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In this work we develop an approach for a molecular hydrogen ion (H2
+) in the Born-Oppenheimer

approximation while exposed to intense short-pulse radiation. Our starting point is the R-matrix-incorporating-
time formulation for atomic hydrogen [L. A. A. Nikolopoulos et al., Phys. Rev. A 78, 063420 (2008)], which
has proven to be successful at treating multielectron atomic systems efficiently and with a high accuracy [L. R.
Moore et al., J. Mod. Opt. 58, 1132 (2011)]. The present study on H2

+ is performed with the similar objective of
developing an ab initio method for solving the time-dependent Schrödinger equation for multielectron diatomic
molecules exposed to an external time-dependent potential field. The theoretical formulation is developed in
detail for the molecular hydrogen ion where all the multielectron and internuclei complications are absent.
As in the atomic case, the configuration space of the electron’s coordinates is separated artificially over two
regions: the inner (I) and outer (II) regions. In region I the time-dependent wave function is expanded on the
eigenstate basis corresponding to the molecule’s Hamiltonian augmented by Bloch operators, while in region
II a grid representation is used. We demonstrate the independence of our results from the introduced artificial
boundary surface by calculating observables that are directly accessed experimentally and also by showing that
gauge-dependent quantities are also invariant with the region I box size. We also compare our results with other
theoretical works and emphasize cases where basis-set approaches are currently very computationally expensive
or intractable in terms of computational resources.
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I. INTRODUCTION

Currently, a series of rapid developments is impacting
strong-field physics because of the discovery and refinement of
a diverse range of radiation sources. The construction of free-
electron laser sources capable of delivering unprecedented
intense radiation in the soft and hard x-ray regimes has
initiated new challenges, not only within atomic, molecular,
and optical physics but also in a number of other areas at the
forefront of current interest more broadly, such as biology,
chemistry, and nanoscience. Recently, another advancement,
on the opposite end of the wavelength regime, has been
the increased availability of intense mid-IR-range radiation
[1]. In parallel with the aforementioned recent advances in
strong-field physics the production of ultrashort pulses of
subfemtosecond duration has allowed the direct experimental
observation of electronic and structural dynamics in matter
[2].

These technological advances have gained significant at-
tention from the theoretical community, as the simulation
of experimental conditions requires significant computational
resources which were not previously feasible. For example, for
fields into the IR region, as pulse lengths increase and photon
energies decrease, the number of angular momenta and the box
sizes required for calculating photoelectron spectra increase.
Thus, this regime is computationally very demanding and the
problem becomes intractable, even for hydrogen (see [3] and
[4]) and H2

+ (see [5]), which are the simplest atomic and
molecular systems, respectively.

It is a computationally difficult problem to treat the
exact time-dependent response of a multielectron system

*cathal.obroin4@mail.dcu.ie

subject to a strong electromagnetic (EM) field by ab initio
methods. A number of theoretical groups, worldwide, are
aiming for approaches beyond the computationally econom-
ical single-active-electron approximation [6–18]; the single-
active-electron approach is a mature theoretical method and
has been well explored [19,20].

An alternative ab initio approach capable of treating multi-
electron systems is based on R-matrix theory applied to atomic
and molecular systems for providing structural information
[21–23]. The key concept in an R-matrix formulation is the
division-of-space concept, which consists in separating the
electrons’ configuration space into two regions, namely, the
inner and the outer regions. In the inner region, the atomic-
molecular structure of the multielectron states is calculated
with all the interactions taken into account, while in the
outer region only a single-electron wave function must be
calculated [21]. This division-of-space approach appears to
be well suited to tackle the computational problem, which
becomes especially crucial for the case of a multielectron
target. As a matter of fact, the full power of the R-matrix
formulation is gained in the case of a multielectron target.

Traditionally, R-matrix approaches have not considered
time dynamics in the study of collision and photoionization
processes [24,25]. Within the last decade, in response to
technological and experimental advances, variants of time-
dependent implementations utilizing the R-matrix computa-
tional framework have appeared which have been applied
to specific atomic systems, namely, the time-dependent R-
matrix method [26,27], the time-dependent B-splines R-matrix
method [12,28], and the present R-matrix-incorporating-time
(RMT) method [14,29,30]. An earlier application of the
R-matrix theory to multiphoton processes appeared in the
form of a Floquet expansion of the driven time-dependent
wave function [31]. This approach, although it is capable of
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treating the field nonperturbatively, cannot be considered to
fully follow the time-dependent Schrödinger equation (TDSE)
solution methodology since it is only suited to laser pulses
containing many cycles.

The formulation of the time-dependent R-matrix method
was developed and first applied to a one-dimensional model by
Burke and Burke [26] and later generalized and successfully
applied to neon and argon [32,33]. The time-dependent R-
matrix method generates the R-matrix eigenstates in the inner
region using an extension of the R-matrix Belfast codes [34]
to include a B-splines expansion of the continuum spectrum.
Then the system’s time-dependent wave function is propagated
using a second-order Cayley propagator, while in the outer
region the time-dependent propagation is based on an R-matrix
propagator, employed for solving a system of coupled second-
order differential equations [22].

In the time-dependent B-splines R-matrix method, the
R-matrix eigenstates are generated using an alternative im-
plementation of R-matrix theory on a nonorthogonal basis
approach (B splines) [35] and are propagated with an Arnoldi-
Lanczos algorithm [36]. However, the current implementation
of the time-dependent B-splines R-matrix method performs the
wave-function propagation only in an (enlarged) inner region,
ignoring the outer region completely, and as such does not
fully take advantage of the division-of-space formulation of the
R-matrix method. Nevertheless, the obtained results are also
indicative of the powerful machinery of the R-matrix methods
at describing multiphoton processes in complex systems.

The RMT method for atomic systems was mainly developed
for the possibility of combining a high-order time propagator
for the multielectron wave function expanded on the inner-
region R-matrix eigenstates with a finite-difference method for
the grid representation of the single-electron wave function in
the outer region. The method was first formulated and applied
to the ionization of hydrogen [29] and later extended to include
the single ionization of multielectron systems [14,30]. This
unique combination of an eigenstate-basis method with the
finite-differences technique of propagating the time-dependent
wave function was recently shown by Wragg et al. [37] to
demonstrate the capability of describing double-electron outer-
region wave functions.

