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We study the influence of photons on the dynamics and the ground state of the atoms in a bosonic Josephson
junction inside an optical resonator. The system is engineered in such a way that the atomic tunneling can be
tuned by changing the number of photons in the cavity. In this setup the cavity photons are a means of control,
which can be utilized both in inducing self-trapping solutions and in driving the crossover of the ground state
from an atomic coherent state to a Schrödinger cat state. This is achieved, for suitable setup configurations, with
interatomic interactions weaker than those required in the absence of a cavity. This is corroborated by the study
of the entanglement entropy. In the presence of a laser, this quantum indicator attains its maximum value (which
marks the formation of the catlike state and, at a semiclassical level, the onset of self-trapping) for attractions
smaller than those of the bare junction.

DOI: 10.1103/PhysRevA.92.063604 PACS number(s): 03.75.Lm, 05.70.Fh, 03.75.Gg, 03.67.−a

I. INTRODUCTION

A Bose-Einstein condensate confined in a double-well
potential mimics in many ways the coherent dynamics of
a superconducting Josephson junction [1,2]. Therefore, it
is often called a bosonic Josephson junction (BJJ), whose
coherent dynamics can be described by the nonlinear equations
of a nonrigid pendulum [2]. Furthermore, the investigation of
the BJJ dynamics allows us to study the formation of macro-
scopic coherent states [2,3] and macroscopic Schrödinger
cat states [4–10]. When the condensate is inside an optical
resonator, the photon and atomic degrees of freedom are
no longer independent [11]: There is a mutual backaction
between the cavity and BJJ dynamics. The photon field acts
as an optical potential on the atoms; at the same time, the
atomic density serves as a refractive medium for the cavity
photons. Note that the idea underlying this scheme is closely
related to the models discussed, within the optical lattices
context, in [12–14]. In an earlier paper it was shown how the
constant photon field of a laser, tightly focused to the center
of the junction barrier, influences the tunneling properties
by effectively raising or lowering the barrier or ultimately
allowing for a localized state inside the central well [15]. It
was also investigated how the dynamical nature of a cavity
field, focused similarly to the center of the barrier, alters the
BJJ dynamics in the semiclassical level [16]. The purpose
of this paper is to study how the photons influence the
exact quantum dynamics and the ground state of the junction
when the parameters of the system are chosen in such a
way that the cavity field can be considered as fixed, i.e., in
this bad cavity case the photon field is practically a laser
field. The cavity photons alter the equations that describe
the BJJ dynamics [16] and we investigate how they can
induce self-trapping solutions. The study of the transition
from the Josephson regime to the self-trapping regime in the
semiclassical dynamics is complemented by the analysis of the
ground state. The crossover from the atomic coherent state to
the Schrödinger cat state can in fact be regarded as the quantum

counterpart to the semiclassical examination of the system.
The ground state of the system is analyzed using three quantum
indicators: the Fisher information, the coherence visibility, and
the entanglement entropy. This last estimator proves to play a
central role in understanding when the transition takes place.

II. MODEL

Here we consider a hybrid system consisting of a BJJ and
an optical cavity whose field is interacting with the atoms. The
scheme is identical to that of Ref. [16] and is illustrated in
Fig. 1. The BJJ in our system is made of an interacting Bose-
Einstein condensate in a symmetric double-well potential. Its
Hamiltonian in second-quantized form reads

ĤA =
∫

d3r �̂†(r)

[
− �

2

2m
∇2 + V (r) + g

2
�̂†(r)�̂(r)

]
�̂(r),

(1)

where �̂(r) annihilates an atom at position r = (x,y,z).
Low-energy atom-atom scattering is characterized by g =
4π�

2a/m, where a is the s-wave scattering length and m is
the mass of an atom. The confining potential is

V (r) = VDW(x) + 1
2mω2

H (y2 + z2), (2)

where VDW(x) is the double-well potential in the x direction,
while we assume tight harmonic confinement in the transverse
direction, with trap frequency ωH .

