k

3 + 1
)(

f
j

4 + 1
)
. (D4)
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We again use (D1) to obtain

�
kj,out
12 =

∫
dp2

(2π�)3
f k

2 nc,j σkj v
out
r

∫
d�

4π

(
1 + f k

3 + f
j

4

)
, (D5)

where vout
r =

√
|vc,j − v2|2 − 2(Uj

n − μ
j
c )/mkj is the relative speed of the initial states corrected to take into account the local

conservation of energy.
The reverse process, where two noncondensed atoms collide such that one of them goes into a condensate, is given by the in

rate as

�
kj,in
12 = (1+δkj )g2

kj

(2π )5�7
nc,j

∫
dp2

∫
dp3

∫
dp4δ

(
pj

c + p2 − p3 − p4
)
δ
(
εj
c + εk

p2
− εk

p3
− εj

p4

)(
1 + f k

2

)
f k

3 f
j

4 . (D6)

In order to reduce Eq. (D6) into a useful form for Monte Carlo sampling as well as dynamical simulations, we follow the approach
of Jackson and Zaremba [126] and arrive at

�
kj,in
12 =

∫
dp4

(2π�)3
f

j

4

nc,j σkj (mk/mkj )3

4π (1 + mj/mk)
∣∣vin

r

∣∣
∫

dṽf k
3 , (D7)

where vin
r = vj

4 − vj
c is the velocity of thermal atom j relative to the local condensate velocity, while the second integral is a

two-dimensional integral over the velocity vector ṽ, which is in a plane normal to vin
r . The velocity of the other incoming thermal

atom vk
3 is then given by

vk
3 = vj

c + (1 − mj/mk)

2
vin

r + ṽ +
(
U

j
n − μ

j
c

)
v̂in

r

mj

∣∣vin
r

∣∣ , (D8)

and the outgoing velocity of the thermal atom is given by

vk
2 = (mj/mk)vin

r + vk
3. (D9)

Note that we follow [126] and drop the cubic term f2f3f4 in numerical simulations because it cancels exactly between the in
and the out rates.

For the exchange collisions (65), instead of the usual center-of-mass transformation (D1), we use an alternative transformation:(
P̃
p̃r

)
=
(

1 −1
mj

mj −mk
− mk

mj −mk

)(
p1

p2

)
, (D10a)

(
P̃′
p̃′

r

)
=
(

1 −1
mj

mj −mk
− mk

mj −mk

)(
pk

c

pj
c

)
. (D10b)

The exchange collision rate is therefore

�out
C = g2

kj

(2π )2�4
nc,k nc,j

∫
dp1

∫
dp2δ

(
pj

c + p1 − pk
c − p2

)
δ
(
εj
c + εk

p1
− εk

c − εj
p2

)
f

j

2

(
f k

1 + 1
)

= σkj

(Mkj

mkj

)2

nc,k nc,j ṽr

∫
d�

4π
f

j

2

(
f k

1 + 1
)
, (D11)

where M−1
kj = m−1

k − m−1
j plays the role of an effective reduced mass while the effective relative speed is

ṽr=
√

|vc,j−vc,k|2−2
([

Uk
n − μk

c

]− [
U

j
n − μ

j
c

])/
Mkj . (D12)

APPENDIX E: EQUILIBRIUM EVALUATION OF �
k j
C

In general, the collision integrals cannot be evaluated analytically. However, the exchange rate, Eq. (D11), can be calculated
in the limit β0( p2

2mj
+ U

j
c − μ

j
c ) 
 1. Using the momentum transformations given by (D10a) and (D10b), the scattering rate �out

C

becomes

�out
C = 2Mkj g

2
kj

(2π )2�4
nc,jnc,kp

out
∫

d�
(
f k

1 + 1
)
f

j

2 , � 4πMkj g
2
kj

(2π )2�4
nc,jnc,kp

out(c1T + c2T
2), (E1)
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where the constants ci are defined as

c1 = kB

δ
ln

[
γ j + δ + gjjnc,j

γ j − δ + gjjnc,j

]
, (E2)

c2 = k2
B

δ

ln

(
[γ j −δ+gjj nc,j ][γ k+δ+gkknc,k]
[γ j +δ+gjj nc,j ][γ k−δ+gkknc,k]

)
γ j − γ k + gjjnc,j − gkknc,k

. (E3)

The constants γ α and δ are defined in terms of the momenta as

γ α = pout2

2mα

+ mα

(mj − mk)2

p2
0

2
, (E4)

δ = 1

mj − mk

|pout||p0|. (E5)

Finally, the “relative” momentum is defined as pout = √
p2 + 2Mkj (gjjnc,j − gkknc,k). Equation (E1) shows the temperature

dependence of �
kj

C , while the constants c1 and c2 defined by Eqs. (E2) and (E3) give, respectively, the general form of the
coefficients of T 2 and T .
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M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
[10] J. Schmiedmayer, R. Folman, and T. Calarco, J. Mod. Opt. 49,

1375 (2002).
[11] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and

E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).
[12] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.

Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).
[13] P. Maddaloni, M. Modugno, C. Fort, F. Minardi, and M.

Inguscio, Phys. Rev. Lett. 85, 2413 (2000).
[14] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M.

Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
[15] A. Simoni, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio,

Phys. Rev. Lett. 90, 163202 (2003).
[16] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101,

040402 (2008).
[17] S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and

T. Hirano, Phys. Rev. A 82, 033609 (2010).
[18] S. Sugawa, R. Yamazaki, S. Taie, and Y. Takahashi, Phys. Rev.

A 84, 011610 (2011).
[19] A. Lercher, T. Takekoshi, M. Debatin, B. Schuster, R.

Rameshan, F. Ferlaino, R. Grimm, and H.-C. Nägerl, Eur. Phys.
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Rep. Prog. Phys. 77, 126401 (2014).
[36] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M.

Pierce, B. S. Rem, F. Chevy, and C. Salomon, Science 345,
1035 (2014).

[37] N. P. Proukakis, S. A. Gardiner, M. J. Davis, and M. H.
Szymanska, Quantum Gases: Finite Temperature and Non-
Equilibrium Dynamics (Imperial College Press, London,
2013).

[38] N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).
[39] N. G. Berloff, M. Brachet, and N. P. Proukakis, Proc. Natl.

Acad. Sci. USA 111, 4675 (2014).

063607-24

http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1088/0953-4075/38/9/013
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevLett.82.1060
http://dx.doi.org/10.1103/PhysRevLett.82.1060
http://dx.doi.org/10.1103/PhysRevLett.82.1060
http://dx.doi.org/10.1103/PhysRevLett.82.1060
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1103/PhysRevLett.85.2208
http://dx.doi.org/10.1080/09500340110111077
http://dx.doi.org/10.1080/09500340110111077
http://dx.doi.org/10.1080/09500340110111077
http://dx.doi.org/10.1080/09500340110111077
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.85.2413
http://dx.doi.org/10.1103/PhysRevLett.85.2413
http://dx.doi.org/10.1103/PhysRevLett.85.2413
http://dx.doi.org/10.1103/PhysRevLett.85.2413
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.90.163202
http://dx.doi.org/10.1103/PhysRevLett.90.163202
http://dx.doi.org/10.1103/PhysRevLett.90.163202
http://dx.doi.org/10.1103/PhysRevLett.90.163202
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1140/epjd/e2011-20015-6
http://dx.doi.org/10.1103/PhysRevA.84.011603
http://dx.doi.org/10.1103/PhysRevA.84.011603
http://dx.doi.org/10.1103/PhysRevA.84.011603
http://dx.doi.org/10.1103/PhysRevA.84.011603
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://arxiv.org/abs/arXiv:1305.7091
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/RevModPhys.85.1191
http://dx.doi.org/10.1103/RevModPhys.85.1191
http://dx.doi.org/10.1103/RevModPhys.85.1191
http://dx.doi.org/10.1103/RevModPhys.85.1191
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1103/PhysRevLett.91.240404
http://dx.doi.org/10.1103/PhysRevLett.91.240404
http://dx.doi.org/10.1103/PhysRevLett.91.240404
http://dx.doi.org/10.1103/PhysRevLett.91.240404
http://dx.doi.org/10.1103/PhysRevLett.93.210403
http://dx.doi.org/10.1103/PhysRevLett.93.210403
http://dx.doi.org/10.1103/PhysRevLett.93.210403
http://dx.doi.org/10.1103/PhysRevLett.93.210403
http://dx.doi.org/10.1103/PhysRevA.72.063619
http://dx.doi.org/10.1103/PhysRevA.72.063619
http://dx.doi.org/10.1103/PhysRevA.72.063619
http://dx.doi.org/10.1103/PhysRevA.72.063619
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.110.025301
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevLett.80.1134
http://dx.doi.org/10.1103/PhysRevLett.80.1134
http://dx.doi.org/10.1103/PhysRevLett.80.1134
http://dx.doi.org/10.1103/PhysRevLett.80.1134
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1126/science.1255380
http://dx.doi.org/10.1126/science.1255380
http://dx.doi.org/10.1126/science.1255380
http://dx.doi.org/10.1126/science.1255380
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1088/0953-4075/41/20/203002
http://dx.doi.org/10.1073/pnas.1312549111
http://dx.doi.org/10.1073/pnas.1312549111
http://dx.doi.org/10.1073/pnas.1312549111
http://dx.doi.org/10.1073/pnas.1312549111


NONEQUILIBRIUM KINETIC THEORY FOR TRAPPED . . . PHYSICAL REVIEW A 92, 063607 (2015)

[40] A. Griffin, T. Nikuni, and E. Zaremba, Bose-Condensed
Gases at Finite Temperatures (Cambridge University Press,
Cambridge, UK, 2009).

[41] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and
C. W. Gardiner, Adv. Phys. 57, 363 (2008).

[42] M. Brewczyk, M. Gajda, and K. Rzażewski, J. Phys. B 40, R1
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