The RMT method not only allows the possibility of reduc-
ing the multielectron dimensionality of the initial formulation
to, effectively, a one (or two)-electron calculation in the
(radially) larger region II, but also allows the use of different
algorithmic approaches in the two regions (Fig. 1). In region
I the power of the R-matrix method to calculate very accurate
energy eigenfunctions and transition matrix elements is fully
exploited, while in the outer region the extensibility of an
equidistant, grid-based, representation of the wave function to
very large distances dramatically enhances the computational
performance.

In contrast with the above activities focused on atomic
systems, analogous time-dependent formulations based on
the division-of-space concept for molecular systems are not
common. These methods include the t-surff method developed
by the group of Scrinzi [38,39] and the analytical R-matrix
method developed and applied in multielectron molecular
systems [40–42]. Despite the fact that a number of groups
worldwide have developed unique expertise in developing
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FIG. 1. Sketch of the division-of-space method in the general
diatomic situation (see [29] for a similar hydrogen diagram). The
two nuclei are labeled A and B and the internuclear distance is
RM . By rn,0 � rn � RI we denote collectively the positions of all
electrons relative to a coordinate system with its origin placed at the
molecule’s center of mass, G, and the z axis along the internuclear
axis. With r ≡ (r,θ,φ), RI � r � RII we represent the position of the
ejected electron following the molecule’s excitation-ionization by the
external radiation. The molecule’s configuration space is divided into
two homocentric spherical boxes, (inner region, I, and outer region,
II, with radii RI and RII, respectively), with their center place at G.
The molecule’s time-dependent wave function in the inner region, I, is
expanded on an eigenstate basis (BS) �I (rn,t). In the outer region, II,
the system’s wave function is described only by the ejected electron’s
wave function �(r,t) using a finite-difference (FD) approach. In the
present case of a one-electron system, rn ≡ r.

sophisticated ab initio methods and applied them to solve the
TDSE for molecules, it appears that these groups have not
investigated the R-matrix method in this context.

In this work we introduce an approach based on an exten-
sion of the RMT method to H2

+ without the complications
arising from multielectron considerations. Since the hydrogen
molecule ion is also of interest for the RMT approach as
a stepping stone towards a full treatment of the hydrogen
molecule and on to other polyatomic systems, we develop the
method in detail and demonstrate its applicability to diatomic
one-electron systems with the EM field aligned along its
symmetry axis in the fixed-nuclei approximation.

In addition to the above scope, the present work also
aims to ensure efficiency in the ab initio description of
molecules in intense and short EM fields. To this end, we
have developed the formulation for (and implemented) the
velocity-gauge interaction operators in addition to the length-
gauge alternative. As is generally known, for these studies,
the velocity gauge is preferred against the length gauge for
radiation in the long-wavelength regime because of its better
convergence properties [43]. It is worth emphasizing that this
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publication demonstrates the first usage of this gauge within
the time-dependent R-matrix approaches discussed above and
in the existing RMT codes. Moreover, the RMT computations
are done through General Purpose Computation on Graphical
Processing Unit techniques similar to our earlier works, albeit
with some extra complexity [44,45].

The paper is organized as follows. In Sec. II we give an
overview of the basic theory. This is the key section of this
paper, where we set out in detail the theoretical formulation
for the case of one-electron homonuclear diatomic molecules.
The formulation presented in this section can be generalized
to include the case of one-electron nonhomonuclear diatomic
systems with little extra effort. We also give the expressions
for the calculation of experimental observables adapted to our
methodology. In Sec. III to ensure the validity of the method,
experimentally accessible quantities are compared to similar
theoretical calculations available from the literature. Finally,
we have relegated the main technical details to the appendixes.
In the presentation of the formulas, atomic units are used (m =
� = |e| = 1) throughout.

II. THEORETICAL FORMULATION

For the current case of short but intense fields, the Born-
Oppenheimer approximation [46] is assumed so that the nuclei
are effectively static over the short duration of the pulse. We
also assume that the radiation field is linearly polarized along
the symmetry axis of the diatomic molecule. Without loss
of generality, we take the molecular axis as the z axis of
an Oxyz Cartesian coordinate system. In this fixed-nuclei
approximation the electronic Hamiltonian of the molecular
hydrogen ion is given by

H0 = −∇2

2
− Z

|r − RM/2| − Z

|r + RM/2| ,

where Z is the atomic number and ±RM/2 the position of the
nuclei in the chosen coordinate system. Since the internuclear
distance, RM = |RM |, is treated as a constant term in the
Hamiltonian, the 1/RM term is omitted since it does not impact
the electron dynamics.

The rotational properties of this one-electron diatomic
system are more complex than in the atomic single-electron
case, thus making the problem considerably more demanding,
both conceptually and computationally. Rotational symmetry
is broken in H2

+ since rotation of the system along the x

and y axes is not equivalent to rotation along the z axis.
This means that the orbital angular momentum operator L2

fails to commute with the Hamiltonian, as L2 is the generator
of rotation, while the Lz operator will still commute (z-axis
projection). Thus the Hamiltonian and the orbital angular
momentum operators do not have shared eigenfunctions. As
a result, the time-dependent wave function of the system is
not expanded in terms of a linear combination of mutual
eigenfunctions of H and Lz and the parity operator � with
associated eigenvalues ε, μ, and λ, respectively. The parity can
be gerade (even; λ = 0) or ungerade (odd; λ = 1), reflecting
whether or not the state is symmetric or antisymmetric through
a mirror reflection on the x,y surface along the z axis. In
the particular case of study, the interaction of H2

+ with a
linearly polarized field along the molecular axis, it is routinely

shown that the excited states should have the same μ symmetry
number as the initial state (μ = 0). This allows us to neglect
the μ quantum number, since the initial state in the present
case is the H2

+ ground state 1σg .
The propagation of the electron wave function for a system

of H2
+ in the presence of an external laser field is calculated

through the solution of the corresponding TDSE:

i
∂

∂t
�(r,t) = [H0 + D(r,t)]�(r,t).

