PHYSICAL REVIEW A 92, 063602 (2015)

Beyond the Hubbard bands in strongly correlated lattice bosons
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We investigate features in the single-particle spectral function beyond the Hubbard bands in the strongly
correlated normal phase of the Bose-Hubbard model. There are two distinct classes of additional peaks generated
by the bosonic statistics. The first type is thermally activated Hubbard “sidebands”, with the same physical origin
as the zero-temperature Hubbard bands, but generated by excitations from thermally activated local occupation
number states. The second class are two-particle fluctuation resonances driven by the lattice dynamics. In the
unity filling Mott insulator, this takes the form of a localized triplon combined with a dispersing holon. Both types
of resonances also manifest themselves in the structure factor and the interaction modulation spectra obtained
from nonequilibrium bosonic dynamical mean-field theory calculations. Our findings explain experimental lattice
modulation and Bragg spectroscopy results, and they predict a strong temperature dependence of the first sideband,
thereby opening the door to precise thermometry of strongly correlated lattice bosons.
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I. INTRODUCTION

Interacting lattice bosons are an active field of research,
spurred by continuous experimental advances in cold atom
systems [1,2]. Nowadays, not only are the experimental
parameters such as interactions and optical lattice depths well
controlled [3], but there has also been great progress in the field
of cold atom spectroscopy [4-8], giving access to dynamical
quantities such as the structure factor and the single-particle
spectral function [9-13]. In the strongly interacting Mott
regime, there are experimental reports on high-energy features
in the absorption spectra obtained by lattice modulation
[14,15] and Bragg spectroscopy [16,17]. The features appear
beyond the first Hubbard resonances at higher multiples of the
local interaction energy, and they are generally interpreted as
multiple occupation number fluctuations. However, a detailed
understanding of the underlying physics is lacking.

The lowest Hubbard resonances correspond to quasiparticle
and quasihole excitations, whose dispersion can be understood
already in mean-field and slave-particle approaches [18-23].
The full spectral function and structure factor of the first
Hubbard satellites, including finite lifetime broadening, have
so far only been settled in one dimension using numerically
exact lattice quantum Monte Carlo (QMC) [24,25] and density
matrix renormalization group (DMRG) calculations [26].
However, there are several indications that spectral features be-
yond the Hubbard bands should exist. They have been found in
the spectral function at zero temperature using the variational
cluster approach (VCA) [27,28] and strong-coupling calcu-
lations [26], and they are also reproduced in the current and
kinetic energy susceptibilities calculated by DMRG [29]. The
recently renewed interest in high-dimensional lattice bosons
out-of-equilibrium to realize complex effective Hamiltonians
including gauge fields [30-32] and spin-orbit interactions
[33-35] by nonequilibrium driving, and the recent real-time
generalization [36] of bosonic dynamical mean-field theory
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(BDMFT) [37-41], call for a systematic investigation of
the positions, origins, and temperature behaviors of these
high-energy fluctuations.

In this study, we investigate the nature of the resonances of
the spectral function beyond the Hubbard bands at arbitrary
integer filling and nonzero temperature. We also propose
an interaction modulation spectroscopy experiment, and we
show using nonequilibrium real-time BDMFT [36,42] that
it probes the two-particle scattering susceptibility. Our cal-
culations explain the experimental observations from lattice
modulation and Bragg spectroscopy [14—17], while making
additional predictions regarding the temperature dependence,
going beyond previous zero-temperature calculations in one
dimension [43].

II. MODEL

We study the strongly correlated limit of cold atoms in
the first band of a deep optical lattice by means of the Bose-
Hubbard model [44] with the Hamiltonian

U
— T T Tyt
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where bj (b;) creates (annihilates) a boson on site i, U is the
local interaction due to two-particle s-wave scattering of the
neutral bosonic atoms, and J is the nearest-neighbor lattice
hopping integral, which we take as our unit of energy. We
further limit the study to the normal phase without symmetry
breaking on the Bethe lattice in the limit of infinite dimensions.