The optical cavity is a single-mode high-Q Fabry-Pérot
resonator whose axis is orthogonal to the double-well direction
as depicted in Fig. 1. We choose the y direction for the cavity
axis. The cavity has characteristic frequency ωC , it is pumped
through one of its mirrors with a laser of frequency ωL and
amplitude η, and it is operated in the TEM00 mode. The mode
function of the cavity is

f (r) =
√

2

L
cos(ky)

e−(x2+z2)/(2σ 2)

π1/2σ
, (3)
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FIG. 1. (Color online) Illustration of the setup. The bosonic
Josephson junction is created by magnetic or optical means along
the x direction. A Fabry-Pérot cavity is placed around the junction
with an axis orthogonal to the junction. The resonator is operated in
the TEM00 mode.

where k = ωC/c is the wave number of the cavity mode, L

is the distance between the mirrors, and σ is the width of the
Gaussian profile in the (x,z) plane.

The cavity dynamics, in the frame rotating with a frequency
ωL of the laser drive, is governed by the Hamiltonian

ĤC = −��CN̂L − i�η(â − â†). (4)

Here �C = ωL − ωC is the cavity detuning, η is the pumping
strength of the driving laser, â is the annihilation operator of a
cavity photon, and N̂L = â†â is the photon number.

The condensate atoms have an electronic ground state and
an excited state, with transition frequency ωA. We assume
that the atomic detuning �A = ωL − ωA is large enough
for the excited-state population to be negligible all the time
and the atoms to behave as polarizable scalar particles.
Therefore, their interaction with the cavity field is described
by dispersive photon scattering [11], which shifts the cavity
resonance frequency proportional to the atom number, and on
the atomic degrees of freedom it creates an optical potential.
This additional atom-light interaction term reads

ĤAL = �U0â
†â

∫
d3r f 2(r)�̂†(r)�̂(r), (5)

where the strength of the interaction is U0 = �2
R/�A, with

�R the single-photon Rabi frequency. As the cavity field is
focused symmetrically to the center of the double-well barrier,
the optical potential creates a symmetric light shift in the wells
and lowers (raises) the height of the barrier for red- (blue-)
detuned atoms.

When the double-well barrier is sufficiently high, the
lowest-energy doublet is well separated from the rest of the
spectrum. In this case the atomic dynamics can be constrained
to the two-mode Fock space of the left and right valleys [2]
and the atomic field operator can be approximated as

�̂(r) = [w1(x) b̂1 + w2(x) b̂2]
e−(y2+z2)/(2l2

H )

π1/2lH
, (6)

where b̂1 and b̂2 are the annihilation operators of a boson
in the Wannier-like states w1(x) and w2(x), centered around

the minima of the left and right valleys, respectively. The
characteristic length of the strong harmonic confinement in
the (y,z) plane is given by lH = √

�/mωH . In this limit,
the Hamiltonian describing the BJJ dynamics is evaluated by
inserting the field operator (6) into the atomic Hamiltonian (1),

ĤBJJ = εN̂ − J
(
b̂
†
1b̂2 + b̂

†
2b̂1

) + U

2

(
b̂
†
1b̂

†
1b̂1b̂1 + b̂

†
2b̂

†
2b̂2b̂2

)
.

(7)

The parameters ε, J > 0, and U are the on-site energy of a
single well, the tunneling amplitude, and the on-site interaction
energy, respectively. The values of these parameters are written
in terms of overlap integrals of the Wannier functions [16].

Similarly, the atom-light interaction (5) is evaluated as

ĤI = N̂L

[
W0N̂ + W12

(
b̂
†
1b̂2 + b̂

†
2b̂1

)]
. (8)

The term with W0 is the symmetric ac Stark shift, while the
W12 term is the consequence of the lowering of the barrier.
The latter can be understood as a cavity-assisted tunneling
contribution. The values of the parameters W0 and W12 are
also expressed as overlap integrals [16]. The full Hamiltonian
of the system can be written as

Ĥ = ĤBJJ + ĤC + ĤI

= (ε + W0N̂L)N̂ − (J − W12N̂L)
(
b̂
†
1b̂2 + b̂

†
2b̂1

)

+U

2

(
b̂
†
1b̂

†
1b̂1b̂1 + b̂

†
2b̂

†
2b̂2b̂2

) − ��CN̂L − i�η(â − â†),

(9)