The expression for the basis expansion in terms of the energy
eigenfunctions of H0 is

�(r,t) =
∑
nλ

Cnλ(t)�nλ(r), (1)

where �nλ are solutions of the field-free Hamiltonian (see
Appendix A for details) and the index n is associated with the
system’s eigenenergies (εn ↔ n) and denotes both bound and
(discretized) continuum eigenstates. Equivalently, the wave
function can also be represented as a partial-wave expansion,

�(r,t) =
∑

l

1

r
fl(r,t)Yl0(
), (2)

where the eigenvalues of the angular momentum operator
L2 are characterized by the index l. At this stage, further
description of the calculational method requires the separate
treatment of the TDSE for the inner and the outer regions.

A. The TDSE in the inner region

For the basis approach in region I the time-independent
Schrödinger equation (TISE) associated with H0 would be
non-Hermitian if there was a naive division of the full space. To
cope with the non-Hermiticity of the operators appearing in the
TISE the same approach as in the case of atomic hydrogen [29]
is followed. First, the field-free Hamiltonian and the velocity
gauge dipole-interaction operator are augmented to become
their Hermitian counterparts within the spherical region [0,RI],

Ĥ0(r) = H0(r) + L̂h(r), (3)

D̂(r,t) = D(r,t) + L̂d (r,t), (4)

where L̂h and L̂d are the corresponding Bloch operators (see
Appendix B). Then the augmented TISE is diagonalized.

So for region I, the eigenfunction expansion in Eq. (1) is
modified to

�I (r,t) =
∑
nλ

C̃nλ(t)�̃nλ(r), (5)

where �̃nλ(r) are now energy eigenfunctions of the Bloch-
augmented Hamiltonian and C̃nλ(t) is the associated time-
dependent coefficient.

Equating the expressions for the time-dependent wave
function Eqs. (1) and (2), whilst decomposing the energy
eigenfunctions in terms of spherical harmonics, we have

∑
nλ

C̃nλ(t)
∑
l∈lλ

1

r
Pnl(r)Yl0(θ ) =

∑
λ,l∈lλ

1

r
fl(r,t)Yl0(θ ), (6)
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and after some straightforward manipulations we arrive at the
following time-dependent partial-wave relation in terms of the
radial eigenstates Pnlλ for the inner region:

flλ (r,t) =
∑

n

C̃nλ(t)Pnlλ (r), r � RI. (7)

Clearly, this expansion only holds in the interval (0 < r � RI)
since the Bloch eigenfunctions are not defined outside this
region.

Finally, the initial TDSE is maintained by subtracting both
of the Bloch operators from the TDSE. So the TDSE expressed
in terms of these Hermitian operators is

i
d

dt
�I(r,t) = [Ĥ0(r) + D̂(r,t) + S(RI,t)]�I(r,t), (8)

where S(RI,t) = −L̂h(RI) − L̂d (RI,t). More specifically, in
the current implementation, with the use of Eqs. (B3) and
(B6) the boundary term in the velocity gauge is

S(RI,t) = −1

2
δ(r − RI)

[
d

dr
+ 1

r
− i

A(t)

c
cos θ

]
.

This equation is fully equivalent to the initial TDSE without
any approximation involved. It is also worth emphasizing that
the extra terms which are added and subtracted away are only
nonzero on the boundary surface r = RI. The d

dr
and 1

r
terms

on the right-hand side are due to the operator L̂h, while the last
term is due to the interaction operator L̂d . The corresponding
expression for the boundary term in the case of the length-
gauge formulation is the same except that this latter term is
not present.

In region I the eigenfunctions and eigenvalues of the
Hermitian Hamiltonian Ĥ0 should now be calculated. Then
the functions �̃nλ(r) from Eq. (5) can be used to represent the
inner-region portion of the TDSE as a system of first-order
ordinary differential equations. This will allow the calculation
of the time-dependent coefficients, C̃nλ(t), at some time t from
a known initial state.

At this point we relegate the detailed development of the rel-
evant formulation [namely, the calculational procedure for the
field-free problem Ĥ0�nλ(r) = εnλ�nλ(r)] to Appendixes A
and B. Assuming that the field-free problem is solved, the
wave function is expanded on these specific eigenfunctions of
the field-free Bloch-augmented Hamiltonian, to arrive at

i
d

dt
C̃nλ(t) =

∑
n′λ′

[Ĥnλ,n′λ′ + D̂nλ,n′λ′(t)]C̃n′λ′(t)

+
∫

d3r�nλ(r)S(RI,t)�II(r,t), (9)

where Ĥnλ,n′λ′ , D̂nλ,n′λ′(t) are the matrix elements of the
operators Ĥ0(r), D̂(r,t), respectively. The time-dependent
wave function �II(r,t) is labeled II since we use the grid
expansion, (2). This expansion is also the one that is used in
region II. Therefore, in the last term we do not use terms
solely of the inner-region basis but rather �II(RI,t), since
the δ(r − RI) function in the boundary operator S(t) contains
derivatives. Calculation of the derivative of �II(RI ,t) requires
information from both region I and region II. The expansion of
the inner-region radial functions in terms of the partial waves

through Eq. (7) at specific (inner-region) points allows the
finite-difference spatial operators to be calculated by using the
required values.

The reduction of the matrix element between a Bloch-
energy eigenstate and an angular momentum eigenstate im-
plied by the coupling term of Eq. (9) (final term on the
right-hand side) is effectively the same as in the hydrogenic
case [29], except there is a summation over the partial-wave
terms within the same symmetry. Summarizing all the above
reductions we obtain the TDSE in the inner region and in the
velocity gauge as

i
d

dt
C̃nλ(t) = εnλC̃nλ(t) +

∑
n′λ′ �=λ

C̃n′λ′(t)Dnλ,n′λ′(t)

− 1

2

∑
l∈lλ

Pnl(RI)Fl(RI,t), (10a)

Fl(RI ,t) = d

dr
fl(RI,t) − i

A(t)

c

∑
l′=l±1

Kll′fl′(RI,t). (10b)

In the length gauge the inner-region TDSE is obtained if we
set A(t) = 0 in the above expression for the Fl(RI,t) term.
The quantity Kll′ , as given in Appendix A, originates from
the angular momentum properties of the dipole interaction
term. Formally, the above inner-region TDSE differs from the
corresponding one of the atomic case in that the appropriate
quantum number to characterize stationary states changes from
l to λ, while the boundary surface term includes a summation
over all the coupled (due to the molecular potential) orbital
angular momenta l, belonging to the same symmetry λ.