In this limit, the Bose-Hubbard model is described exactly
by BDMFT [37-41] in direct analogy with fermions [45]. The
model has a direct bearing on cold atoms in three-dimensional
cubic lattices while still being simple enough to allow an
understanding of the spectral function by analytic arguments.
In BDMFT, the lattice is mapped to an interacting impurity
coupled to a dynamic external bath with hybridization function
A(w). For the Bethe lattice, the self-consistency directly relates
A to the local Green’s function of the impurity G(w) according
to A(w) = J>G(w) [45].
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The impurity model can be solved exactly for nonzero
temperatures in imaginary time using the continuous-time
quantum Monte Carlo method (CT-QMC) [40]. However,
Monte Carlo approaches are not able to resolve spectral
features at high w due to the required analytical continuation
[46], nor are they suitable for out-of-equilibrium calculations
due to the dynamical sign problem [47]. Instead, we apply
a zeroth- and first-order strong-coupling expansion in A,
namely the Hubbard-I and noncrossing approximation (NCA),
respectively [36,48], which enables us to directly calculate
real-time and real-frequency response functions. While the
NCA is limited to strong interactions, already in this limit
there are nontrivial additional single-particle excitations in the
Bose-Hubbard model, as we will show.

III. METHOD

The real-time generalization of BDMFT+NCA to nonequi-
librium situations has been published elsewhere [36]. Here we
specialize to the equilibrium case, where the equations can
be Fourier-transformed to real frequency; see Appendices B
and C. The NCA amounts to mapping the local impurity Fock
space to pseudoparticles and then performing a first-order
resummation of hybridization events. On the real-frequency
axis, the single-particle spectral function A is given by the
bubble diagram,

Alw) = —

1 o N N
< > t
o f de (Tr[G=()b G (¢ + w)b']

—Tr[G=(e)b'G™ (e — w)b)), )

—0Q

in terms of the pseudoparticle propagator G, corresponding
to a concomitant fluctuation in occupation number states n
and n =1 on the impurity. The pseudoparticle self-energy
$> is given by the shell diagrams with a forward- and
backward-propagating hybridization function, and it takes the
real-frequency form

27 (w) = J? / " de (f(©)AE[PG™ (w + €)b]

+[1+ f(OIAED' G (0 — €)b)), 3)

where f(w) = (e#® — 1)7! is the Bose distribution function
with inverse temperature 8, and the BDMFT lattice self-
consistency has been used; for details, see Appendix C. The
first term in Eq. (3) describes a particle fluctuation on the lattice
involving the occupied density of states f(w)A(w), while the
second term is a hole fluctuation with the unoccupied density
of states [1 + f(w)]A(w).

IV. RESULTS

A. Analytical considerations
1. Hubbard bands

The main spectral features of the Bose-Hubbard model can
be understood already at zeroth order in A. This amounts to
the Hubbard-I approximation (HIA) [49] where the lattice self-
energy X (w,Kk) is approximated with the zero-hopping (J = 0)
self-energy Zyia(w), L(w,K) & Xgia(w). The self-energy can
be determined analytically (see Appendix A), and it takes the
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form
Tuiaz) = [2Un(z + ) — Un(n — DI/(z + n+U), @)

at zero temperature, with a single pole at negative frequencies.
Reinsertion into the lattice Green’s function G(z,K) ~ [z +
W — €k — Zua(z)]!, with the noninteracting single-particle
dispersion €, produces two excitation branches with disper-
sion,

28 = €+ Un — 1) = 2u %[ + 20U 2n + Dey + U2,
@)

Expanding to third order in J /U, the bandwidths W of the two
branches are given in terms of the noninteracting bandwidth
W as W = W(n + 1) and Wn. The upper and lower branches
arecentered até = U(2n — 1 &= 1)/2 — u, respectively. These
two spectral features are the bosonic analog of the Hubbard
bands in the fermionic Hubbard model corresponding to the
local particle and hole excitations |n) — |n &= 1). We note
that the simple Hubbard-I approximation reproduces previous
mean-field and slave-particle results [18-23] in the normal
phase.