A more detailed derivation of the Hamiltonian can be found
in Ref. [16]. In this configuration, W0 and W12 can be either
positive or negative since they are proportional to the atomic
detuning �A [16]. If the atoms are red detuned, i.e., �A < 0,
both W0,W12 < 0, while for blue detuning, i.e., �A > 0, one
has W0,W12 > 0. The geometry of the system has a remarkable
advantage: The cavity photons can influence the tunneling of
the atoms between the two wells of the potential, as opposed
to previous proposals of this type of system [17–19] that
considered only the effect of the cavity photons on the on-site
energies of the BJJ.

III. SEMICLASSICAL APPROXIMATION

Let us assume that the system is in a fully coherent
state S, in which both the atoms in the right and left wells
and the cavity photons are described with coherent states
|S〉 = |β1〉 ⊗ |β2〉 ⊗ |α〉, where b̂j |βj 〉 = βj |βj 〉 and â|α〉 =
α|α〉. It is convenient to write the eigenvalues of the atomic
coherent state as βj = √

Nje
iθj , where Nj is the average num-

ber of atoms in the j th well and θj is the corresponding phase,
and similarly α = ξeiφ , where NL = ξ 2 is the average number
of photons in the cavity and φ is the corresponding phase.
The dynamics of the system can be described by a set of four
ordinary differential equations for the fractional imbalance
of the atomic population of the wells z = N1−N2

N
, the atomic

relative phase θ = θ2 − θ1, and the photon variables ξ and φ

[16]. The photon dynamics can be adiabatically eliminated
when δC = �C − N (W0 + W12

√
1 − z2 cos θ )/� is orders of

magnitude larger than �
−1ν = (J − W12ξ

2)/�
2 [11]. When the
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magnitude of the cavity detuning �C is much larger than that
of NW0/� and NW12/� the system is described by

ż = −2ν̃
√

1 − z2 sin θ, (10a)

θ̇ =
(

g̃ + 2ν̃√
1 − z2

cos θ

)
z, (10b)

where ν̃ = (J − W12ξ
2)/� = (J − W12η

2/δ2
C)/�. When these

conditions are satisfied, the photon field amplitude ξ can be
considered to be constant in time and ξ = η/|�C |. This set
of equations is very similar to the Josephson equations for a
bare Josephson junction. However here, because of the cavity
photons, the tunneling amplitude J is replaced with the assisted
tunneling amplitude J̃ = J − W12ξ

2. In the case of the bare
BJJ the solutions to these equations can be divided into two
classes. One is characterized by oscillations around z = 0
and therefore the time average of the population imbalance
is zero (Josephson regime). The second class of solutions is
characterized by an average imbalance in the population of
the wells (self-trapping regime). However, in our system, the
cavity photons can be used to induce self-trapping solutions
for initial conditions and parameters that would not allow them
in the bare junction. When U > 0 and J̃ > 0, the self-trapping
occurs when [2]

�

2
z2(0) −

√
1 − z2(0) cos θ (0) > 1, (11)

where � = UN/2J̃ and z(0) and θ (0) are the initial conditions
to the equations. Since � depends on the number of cavity