B. The TDSE in the outer region

The molecular hydrogen ion grid form is derived in a
standard way. The final equation in terms of a radial grid
is

i
∂

∂t
fl(r,t) =

[
− 1

2

∂2

∂r2
+ l(l + 1)

2r2

]
fl(r,t)

+
∑
l′∈lλ

Vl0,l′0(r)fl′(r,t) +
∑
l′ �∈lλ

Dl0,l′0(r,t)fl′(r,t),

Vl0,l′0(r) = −2Zδ(l+l′) even

√
(2l + 1)(2l′ + 1)

×
l+l′∑

L=|l−l′|,|l−l′|+2,...

rL
<

rL+1
>

(
l L l′
0 0 0

)2

, (11)

where r> = max(r,RM/2), r< = min(r,RM/2), and
Dl0,l′0(r,t) = 〈l0|D(r,t)|l′0〉. The difference for the RMT
case is that the grid is not calculated over the full space but
is limited to region II. The derivative for the point r = RI is
calculated by using Eq. (7) to calculate the partial-wave grid
points from within region I as required. More details are given
in Appendix C.

At large distances from the molecular center, relative to the
separation of the nuclei (r 
 RM ), the dominant part of the
molecular potential is the spherically symmetric part, making it
effectively hydrogenic. So, the potential term can be switched
to that of a hydrogenic system to a very good approximation.
In a regular basis calculation this would not help to make
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the calculation more manageable in terms of size during the
propagation because the symmetry of the system close to the
nuclear center dictates the properties of the eigenfunctions.

C. Bound-state populations and ionization yield

In the RMT approach information from regions I and II
is required to calculate observables and other quantities. In
region I, the information must be extracted from the energy
eigenfunctions �̃nλ(r) and the associated coefficients C̃nλ(t).
For region II, the partial waves flm(r,t) and the spherical
harmonics are available.

The most straightforward quantities to calculate for the
basis, finite-difference, and RMT methods, for comparison,
are the ground-state population, the excited-state population,
and the total ionization yield. The ground-state population
pg(t) is calculated by the overlap of the initial state �(r,0)
onto the state at time t , �(r,t). If the ground state of the
system is initially populated, the evolution of the ground-state
population is

pg(t) =
∣∣∣∣
∫

d3r��(r,0)�(r,t)

∣∣∣∣
2

. (12)

Within the RMT method the above integral is broken up into
two separate integrals, one from 0 to RI and another from RI

to the outer boundary RII,

pg(t) =
∣∣∣∣
∫ RI

0
drr2

∫
d
��(r,0)�(r,t)

+
∫ RII

RI

drr2
∫

d
��(r,0)�(r,t)

∣∣∣∣
2

, (13)

which is the statement that the ground-state population has
contributions from both regions pg(t) = |pg;I(t) + pg;II(t)|2,
where pg;I(t) and pg;II(t) are the contributions from the
respective regions. For the region I portion, the calculation
is simply the sum

pg;I(t) =
∑
nλ

C̃�
nλ(0)C̃nλ(t). (14)

In a basis calculation, the coefficient corresponding to 1σg ,
C10(0), equals 1 and the ground-state population calculation is
provided by the square of the corresponding time-dependent
coefficient |C10(t)|2, after the end of the pulse. Similarly,
the absolute value of the coefficient |Cnλ(t)|2, postpulse,
gives the population of the |nλ〉 eigenstate. In the RMT
method the absolute value of |C̃nλ(t)|2 does not have the
same relationship with the surviving populations of H2

+.
This is because, in region I, the physical bound states are
composed by a linear combination of all of the (normalized)
RMT eigenfunctions within the symmetry. For this reason the
ground-state population requires the full calculation of the
sum in Eq. (14) rather than only the first term as in the basis
method. For the finite-difference region, region II, an explicit
spatial overlap must be calculated (approximately through the
composite Simpson’s rule) through direct integration:

pg;II(t) =
∑

l

∫ RII

RI

drf �
l0(r,0)fl0(r,t). (15)

As a result, the total ground-state population is

pg(t) =
∣∣∣∣∣
∑
nλ

C̃�
nλ(0)C̃nλ(t) +

∑
l

∫ RII

RI

drf �
l0(r,0)fl0(r,t)

∣∣∣∣∣
2

.

While the bound and ionized populations can also be
trivially calculated by an appropriate summation in the basis
case, for the RMT case this information is lost (due to the
mixing of R-matrix states). Since the partial waves can be
reconstructed, the approach for the finite-difference case can
also be used. For the finite-difference case, the population
of the bound states can be approximated by direct spatial
integration of the probability values at all grid points inside a
carefully chosen radius, say ri ,

pb(t) =
∑

l

∫ ri

0
dr|fl0(r,t)|2, (16)

where care is taken in choosing ri such that the population of
the bound state is converged with increasing radius.

Considering that the system only consists of bound and
ionized states, knowing the bound-state population means
that the ionized population is also known [1 − pb(t)]. In
the RMT case, the exact equivalent of this bound-population
calculation can be done by simply getting the population of
region I through the coefficients, C̃nλ(t) (if RI is selected as
the ionization boundary):

pb(t) =
∑
nλ

|C̃nλ(t)|2. (17)

This also ensures that no numerical integration is required.
Otherwise, the same numerical integral as in the ground-state
case can be used. It should be emphasized that the methods
of calculating the ionization yield in the finite-difference and
RMT methods both require postpulse propagation. This means
that the ionized population cannot be easily distinguished from
the bound-state population during the run of the pulse. The
excited-state population, for example, is approximated by the
quantity within a subset of the total box which is not counted
towards ionization and which is not the ground state [pb(t) −
pg(t)]. Note that it is not until the postpropagation, when the
ionized population moves away from the central potential and
the yield value asymptotically approaches a value, that the
excited-state population becomes meaningful.