In the fermionic Hubbard model, the effect of dynamical
lattice fluctuations is to modify the shape of the Hubbard
bands. In the Bose-Hubbard model, however, the bosonic
statistics does not restrict the occupation of a single state,
and additional fluctuations become relevant. This is directly
evident when studying the unity filling n = 1 spectral function
using BDMFT+NCA; see the upper panel in Fig. 1. The
upper and lower Hubbard bands are located at w &~ +U /2 with
approximate bandwidths W ~ 2W and W, respectively, with
the noninteracting bandwidth being W = 4/, in accordance
with the Hubbard-I approximation.

2. Additional spectral features

Interestingly, in addition to the Hubbard bands, there are
two additional spectral features above the upper Hubbard
band at w ~#3U/2 and 5U/2. The origin of these two
spectral features can, in part, be understood by taking the
zero-temperature limit of the NCA diagrams in Eqs. (2)
and (3). In this limit, the lesser pseudoparticle Green’s function
reduces to the integer-filling n Fock state,

G=(w) ~ —i2r|n)d(@)(nl, 6)
and insertion into Eq. (2) gives the spectral function as
—i2nA(w) ~ (n + DG (@) —nG]_(~w),  (7)

where G; is the nth occupation number state propagator. At
unity filling n = 1 this simple structure of the spectral function
shows that the spectral weight at negative frequencies is due
to the holon propagator G, while at positive frequencies it
is due to the doublon propagator G,. Also the pseudoparticle
self-energy 3. in Eq. (3) simplifies by noting that the occupied
and unoccupied density of states becomes

—i2nf(@)A(w) ~ (n + )G, (w), (8)

—i27[1 + f(w)]A(w) ~ —nG>_ | (—w). 9)
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FIG. 1. (Color online) Bose-Hubbard model single-particle
spectral function A(w) (green solid line) for J =1, U =10,
= U/2, and the occupied density of states f(w)A(w) (blue dotted
line), at high temperature 7" = 2 (upper panel) and low temperature
T =1/4 (lower panel). Inset: pseudoparticle Green’s functions
—Im[G; (w)]/m for the lowest occupation number states n =0 — 3
atT = 1/4.

Insertion into Eq. (3) gives

. iJ* (> . .
() & B / de [n(m + 1)G,;_ (0 — )G, (€)
T J-

+n+ Dm G (0 — )G, _ (o). (10)

Hence, at unity filling the holon and doublon self-energies
become

25 () ~ J2G (), (11)

5 (w) ~ 47265 () + J*3G] (0 — 2U), (12)

where in the last relation we have used that the local triplon
pseudoparticle (A?3> is long-lived, i.e., G; (w)=1/(w+1in—
2U), as confirmed by numerical calculations; see the inset
in Fig. 1 (and Appendix D for the generalization to arbitrary
filling n). We see that the holon self-energy f)g only depends
self-consistently on the holon Green’s function Gg .In analogy
to the lattice self-consistency for the Bethe lattice, this results
in a semicircular holon pseudoparticle spectral function. The
doublon self-energy f); has a similar dependence on (A72> but
with an additional triplon term containing the holon Gg with
an effective frequency shift of the triplon plus holon energy
204+ U/2=5U/2.

B. Bosonic dynamical mean-field theory

The full BDMFT+NCA calculation at low temperature
confirms these analytic arguments; see the lower panel of
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FIG. 2. (Color online) Bose-Hubbard model real-frequency
single-particle spectral function A(w) (green solid line) and occupied
density of states f(w)A(w) (blue dotted line) at three boson filling
n=3,J=1,U=20, and u = 5U/2 at high temperature 7 =3
(upper panel) and low temperature 7 = 1/4 (lower panel).

Fig. 1. The lower Hubbard band is produced by the hole exci-
tation |1) — |0) described by the holon propagator —Go(—w)
with a semicircular shape and bandwidth 4J. The positive
frequency spectrum is given by the doublon propagator
2G,(w) with an almost semicircular upper Hubbard band
(1) — |2)) and a local triplon excitation combined with a
delocalized holon (|1) — |3) ® |k)). We also note that the
high-temperature peak at w ~ 3U/2 is not present at low
temperature; see the lower panel of Fig. 1.