0.00 0.02 0.04 0.06 0.08 0.10
- 1.0

- 0.5

0.0

0.5

1.0

U

0.00 0.02 0.04 0.06 0.08 0.10
- 1.0

- 0.5

0.0

0.5

1.0

U

- 3 - 2 - 1 0 1 2 3
- 1.0

- 0.5

0.0

0.5

1.0

θ

- 3 - 2 - 1 0 1 2 3
- 1.0

- 0.5

0.0

0.5

1.0

θ

z
zz

z

FIG. 2. (Color online) The highlighted area in each panel shows
the values of z, U , and θ that allow self-trapping for a fixed θ = 0
(left-hand column) and a fixed U = 12J/N (right-hand column).
The difference between the two rows is the number of photons in
the cavity. In the top row ξ 2 = 0 and J̃ = J and in the bottom
ξ 2 = 25 and J̃ = 0.25J . It is clear that, because of the cavity photons,
the highlighted area gets wider and therefore the appearance of the
self-trapping is assisted. The other parameters are N = 1000 and
NW12 = 30J . Here U is written in units of J .
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FIG. 3. (Color online) Time evolution of the variable z. Time is
measured in units of �/J . Shown on the left is the bare junction
in the absence of the cavity and on the right the junction inside
the cavity. The solid lines represent the numerical solution of the
system (10), where the photon variables are constant. The dashed
line represents the solution of the system where the photon dynamics
has not been adiabatically eliminated. When there are no photons, the
system is in the Josephson regime, while when the photon number
is increased the system is in the self-trapped regime. The parameters
for the second panel are ��C = 300J , W0N = 4J , W12N = 3J ,
UN = 12J , N = 1000, and �η = 3000J . The initial conditions are
(z,θ ) = (0.7,0) (left) and (z,θ,ξ,φ) = (0.7,0,10.17,π/2) (right). The
inset represents the frequency ω of the small oscillations of z written
as a function of the number of cavity photons ξ 2; ω is written in units
of J/�. The range of ξ 2 is given by the condition for the system to
show small oscillations. The other relevant parameters for the inset
are N = 1000, UN = 0.012J , and W12N = 0.03J .

photons ξ 2, in our system we have one more relevant parameter
that allows us to switch between different regimes.

By comparing the panels in Fig. 2, it can be clearly
seen what the effect of changing the number of photons is
when W12 > 0. In particular we notice how increasing the
number of photons widens the area that allows self-trapping
solutions.

The photon-induced change of regime can be clearly seen
in Fig. 3. The left panel shows the time evolution of z in
the Josephson regime, in the absence of photons. The right
panel shows the time evolution when the cavity photons are
present in the system: It can be clearly seen that the photons
induce oscillations around a nonzero average value of z. The
cavity photons can therefore be used as a means of inducing
self-trapped solutions that would not otherwise occur in the
absence of the cavity.

IV. EXACT DIAGONALIZATION

We now want to show how the cavity photons influence the
ground state of the system. In order to do this, we describe the
photons with a coherent state |α〉, but we describe the atoms
in the wells in a purely quantum way. To this end we use Fock
states as basis vectors in the atomic Hilbert space. Furthermore,
we assume that the photon field relaxes quickly and this allows
us to consider the photon coherent state to be a parameter on
which the atomic ground state depends. The ground state of
the atomic field for a given photon field coherent state |α〉 can
be written as |g.s.〉α = ∑

n cn(α)|n〉, where |n〉 = |N − n,n〉
is an element of the Fock basis {|n〉,n = 0,1, . . . ,N} and
N is the total number of atoms. The element of the Fock
basis |n〉 describes the state in which n atoms are in the
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right well and N − n in the left well. The coefficients cn(α)
clearly depend on the photon field. So the ground state of the
system can be written as |g.s.〉 = |α〉 ⊗ |g.s.〉α , which is the
tensor product of the coherent state of the photon field and
of the atomic ground state for that field strength. In order
to calculate the ground-state coefficients cn(α) the matrix
elements of the Hamiltonian that needs to be diagonalized
are

Hm,n(α) = −(J − W12|α|2)(
√

N − m
√

nδm,n−1

+√
N − n

√
mδm,n+1) + U

2
[(N − n)(N − n − 1)

+ n(n − 1)]δm,n. (12)

If we assume that the photon field relaxes very fast, then
i� d

dt
α = 0 leads to a relation between α and the ground-state

coefficients cn(α) that needs to be satisfied in order for
the computation of the ground state to be consistent. This
makes the amplitude of the photon field |α〉 dependent on
the parameters that appear in the Hamiltonian and on the
coefficients cn(α) as well. The analysis of the ground state can
however be simplified when |�C | � |W0|N/� and |�C | �
|W12|N/�. When such conditions are satisfied α depends
weakly on the coefficients cn(α). Therefore, for any starting
number of photons |α|2 the above procedure gives as a result
the starting |α|2. The number of photons in the system can thus
be modified by changing the values of η and �C . Under this
approximation we only need to study how the ground state
of the Hamiltonian with the assisted tunneling is influenced
by the presence of the photons. In the absence of the cavity,
and thus |α|2 = 0, the ground state of the BJJ can show three
limit behaviors depending on the value of the ratio U/J [20].
When U/J = 0 the ground state is an atomic coherent state,
where the distribution of the |cn(α)|2 has a Gaussian profile.
For large values |U/J | the ground state can be found in two
configurations, depending on the sign of U/J . When U/J > 0
the ground state is a separable Fock state, where half of the
atoms are in the right well and half in the left one. When
U/J < 0 the ground state is a Schrödinger cat state, which
is the linear combination of the states with all particles in the
left or in the right well. Changing the interaction strength U/J