To ensure that a reasonable part of the contributions from
continuum energy-eigenstates are counted in the ionization
yield postcalculation, the wave equation is propagated forward
in time. This allows the continuum contributions to move away
from the central boundary so that the yield can be calculated
by counting the probabilities after a certain cutoff radius (RI is
ideal for the RMT case). The radius should be chosen so that a
minimal amount of bound-state probability is included in the
ionization yield calculation.

III. RESULTS AND DISCUSSION

Prior to discussing particular applications it is worth
discussing computational issues at a more general level. The
eigenstate-basis method for the solution of the TDSE requires
the precomputation of the associated field-free Hamiltonian
eigenproblem (say, of size nmax) for partial waves up to
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lmax − 1. The latter numbers are dictated mainly by the
strength and the duration of the EM field. Intense fields
induce multiphoton absorptions that result in populating states
with higher energy and orbital angular momentum quantum
numbers.

For a reasonable energy spacing including higher energies
ranges and to ensure that the box is sufficiently large to
capture the dynamics, a larger box size with a spatial
discretization which is sufficiently dense enough to represent
the highest energies is required. Both effects increase the size
of the eigenproblem. For example, if the knot point spacing
in the basis grid is taken to be approximately equidistant over
the full box size, then the computational effort for the number
of eigenvalues and eigenvectors, nmax, to be found from the
diagonalization will scale linearly with both the box radius
and lmax. Further, the corresponding transition matrix element
block scales with the square of both the box radius and lmax.
Approximately commensurate with the increase in the number
of states per partial wave, the number of partial waves included
must also be increased to account for the greater occupancy of
partial waves which have a higher angular momentum number.
This results in a rough scaling law for the total number of the
states to be included of ∼(nmaxlmax/2), while the number of
transition matrix elements required for computation will be ∼
n2

maxl
2
max/4. In practice, both of these numbers are determined

by testing the convergence of the specific value or set of values
under study, such as the expectation value, etc., against a
gradual increase in the available parameters. Consequently,
the total impact of increasing the size of these parameters is to
make the field-free precomputation as well as the propagation
of a basis calculation prohibitively expensive. It leads to the
highly undesirable condition of a Hamiltonian which should be
approximated in a large spatial region with a very fine grid and
a large number of coupled angular momentum terms. It is for
the above reasons that we have relied on the present extension
RMT method combined with a parallel implementation for
diatomic systems. The RMT approach only requires a basis
representation in a restricted region of space, which thus
restricts the computational burden significantly. Whatever
computational hurdle remains is then tackled with a parallel
treatment. We now turn to the calculation of population and
ionization yields of H2

+ for specific cases.

A. Calculation of the initial state of H2
+ by propagating the

diffusion equation

The calculation of the initial state proceeds by propagation
of the resulting (diffusion) equations in the inner and outer
regions after setting the external EM field equal to 0 and by
removal of the complex number from the TDSE. Formally,
the associated diffusion equation is obtained by making the
substitution t → ıt in the original field-free TDSE. In our
calculation we set lmax = 24. We compare our RMT calcula-
tions for the ground state of H2

+ using a purely basis method
(BS) [44] and a purely finite-difference method after having
extended the finite-difference code in Ref. [45] to include the
H2

+ system. As previously reported by Martin [48], 20 angular
momentum terms provides a very decent estimate of the H2

+
ground-state energy (−1.102 50 a.u., compared to an exact
value of 1.102 63 a.u). This means that the 24 partial waves we
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FIG. 2. (Color online) A comparison of two H2
+ R-Matrix in-

corporating Time (RMT) diffusion calculations, with two inner-outer
region divisions, 5.9 and 14.9 a.u. There are no major discrepancies
between the different box sizes. The wave function calculated along
z is shown.

have used should provide a reasonable measure. The calculated
energy is EFD

g = −1.0942 a.u in the purely finite-difference
method, an error of about 0.765%. In the present RMT
calculation, which consists of a mixed basis-finite difference
propagation of the diffusion equation, the energy found is
ERMT

g = −1.102 532 a.u. This is very close to that achieved by
Martı́n [48] (1.102 50 a.u. for 20 lmax). We have also calculated
the ground-state eigenenergy with a purely eigenstate basis
and found EBS

g = −1.102 532. The outer-region box radius
was RII = 713.1 a.u. for the RMT and the finite-difference
method. For the BS method RII = 99.9 a.u. For the RMT and
the BS method the B splines were of order k = 10. In the
RMT method the boundary radius was RI = 12.9 a.u. The
chosen grid spacing in the outer region was dr = 0.2 a.u. In
the inner region, the chosen knot sequence t = (t1,t2, . . . ,tnb

)
of the B-splines grid was t = P (0.0,0.125,0.25, 0.375, 0.5,
0.625, 0.750, 0.875, 0.95, 1.00, 1.05, 1.125, 1.25, 1.5, 1.7,
1.9, . . . (increments of 0.2) . . . 12.9) a.u.

In Fig. 2 we show the wave functions evaluated along the
z axis with two inner- and outer-region boundary sizes, at
RI = 5.9 a.u. and RI = 12.9 a.u. We see that the H2

+ results are
consistent regardless of box size. Note that a finer grid spacing
along the boundary is required in the present RMT approach
than would strictly be required in a standard basis calculation
of the same size, since now the actual radial representation is
important, and not just the dipole and energy values.

B. Populations and ionization yields H2
+ under EM fields

Being confident in the calculation of our ground state
through the RMT diffusion propagation method, we now look
at the time evolution of the wave function in an external EM
field. First, we consider the case of making sure the dynamics
follows what we would expect in terms of multiphoton
absorption. We take a pulse that is so short that most of
the ionization takes place at the peak of the pulse. If the
initial wave function is treated as though it were initially
localized in a small region close to r = 0, which is indeed
the case for the ground state, we then propagate the system

063428-6



R-MATRIX-INCORPORATING-TIME METHOD FOR H . . . PHYSICAL REVIEW A 92, 063428 (2015)

0 200 400 600 800 1000 1200
Distance (a.u.)