At nonzero temperature, the local occupation on the
lattice fluctuates around the mean filling, and the simplifying
approximation of the occupied states in the pseudoparticle
propagator breaks down as both the holon and doublon will
contribute. However, the doublon is easier to activate thermally
due to its two times larger bandwidth compared to the holon.
The significant doublon contribution is seen in the occupied
density of states of the upper Hubbard band in the upper
panel of Fig. 1. The doublons also contribute to the spectral
function, which corresponds to a £1 particle excitation on the
ground state. Hence, the thermally activated doublons undergo
the excitations |2) — |2 + (£1)), where the hole excitation
(]2) — |1)) modifies the lower Hubbard band and the particle
excitation (|]2) — |3)) creates a long-lived triplon (without a
holon this time) yielding the new spectral feature atw ~ 3U /2.
The inverted shape of the |2) — |3) peak as compared to
the thermal occupation of the upper Hubbard band can also
be understood as the doublons in the ground state are being
excited to the triplon with the excitation energy U — &, hence
the low-energy doublons contribute to the high-energy part of
the peak.
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FIG. 3. (Color online) Interaction modulation energy absorption
spectra (solid lines) compared to the local two-particle susceptibility
Xptotpn(@w) (dash-dotted lines) and density susceptibility x,i,(w)
(dotted lines) for the temperatures 7 = 0.25, 0.5, 1, and 2 (circles,
diamonds, triangles, and squares, respectively). Inset: real-time
evolution of the interaction U(¢) and total energy E(¢) for driving
frequency w = 10and 7' = 2.

The additional spectral features described here, namely (i)
the zero-temperature double-particle excitation |n) — |n +
2) ® |(n — 1)gisp) (triplon with dispersing hole at unity filling)
and (ii) thermally activated sidebands |n + 1) — |n + 2),
are fundamental contributions to the Bose-Hubbard spectral
function and generalize to any integer filling. Unity filling
is a special case that is nonsymmetric in particle and hole
excitations. At higher fillings also a double hole excitation
is present, |[n) — |n —2) ® |(n + 1)gisp), and thermally ac-
tivated sidebands proliferate in both positive and negative
frequency as temperature is increased, |n = m) — |n &+ (m +
1), |n &£ (m — 1)) (with m < n); see Fig. 2 for the case of
n=23.

C. Modulation spectroscopy

To connect the results for the spectral function to the
particle number conserving system response, we now perform
interaction modulation spectroscopy and compute interaction
and density susceptibilities. Using nonequilibrium BDMFT,
we calculate the energy time evolution E(¢) while modulating
the interaction sinusoidally, U(¢) = Uy + AU sin(wt), with
frequency w and amplitude AU /Uy = 0.1, during four inverse
hoppings tn.x = 4/J. The energy absorption rate 9, E(fmax)
is determined from interpolated stroboscopical energy mea-
surements E(t); see the inset of Fig. 3. Sweeping w in the
range U/2 < w < 7U/2 at different initial temperatures T
produces the spectra of Fig. 3, displaying three resonances
directly connected to the spectral function features.

The Hubbard-type particle-hole fluctuation (|1,1) — |0,2))
is centered at w ~ U. The doublon to holon-triplon excitation
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(11,2) — 10,3)) located at w ~ 2U + 4J is strongly thermally
activated and features the same inverted distribution as the
Hubbard sidebands in Figs. 1 and 2. The corresponding peak
exhibits the additional shift 4/, i.e., half the bandwidth of
the upper Hubbard band at low T, which is reduced to
o = 2U at higher T. The three singlons to two holons and one
triplon fluctuation (|1,1,1) — |0,0,3))islocated at w ~ 3U . It
exhibits a weak T dependence, and it is the analog of the triplon
plus dispersing holon resonance in the spectral function. In
linear response, d;E(¢) is directly related to the interaction
susceptibility according to d; Ey(t) o< (AU)? xpipips(@). We
compute the impurity x,ii (@) using equilibrium real-time
BDMFT+NCA, and we find quantitative agreement with the
absorption spectra apart from a slight redshift; see Fig. 3.
To connect to the structure factor, we also compute the
density susceptibility yx,i,(w), which has the same structure
as xptpipp(w) apart from a 1/2 reduction of the 2U and 3U
resonances; see Fig. 3.