leads to a continuous transitions between these three kinds of
states.

The correlation properties of the ground state can be
analyzed by using the Fisher information F [21,22] and the
coherence visibility αv [23]. The definition for these two
estimators can be found in [20]. In particular, F gives the width
of the distribution of |cn(α)|2 and αv characterizes the degree
of coherence between the two wells. We are interested in
characterizing also the genuine quantum correlations between
the atoms in two wells pertaining to the ground state. Here we
focus on the atom part only and address this issue from the
bipartition perspective with the two wells playing the role of
the two partitions. Following the same path as in [20,24], we
thus calculate the entanglement entropy S [25] that results in
S = −∑N

n=0 |cn(α)|2 log2 |cn(α)|2. Remarkably, S, plotted as
a function of U , shows a maximum at the onset of the transition
to the Schrödinger-catlike-state regime in which the distribu-
tion of the |cn(α)|2 begins to exhibit a valley. The Hamiltonian
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FIG. 4. (Color online) Coefficients |cn(α)|2 of the ground state
as a function of n/N for N = 1000. In the left-hand column
W12 = −0.03J and in the right-hand column W12 = 0.03J . The
on-site interaction is negative U < 0. The solid line represents
the system in the absence of cavity photons |α|2 = 0, while the
dashed line represents the system when |α|2 = 1. The effect of
the cavity photons in the left-hand column is to increase the
coherence of the ground state for a given negative on-site interaction
U and thus delay the transition to the regime in which a valley appears
in the middle of the distribution of the coefficients |cn(α)|2. The
effect of the cavity photons in the right-hand column is the opposite.
The coherence of the ground state decreases for a given negative
on-site interaction U and thus the photons assist the transition to the
regime in which a valley appears in the middle of the distribution
of the coefficients |cn(α)|2. In both cases the ground state is shown
for four values of U . The coefficients |cn(α)|2 are adimensional and
normalized so that

∑N

n=0 |cn(α)|2 = 1; n/N is adimensional.

we need to diagonalize in Eq. (12) differs from the Hamiltonian
of a bosonic Josephson junction only for the value of the
tunneling amplitude, which we will call J̃ = J − W12|α|2. The
magnitude and sign of J̃ depend on both W12 and the photon
number |α|2.

When W12 < 0 the assisted tunneling amplitude J̃ is always
positive and its magnitude gets larger as the number of photons
in the system |α|2 increases. Let us choose W12 = −0.03J

and plot together the ground states for various values of U

for |α|2 = 1 and therefore J̃ = 1.03J . We always plot the
ground state of the bare junction, with |α|2 = 0, to use as a
reference. In the left-hand columns Figs. 4 and 5 we can see
what happens when the on-site interaction U is negative. When
the interaction is positive, the effect of the photons is still to
delay the transition to the separable Fock state.