10-27

10-24

10-21

10-18

10-15

10-12

10-9

10-6

10-3

100

D
iff

er
en

tia
l p

ro
ba

bi
lit

y 
(a

.u
.)

FIG. 3. (Color online) Projection of the wave function along z

after a 24-cycle laser pulse and postpropagation three times the length
of the pulse is shown. The inner-region portion of the wave function is
shown as the dotted black line; the outer region, as the solid black line.
The expected positions of the different wave-packet peaks are also
shown (from left to right): one-photon (red vertical line), two-photon
(green vertical line), three-photon (blue vertical line), and four-photon
(violet vertical line) absorption electron wave packets.

such that the ionized portions of the wave function travel
distances several times longer than the length of the molecule.
We use a sine-squared pulse of carrier frequency ω = 40 eV
so that any photon absorptions bring the H2

+ straight into
the continuum at a velocity corresponding to 10 eV for the
case of one-photon absorption. The different wave packets
corresponding to the different numbers of absorbed photons
(above-threshold ionization peaks) should spatially separate
out, as they correspond to different acquired velocities. The
formula for the distance away from the molecule is then quite
simple: rn ∼ (t − ti)

√
2En a.u., with n = 1,2 . . . .

In Fig. 3 we plot a snapshot of the radial wave function.
The wave-packet peaks are clearly separated and align with
the expected distance considering the photon absorption count
and the total ionized propagation time, which is 3.5τp if the
total duration of the calculation is t = 4τp (since the travel
time of the wave packet is after the time that the ionization
takes place, which we take to be at the pulse’s peak time at
ti ∼ 0.5τp).

In Fig. 4, we show the results of Dundas et al. [47] versus
the current RMT calculation. In the figures we show the results
by assuming two boundaries for the ionization thresholds
for calculation of the bound-state population; RI = 10 a.u
and RI = 20 a.u. In calculating the bound-state population
we assume the norm of the time-dependent wave function at
distances r < RI. The final ionization yield for Dundas et al.
is 0.851 (Dundas) and 0.848 (10 and 20 a.u, respectively), a
disagreement of 0.353%. Within the present RMT approach
the bound states are well represented, as the knot density can
be increased close to the atomic nuclei without having a major
impact on the overall number of splines.

Next, in Table I we compare our ionization yields obtained
with the pure basis (BS) and RMT methods with the results
obtained by Guan et al. [13]. The RMT yields are calculated
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FIG. 4. (Color online) The bound-state population compared
with digitized data from Dundas et al. [47]. The pulse is trapezoidal,
with a central photon energy of 5.4523 eV, with a 4-cycle cosine
ramp, a 12-cycle main portion, and a 4-cycle cosine ramp down. The
intensity is 4 × 1014 W cm−2.

by treating the inner-region population as the bound-state
population after one additional laser pulse length of field-free
propagation. The bases are heavily modified in the inner
region and have a continuum spacing down to 0.4 a.u up to
a radial distance of 138 a.u., while lmax = 15. The velocity
gauge was used in all calculations. The pulse used has a
sine-squared envelope with a photon energy of ω = 40 eV
and its duration was 10 cycles in total. Our results are in
agreement with those of Guan et al. within 0.5% except for
the highest intensity, which disagrees by 2%. This represents
a good agreement, particularly considering the very different
methods used; Guan et al. use a finite-element DVR technique
and prolate spheroidal coordinates. Comparing the basis and
RMT methods themselves, the results are effectively identical.
As a last comment on these results, note that the calculated
ionization yields have a linear dependence on the pulse’s peak
intensity Y ∼ I0, consistent with the fact that the ionization is
possible by a single-photon absorption since ω = 40 eV.

C. Length- and velocity-gauge calculations

Our next results are concerned with investigating the
accuracy of the different gauges, namely, the length and the

TABLE I. A comparison of the yields between results of Guan
et al. (FE-DVR; prolate spheroidal coordinates) and the basis method
(BS) and the RMT approach, both in spherical coordinates. The sine-
squared pulse used has a photon energy of ω = 40 eV and is 10 cycles
in duration. The peak intensity, I0, is varied from 1012 to 1015 W cm−2.
The percentage difference between the RMT method and the FE-DVR
method is also listed, in parentheses.

I0 FE-DVR BS RMT

1012 2.330 × 10−6 2.325 × 10−6 2.325 × 10−6 (−0.22%)
1013 2.330 × 10−5 2.326 × 10−5 2.325 × 10−5 (−0.22%)
1014 2.327 × 10−4 2.328 × 10−4 2.328 × 10−4 (+0.43%)
1015 2.304 × 10−3 2.352 × 10−3 2.351 × 10−3 (−2.04%)
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FIG. 5. (Color online) Comparison of the ground-state popula-
tion as a function of time for H2

+ in the length and velocity gauges
for the pulse parameters given in [47]. Also shown are two inner-outer
region boundary locations in the length gauge case; 12.9 and 14.9 a.u.

velocity gauges. For these calculations we compare results
obtained by the pure basis (BS) and RMT methods.

In Fig. 5 we plot the ground-state population during the
propagation. The population of field-free states is gauge
dependent in the presence of an external EM field but gauge
invariant when the vector potential returns to 0. Consistent
with this fact we observe an agreement for the population
corresponding to the different gauges, at times where A(t) is
equal to 0. For minima of the field the RMT length-gauge result
agrees with the velocity-gauge calculation to a high degree.

In Fig. 6 we plot the calculated ionization yields for
the various methods and gauges. We see that there is clear
agreement for the final yield [as there should be, since
A(t) = 0] and the yields during the pulse duration where A(t)
is equal to 0 except for the basis length-gauge calculations.
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FIG. 6. (Color online) Yield for the basis and RMT methods in
both the length (L) and the velocity (V) gauges. For the RMT method,
“basis” or “partial wave” denotes the method used to calculate the
yield.