V. DISCUSSION

Experimentally, the U and 2U resonances have been
observed in one dimension using Bragg spectroscopy [16,17]
and in one and three dimensions using lattice modulation
spectroscopy [14,15], where also a weak 3U resonance has
been reported [14]. In contrast to one-dimensional calcu-
lations at zero temperature [43], we find that in higher
dimensions and at finite temperatures both 2U and 3U
resonances are present even at commensurate filling. We
also explain the peak shape of the 2U resonance and its
strong thermal activation, almost two orders of magnitude in
Fig. 3, confirming indications from restricted basis calcu-
lations [23]. Additional experimental work in this direction
should be worthwhile, especially in exploring and using the
2U resonance for Mott state thermometry. The 3U triplon
excitation is interesting in its own right and in connection with
Efimov physics [50-52]. Our findings are also relevant in the
context of driven experiments, e.g., for generating gauge fields
[30-32] and spin-orbit interactions [33-35], where energy
absorption at the driving frequency needs to be minimized.
It would also be interesting to study the fine-structure changes
in the spectral function induced by the higher bands of the
optical lattice through effective multibody interactions [53—55]
and renormalized hopping [56,57].

Theoretically, spectral features beyond the Hubbard bands
in the normal phase have been reported in one dimension
at zero temperature using VCA, DMRG, and hopping per-
turbation theory [26-29] without connecting to experiments,
while equilibrium temperature effects have been considered
on the slave-particle mean-field level [19,23]. Within BDMFT
in combination with CT-QMC, which is exact for the normal
phase in infinite dimensions, one cannot expect to observe
these features because of the limitation of analytical continu-
ation [58].

VI. CONCLUSIONS

In summary, we have analyzed the nature of the resonances
of the single-particle spectral function of the Bose-Hubbard
model in the symmetric Mott phase. We identified two classes
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of fundamental excitations beyond the Hubbard bands, namely
the double-particle excitation (triplon plus dispersing holon at
unity filling) and thermally activated sidebands generated by
excitations from thermally occupied number states. These res-
onances explain the features in interaction modulation spectra
and the structure factor, and they are therefore important for
the interpretation of experiments [14—17]. How these features
evolve at weaker interactions and in the symmetry-broken
phase is an interesting question for future investigations.
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APPENDIX A: HUBBARD-I APPROXIMATION

For the Bose-Hubbard model, mean-field calculations
in combination with the random-phase approximation
(MF+RPA) and slave-particle approaches already produce
nontrivial spectral functions [18,19,21,22]. In this Appendix,
we rederive these results from a DMFT perspective and show
that in the normal phase the spectral functions obtained via
these methods are equivalent to the Hubbard-I approximation
(HIA) [49], where the lattice self-energy is approximated
with the self-energy in the zero hopping limit J = 0. Without
hopping, the Bose-Hubbard model separates into a collection
of local Hamiltonians H = %Uﬁ(ﬁ — 1) — uni. The real-
frequency spectral function can then readily be obtained from
the Lehmann expansion of the local single-particle Green’s
function,

1 (nblm) (m|bln) -
GLw)==) PEx — =PEmy (AL
L(@) Z a)—i—in—i—En—Em(e ¢ ). (AD

nm

where |n) is the occupation number state with energy E, =
%U n(n — 1) — un. The Green’s function can be decomposed
into hole and particle excitation branches according to

GL() =GP () + GP(w),

where
1 _ (n|blm)(m|b'|n)
G(p) — _ BE, , A2
(@) +Z§e pryrary ey G
1 _ (n|bf|m)(m|bln)
M) =—= BEn . (A3
L@==2) ¢ oti—E1E W

nm

We immediately see that the negative frequency hole excita-
tions G(Lh) come with negative spectral weight for bosons.
For integer filling n and zero temperature, Eq. (Al)
simplifies to
n+1 n
w+in—Un+p o+in—Un+U+pu’
(A4)

Gr(w) =
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This gives the Hubbard-1 approximation of the lattice self-
energy if we use the noninteracting atomic Green’s function
Go(z) = 1/(z + ) and the Dyson equation X(z) = Gal(z) —
G~!(2). The analytic form for the self-energy ¥ is

2Un(z 4+ pu) — U?n(n — 1)

2(z) =
@ z+u+U

(A5)

Note that the self-energy has a very simple structure with a
single poleatz = —U — p (e.g.,forn =land p = U/21itis
located at z = —3U/2).