When W12 > 0 the assisted tunneling amplitude J̃ gets
smaller when increasing the number of photons in the cavity.
This can lead to two main consequences. On the one hand, if
the number of photons is sufficiently small, J̃ maintains its
positive sign but its magnitude gets smaller and 0 < J̃/J < 1.
On the other hand, if the number of photons is large enough
the assisted tunneling can become negative J̃ /J < 0. When
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FIG. 5. (Color online) Fisher information F , coherence visibility
αV , and entanglement entropy S plotted as a function of the on-site
interaction U , which is written in units of J, for N = 1000. In the
left-hand column W12 = −0.03J and in the right-hand column W12 =
0.03J . The solid line represents the system when |α|2 = 0, while
the dashed line represents the system when |α|2 = 1. The on-site
interaction is attractive U < 0. The plots of the quantum indicators
complement those of Fig. 4. In the presence of photons F is smaller
when W12 < 0 and larger when W12 > 0, compared the solid line,
since F is related to the distribution width of the cn(α). Here αv is
larger for W12 < 0 and smaller for W12 > 0 compared to the solid
line as the photons increase and decrease the coherence, respectively.
Further, S, whose maximum represents the value of U at which the
distribution of the |cn(α)|2 starts to show a valley [20], appears for a
larger |U | for W12 < 0 and for a smaller |U | for W12 < 0. The values
of F , αv , and S are dimensionless.

0 < J̃/J < 1 we can plot the ground states of the system for
different values of negative U and for |α|2 = 1, and therefore
J̃ = 0.97J . We can see from the right-hand columns in Figs. 4
and 5 that the effect of the photons in this case is opposite
to the effect when W12 is negative. When the interaction is
positive, the effect of the photons is still to assist the transition
to the separable Fock state. It is worth mentioning that this
result is actually more interesting than the sole rescaling of
the ratio U/J . Focusing our attention on the attractive on-site
interaction and on the emergence of the Schrödinger-catlike-
state regime, we can notice a fundamental difference. For a
fixed number of atoms in the system, in the bare Josephson
junction, the transition to the Schrödinger-catlike-state regime
happens for a definite value of U/J . However, in the complete
system, with a positive W12, by fine-tuning the number of
cavity photons, the transition to the Schrödinger-catlike-state
regime can happen for a given magnitude of negative U ,
without changing the number of atoms. This means that the
photons in the system act as a new knob through which
the transition between different regimes can be manipulated.
The change of the sign of J̃ is significant when analyzing the
Hamiltonian of the system. In the case of the bare Josephson
junction J can always be taken to be positive. However, by
numerically calculating the ground state of the system we

found that the sign of J̃ bears no relevance to the coefficients
|cn(α)|2 and to the value of the quantum indicators. Therefore,
choosing values of |α2| such that the values of the assisted
tunneling amplitude J̃ are the same as the ones we have just
studied, but with opposite signs, leads to the same results.
It is interesting to note this analogy between the case with
positive J̃ and negative J̃ . One would at first think that,
since the relevant parameter in the analysis is the ratio U/J̃ ,
when J̃ is negative, the same results could be obtained by
changing the sign of U as well; however this is not the
case.

V. SUMMARY

We have shown that the cavity photons can be used to
induce self-trapping solutions in the dynamics of the Josephson
junction. Moreover, we have described how the transition
from the atomic coherent state to a Schrödinger cat state can
be delayed or expedited, depending on the photon-assisted
tunneling amplitude. This analysis is the foundation of the
quantum study of this system. Possible extensions of this
work could be the study of the ground state when the
|�C | � |W0|N/� and |�C | � |W12|N/� conditions no
longer hold. This would lead to the same ground states we
have already found, but the photon number of the cavity would
depend on the other parameters of the system. Moreover, one
could try to better understand the transition between the atomic
coherent state and the Schrödinger cat state, by computing the
relevant critical indices for F and αv .

The setup considered here can be implemented directly
due to the current feasibility of trapping ultracold bosons in
double-well potentials [26–28] and to fabricate high-finesse
optical cavities supporting quantum degenerate bosonic clouds
[29–31]. The experiment deriving from the suitable com-
bination of these two parts would provide a powerful tool
for observing the Josephson–self-trapping crossover, an is-
sue addressed with bare BJJs [26] and creating entangled
states of matter. In this context, experimentalists could have
the concrete possibility to receive feedback on the shift
of the crossover above by using the number of cavity
photons as a knob. The setup considered in Ref. [30] is
extremely appealing, where the Fabry-Pérot cavity is as-
sembled on top of an atom chip, where wires suitable for
the double-well potential can be easily placed too. On such
a device one has to fine-tune experimental parameters that
mainly consist in the proper matching of the double-well
dimensions (a barrier width of a few microns) with those
of the waist of the cavity (also in the range of a few
microns).
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