IV. CONCLUSION

Since the development of the RMT method in 2008 [29],
work has focused on various aspects of atomic systems
[14,30,37]. In this paper, we have discussed the extension
of the RMT approach to a molecular system. The work has
focused on H2

+ since it is the simplest molecular system.
This extension reduces the dimensionality problems in H2

+,
since one can now have a full-basis inner region and have
a finite-difference outer region which decouples the angular
momenta terms as the hydrogenic approximation becomes
valid [V (r) ≈ VH (r)]. The RMT method has been expanded
to include the case where eigenstates contain a mixture l so
that there is a transformation from an ungerade or gerade
representation in the inner region to a representation consisting
of a spherical-harmonic expansion. This work on H2

+ has also
been performed with the objective of approaching a treatment
of H2 which treats both electrons with a full correlation in the
inner region but has one-electron outer-region trajectories. It is
hoped that future work will expand on this existing formulation
and code base and extend the RMT method to this new case.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions
of Prof. K. T. Taylor, Prof. P. Decleva, and Dr. Daniel Dundas
during the preparation of this work. We are grateful to Prof. K.
T. Taylor and Prof. P. Decleva for their constant interest and
stimulating discussions. In addition, Prof. P. Decleva provided
technical data used for comparisons during development
and Dr. D. Dundas kindly ran calculations for comparison.
During the preparation of this work support was provided
by the FP7 Grant ERG-HPCAMO/256601 project and the
COST Actions “XUV/X-Ray Light and Fast Ions for Ultrafast
Chemistry” (CM1204) and “Advanced X-Ray Spatial and
Temporal Metrology” (MP1203). C.Ó.B. acknowledges the
Irish Centre for High-End Computing (ICHEC) for the use of
computational resources under Project No. dcphy005c.

APPENDIX A: H2
+ HAMILTONIAN AND DIPOLE

OPERATOR BASIS REPRESENTATION
IN A FINITE REGION

Our starting point is the evaluation of the eigenstates of
the electronic Hamiltonian for the molecular hydrogen ion,
H�nλμ(r) = ε�ελμ(r), where ε is the eigenenergy value, λ the
parity symmetry (gerade or ungerade), and μ the projection of
the angular momentum along the internuclear axis. Assuming
a coordinate system with the z axis along the internuclear axis
and with the origin placed in the middle of the nuclei’s distance,
for the case of μ = 0 states we can express the eigenstates on
a spherical harmonic basis Ylml

(r̂) as

�ελ(r) =
∑
l∈lλ

1

r
Pεl(r)Yl0(r̂). (A1)

∑
l∈lλ

indicates the summation over members of the set lλ,
where the sets are defined as

lλ =
{{0,2,4, . . . ,lmax − 2} ∀ λ = 0,

{1,3,5, . . . ,lmax − 1} ∀ λ = 1.
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The gerade-ungerade split of the angular momenta is im-
posed directly from analytic considerations of the molecular
potential. Projection on the spherical harmonic basis provides
the corresponding Schrödinger equation for the radial eigen-
functions Pnl(r),[
hl(r) +

∑
l′∈lλ

Vl0,l′0(r)

]
Pεl′(r)

r
= εnλ

Pεl(r)

r
,

hl(r) = −1

2

∂2

∂r2
+ l(l + 1)

2r2
,

Vl0,l′0(r) = −2Z
√

2l + 1
√

2l′ + 1

×
∑
L

rL
<

rL+1
>

(
l L l′

0 0 0

)2

,

with L = |l − l′|,|l − l′| + 2, . . . ,l + l′, and l> = max(r,RM/

2), l< = min(r,RM/2), and the bracket-like symbol being the
3j symbol. For the H2

+ case, the nuclear charge Z is set to 1.
In the general case, the eigenstates of the system are the

bound and continuum. The continuum wave functions are not
square integrable because they extend infinitely and do not
asymptotically approach 0 with the distance from the nucleus.
Rather they are asymptotically periodic. The first step in
numerically calculating the eigenstates is to place them inside
a spherical box of, say, radius, RI [8,49,50]. This will discretize
the full spectrum of the Hamiltonian (bound and continuum)
and will make the continuum states square integrable. In this
case, the eigenenergies can be characterized by a discrete
index, as ε → εn ↔ n, while their exact discretization will
depend upon the λ symmetry.

Here, we choose to expand the radial functions Pnl(r) in
terms of a nonorthogonal, local, polynomial set, namely, the
B-splines basis, Bik(r),i = 1, . . . ,Ns , as [48,49]

Pnl(r) =
Ns∑
i

c
(nl)
i Bi(r). (A2)

1. H2
+ Hamiltonian

Following a standard procedure one can transform the TISE
into a generalized eigensystem of the form∑

l∈lλ,l′∈lλ

(Hl + Vl′,l)Cl = εnλ

∑
l∈lλ

SCl , (A3)

where S is the B-spline overlap matrix and the elements of the
matrix are Sij = ∫

r
drBiBj , Hl is the B-spline overlap with

the Hamiltonian,

H
(ij )
l = 1

2

∫ RI

0
dr

[
B ′

iB
′
j + l(l + 1)

BiBj

r2

]
, (A4)

and the elements of the molecular potential matrix Vl′,l given
by V

(ij )
l′l = ∫ RI

0 drBiVl0,l′0(r)Bj .
Since the matrices required can be explicitly calculated, the

only unknowns are the specific eigenenergies (εnλ) and the
associated B-spline coefficients c

(nl)
i , gathered in vector Cl .

Thus, provided the matrices are symmetric (or the Hamiltonian
representation Hermitian) the system can be diagonalized to
produce real-valued eigenenergies. This is certainly the case

if we impose the extra (boundary) condition on the possible
solutions Pnl(RI) = 0 at both ends [within the B-splines basis
this is easily done by excluding the first (B1) and the last (Bns

)
B-splines from the set in Eq. (A2)]. In the present work this is
not the proper way to ensure Hermiticity (or symmetricity of
the associated matrices) of the operators. The reason for this is
that we require solutions which are nonzero on the boundary
surface, namely, solutions where Pnl(RI) �= 0, so as to ensure
a nonzero probability current across the boundary surface. The
alternative way of “Hermitizing” a non-Hermitian operator is
by the addition of the so-called Bloch operator, being another
central concept in the R-matrix theory. We relegate a more
detailed discussion of this Bloch-operator method to the next
section, to include any physical operator restricted in a finite
region.