The lattice Green’s function G(w,K) in the Hubbard-I
approximation is now obtained as

1

G(w.k)= , ,
o+ intpu—ex — L(w)

(A6)

where, as ¥ is momentum-independent, G(w,K) depends only
on k through the noninteracting dispersion €. Insertion of
the analytic form [Eq. (AS5)] generates two pole branches in
G(w,k) with dispersions

e =ex+UQRn—1)—2u =+ \/eﬁ +2UQ2n + e + U2,
(A7)

corresponding to the n + 1 particle and hole excitations,
i.e., the upper and lower Hubbard bands, with band centers
at e =U2n — 1)+ 1)/2 — u. The bandwidths W of these
bands as a function of noninteracting bandwidth W of ¢ €
(=W/2,W/2), W =& (W/2) £ & (=W/2), is to second
order in W/U given by W = W(n + 1) and W = Wn for
the upper and lower Hubbard band, respectively. Hence
the widths scale with the integer filling n» and exhibit the
largest asymmetry at unity filling n» = 1. The Hubbard-I
approximation directly reproduces the results for the normal
phase obtained by MF+RPA and from slave-particle theory
[18,19,21,22], and it also generalizes trivially to nonzero
temperatures.

APPENDIX B: BDMFT+NCA EQUILIBRIUM
REAL-TIME PROPAGATION

To calculate real-frequency properties in BDMFT+NCA,
we adapt the real-time out-of-equilibrium formulation of Ref.
[36] to equilibrium, where all response functions are time
translation invariant, G(¢,t') = G(t — t). Using the notation
of Ref. [42], this yields a simplified set of equations for the
pseudoparticle real-time propagation.

While it is indeed possible to transform the resulting
equations directly to real frequency, it turns out to be
numerically easier to obtain high-quality real-frequency re-
sults by performing a real-time evolution and then Fourier
transforming the results to real frequency. Using this scheme,
one avoids inverting the Dyson equation on the real-frequency
axis, which requires a careful discretization and handling of
Lorentzian broadening factors. (In the low-temperature limit,
this inversion is increasingly difficult as the pseudoparticle
ground state approaches a § function at zero frequency in the
Bose-Hubbard model.)
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For the time evolution in equilibrium, only the Dyson equa-
tions for the retarded component G%(¢) and the right-mixing
component G '(t,7) of the pseudoparticle Green’s function
G are required, assuming that the Matsubara imaginary-time
Green’s function G*(t) is known. The Dyson equation for
G R (1) takes the Volterra form

(i3, — BGR(r) — f di ket —DHGR@H =0, (B)
0

with the initial boundary copdition GR(0) = —il, and the
pseudoparticle self-energy 3R The Dyson equation for
G '(t,7) also depends on £ R according to

(8, — BG (1,7) —/ di Rt — DG '(F,7r) = 0 '(t,1),
0
(B2)

where the additional right-hand side Q '(¢,7) is given by the
Volterra-type convolution of the right-mixing pseudoparticle
self-energy 3 (f,7) and the imaginary-time pseudoparticle
Green’s function GM(7):

0'(t,7) = /Idf 1) 6M(3). (B3)
0

The lesser Green’s function G=(¢) is directly given by the
right-mixing Green’s function at v =0, G=() = G (1,0).
Furthermore, the projection onto the physical space [48] also
gives the (pseudoparticle-specific) relation for the greater
component GR (t) = 6(t)é>(t). Both lesser and greater com-
ponents GZ(r) are readily extended to all times using the
antihermiticity relation G2(—1) = —[G2(t)]' [42]. Hence
sol\iing Egs. (B1) and (B2) determines all Keldysh components
of G.

Static local observables are obtained as direct traces over
the lesser pseudoparticle Green’s function,

(0) =iTr[OG=(0)], (B4)

at relative time ¢ =0, trivially giving the same re-
sult as the imaginary-time equilibrium calculation (0) =
—Tr[OGM(B)] =i TI[O G (0,0)] = i TI[OG=(0)).

In NCA, the lesser and greater single-particle Green’s
functions G< are obtained as the pseudoparticle bubble

G2(t) = i Tr[GS(—1)b G2 (1)b]. (B5)

Note that we only consider the normal phase here without
symmetry breaking, (b) = 0, hence the full Green’s function
is equal to the connected Green’s function. The form for the
single-particle Green’s function can be generalized to arbitrary
susceptibilities x ; p(¢) between a pair of operators A and B
yielding '

X450 = i0@)T[G=(—1)A G~ (1)B]
—Tr[G™ (—1)B G~ (1) A)), (B6)

i.e., xp pt(¢) corresponds to the retarded single-particle Green’s
function, xp, 5i(t) = GR(1). Note that the equal operator sus-
ceptibility is denoted as x; = x4 A-
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The retarded pseudoparticle self-energy is obtained from
the greater component ¥ %(1) = 6(1)X>(1), which in turn is
given by the two shell diagrams,

£7(0) = (A O G (0)b] + AZ(=n[bG” ()b']), (BT
and the right-mixing component is obtained analogously,

1) =i(A (1, 0B G, T)b] 4+ A (1,0)[bG (1,7)b1).
(B8)

Use of the Bethe lattice self-consistency relation, A(t) =
J?G(t), then yields the closed set of BDMFT+NCA equations
in combination with Egs. (B1), (B2), (B3), (BS), (B7), and
(B8).

The equilibrium real-time Dyson equations are solved
using an equidistant time-discretized second-order propaga-
tion method. While the convolutions scale quadratically with
the time step O(N?) as in the out-of-equilibrium method,
the time-translation invariance reduces the memory scaling
from quadratic to linear O(N;), enabling much longer time
calculations, which yield a very fine real-frequency resolution
after Fourier transformation.

APPENDIX C: REAL FREQUENCY

While we perform the numerical calculations in real
time, it turns out that formulating NCA in real frequency
is a fruitful venue for understanding the physics, especially
the low-temperature limit. Hence we Fourier-transform the
equilibrium real-time equations using

G(w) = / 00dte"w’G(z), G@t) = % / ooarwe*fw’G(w).

The single-particle spectral function is obtained from Eq. (B5)
as

| .
A@) = ——Im[G (@) = i[mw) — G*()]
1 R ~ a
— < > i
=GP /_ ) de (Tr[G=(e)b G (¢ + w)b']
—Tr[G=(e)b'G™ (e — w)b)), (C1)

and the greater pseudoparticle self-energy > in Eq. (B7)
takes the form

57 () = é/w de (A=()bG™ (w + €)b']

+ A (O[bIG™ (w — €)b)). (C2)

Now, using the Bethe lattice self-consistency A(w) = J 2G(w)
in combination with the relation of the greater and lesser
components to the single-particle spectral function, G™(w) =
—i27 A(w) f(w) and G=(w) = —i2r A(w)[1 + f(w)], where
f(w) = (e#® — 1)~! is the Bose distribution function, this can
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be rewritten as

27 (w) = J? / " de (f(©)AE)[PG™ (w + €)b]

+[1 + f(OIAEDB G (w — €)b]).  (C3)

These results, Egs. (C1) and (C3), correspond to Egs. (2)
and (3).

APPENDIX D: ANALYTICAL RESULTS

In the low-temperature limit of the Mott insulator with
integer filling n, the NCA relations can be simplified by
observing that the lesser pseudoparticle Green’s function G =<,
corresponding to the occupied pseudoparticle density of states,
approaches a é function in real frequencies,

G=(w) ~ —i27|n)8(w)(n|. (D1)

This follows from Ref. [59], where it is shown that the
energies of the projected pseudoparticles are strictly posi-
tive and the lesser Green’s function is given by G=(w) =
—i2 fo()Im[G™ (w)], where fg(w) = e #* is the classical
Gibbs distribution function. This suppresses all but the local
atomic ground state in the zero-temperature limit. Insertion
into the bubble diagram for the spectral function [Eq. (C1)]
then reduces this expression to

—i2nA(w) ~ (n + DG, (@) —nG,_ (~»). (D2)

So, in the low-temperature limit, the single-particle excitations
are the n — 1 and n + 1 pseudoparticles with local interaction
energies E,1; — E, = U/2. Also the occupied and unoccu-
pied single-particle states can be approximated according to

—i2nf(w)A(w) ~ nG>_ (—w), (D3)

—i2n[1 + f(w)]A(w) = (n + I)G;+l(w). (D4)

Insertion into Eq. (C3) gives the simplified greater pseudopar-
ticle self-energy,

. iJ: [ . R
E;(a)) ~ E / de [n(m + I)G,T_](w - E)G;.H(e)
+n+m G (-G (o), (D5)

which corresponds to Eq. (10). In particular, the n £ 1
pseudoparticles obey the relations

SN > l‘]2 OO 2 A> A>
2, (o) ~ o de[n°G,_(w—€)G, (€)

n—1
+n+ D — 1) G (@ — )G, ()], (D6)
and

. iJ? [ R R
2 ()~ E/ de [n(n+2)G,_ (0 — €)G 5 (€)

o0

+n+ 126G (0 -G (o). (D7)
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This can be simplified using the low-temperature approx-
imation [Eq. (D1)] once more, using G; (w) ~ —i2né(w).
However, we go one step further and also apply the numeri-
cally motivated approximation of sharp n & 2 pseudoparticle
resonances, i.e., (A;;ﬂ(a)) ~ —i2né§(w — |E, 42 — E,]), where
E,i» — E, =2U; see also the inset in Fig. 1. The local
interaction energy E,, of the occupation number state |m)
is given by E,, = Um(m — 1)/2 — pm with fixed u = 2n —
1)U/2. Both of these approximations inserted into Eq. (D7)
give

27 ()~ IPPG]_(w) + TP — DG, (0 —2U),

27 (@)~ T2+ 126G () + I+ 2)G_ (0 — 2U).
(D8)

The first term in these relations, the reappearance of the
pseudoparticle Green’s function G, in its own self-energy

A

27, 1s the dominant self-energy effect. It acts similar to the
Bethe lattice self-consistency relation, producing semicircular
spectral functions for the n £ 1 pseudoparticles centered
around w = E, 1| — E, = U/2. Their respective bandwidths
are directly obtained from the prefactors as W, = 4nJ
and W, =4+ 1)J, in agreement with the Hubbard-I
approximation. The second term in the self-energy expressions
is shifted up in energy by 2U, hence it is located at w =
U/2+42U =5U/2, and it gives a small correction to the
spectral functions.

Note that the relations for the n — 1 self-energy only hold
if n > 2. In the special case of unity filling n = 1 there is no
n — 2 Fock state available, and the holon self-energy simplifies
to

35 (@) ~ J2G (), (D9)
while the doublon self-energy takes the form

35 (w) ~ 47765 (w) + J*3G; (0 — 2U).  (D10)
These are the simplified pseudoparticle self-energy relations
in Egs. (11) and (12). As the holon self-energy EAJO> only
depends on the holon propagator Go> , it follows immediately
that Gg is semicircular and centered at w = U/2. By Eq.
(D2), —Gg (—w) directly gives the lower Hubbard band in
the spectral function A(w). The doublon self-energy XA)2> has
the same type of semicircular generating term 4J ZCA}Z> but
also a high-energy triplon plus holon correction emerging in
terms of the holon propagator J 23@3 (w —2U). Hence in
the positive frequency spectral function, the upper Hubbard
band is generated by the doublon-doublon self-consistency
and the higher triplon excitation by the holon correction term;
see Fig. 1.
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