2. Dipole operators

The dipole operator for the length gauge is given by
D(r,t) = r · E(t) = E(t)r cos θ , while for the velocity gauge it
is D̂(r,t) = p · A(t)/c. After use of Eq. (A1) the corresponding
matrix element equations are written as

D̂nλ,n′λ′(t) = E(t)〈nλ|r cos θ |n′,λ′〉
= E(t)

∑
l∈lλ

∑
l′∈lλ′

〈nl|r cos θ |n′l′〉

for the length-gauge dipole matrix elements, where use is made
of the spherical harmonic expansion. For the velocity-gauge
dipole matrix elements, the equivalent expression is

D̂nλ,n′λ′(t) = 〈nλ|p · A(t)

c
|n′,λ′〉

= A(t)

c

∑
l∈lλ

∑
l′∈lλ′

〈nl| − i∇ · ẑ|n′l′〉.

By the further use of the B-spline expansion of the radial
solutions [Eq. (A2)] and some angular momentum algebra one
has the main expression in terms of known quantities,

Dnλ,n′λ′(t) =
∑

l∈lλ,l′=l±1

l>√
4l2

> − 1
Gnl;n′l′(t), (A5)

with l> = max(l,l′) and where G is the respective matrix,
L or V ,

Lnl;nl′ (t) = E(t)
∫ RI

0
drPnl(r)rPn′l′(r),

Vnl;nl′ (t) = A(t)

c

∫ RI

0
drPnl(r)

[
d

dr
+ (l − l′)

l>

r

]
Pn′l′(r),

where the specific choice depends on the gauge: length and
velocity, respectively. Thus, this can be calculated explicitly
following diagonalization of Eq. (A3).

The dipole terms for the outer region from Eq. (11),
〈l0|D(r,t)|l′0〉, are the standard length- and velocity-gauge
terms for partial waves (see [29]).
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APPENDIX B: RESTORING THE HERMITICITY OF THE
FIELD-FREE HAMILTONIAN OPERATOR IN A

RESTRICTED SPATIAL REGION USING THE BLOCH
OPERATOR

Now we describe how the Bloch operator [51] is used to
make the Hamiltonian Hermitian in the inner region 0 � r �
RI, where the space of wave functions has arbitrary boundary
conditions of the form α�(RI) + β�(RI) = 0. The Laplacian
operator will be Hermitian if [52]

〈�′|H |�〉 − 〈�′|H |�〉� = 0, (B1)

because the definition of a Hermitian operator is such that its
matrix elements are equal to their own conjugate transpose.

This condition holds for all Hamiltonian terms that do not
contain derivatives in the inner region. Applying Eq. (B1), the
kinetic operator T = −∇2/2 term of the field-free part of the
Hamiltonian and the dipole interaction term in the velocity
gauge D(r,t) = A(t)

c
· (−i∇) will be non-Hermitian operators.

Both operators are now considered one at a time.

1. Kinetic operator T

Substitution of Eq. (A1) in formula (B1) followed by
standard differential calculus manipulations results in

〈nλ|T |n′λ′〉 − 〈n′λ′|T |nλ〉

= − 1

2

∑
l∈lλ,l′∈lλ′

[
Pnl(RI)

d

dr
Pn′l′(RI) − Pn′l′(RI)

d

dr
Pnl(RI)

]
,

(B2)

where in order to ensure continuity at the center of symmetry
the value Pnl(0) = 0 is used [48], while Pnl(r) can take
arbitrary values and arbitrary derivatives at the boundary. At
this stage we introduce the Bloch operator, which is generally
defined as [21]

L̂h = 1

2
δ(r − RI)

(
d

dr
− α − 1

r

)
, (B3)

where α is a constant which can be chosen without constraints.
As shown below, the following considerations are not affected
by the particular choice of α. In our calculations we have set
α = 0. For the Bloch operator L̂h the following relation holds:

〈nλ|L̂h|n′λ′〉 − 〈n′λ′|L̂h|nλ〉

= 1

2

∑
l∈lλ,l′∈lλ′

[
Pnl(RI)

d

dr
Pn′l′(RI) − Pn′l′ (RI)

d

dr
Pnl(RI)

]
.

(B4)

Now by modifying the kinetic operator as T̂ = T + L̂h and
considering Eqs. (B2) and (B4), we find that

〈nλ|T̂ |n′λ′〉 − 〈n′λ′|T̂ |nλ〉 = 0. (B5)

Therefore, the matrix representation of the kinetic operator in
the inner region, augmented by the above Bloch operator, is
Hermitian, and as such its diagonalization will provide real
eigenvalues.

2. Dipole interaction term in the velocity gauge

Following similar considerations as in the case of the kinetic
operator we arrive at the result that a Hermitian velocity-gauge
interaction operator can be obtained as D̂ = D + Ld , where
Ld is

Ld = −i
1

2

A(t)

c
δ(r − RI) cos θ. (B6)

APPENDIX C: RECURSIVE COMPUTATION OF THE
HIGHER DERIVATIVES IN THE INNER-REGION TDSE

Propagation of the inner-region TDSE Eq. (10a) through
an explicit pth-order propagator (e.g., the Taylor propagator)
requires the repeated multiplication of the wave function by the
Hamiltonian; Ĥ p�(t). This operation, in turn, requires one to
calculate the pth-order time derivative of the boundary surface
term. Below we give in more detail the relevant formulas for
this calculation.

We start by noting that the second derivative of the
coefficients is given by the equation

d2

dt2
Cnλ(t) = −i

∑
n′λ′

Hnλ,n′λ′(t)
d

dt
Cn′λ′(t)

+ i
∑
l∈lλ

Pnl(RI)
d

dt
Fl(r,t).

The pth derivative is

dp

dtp
Cnλ(t) = −i

∑
n′λ′

Hnλ,n′λ′(t)
dp−1

dtp−1
Cn′λ′(t)

+ i
∑
l∈lλ

Pnl(RI)
dp−1

dtp−1
Fl(r,t).

Analogous to the hydrogen case, from Eq. (7) the higher
derivatives for the Taylor expansion on a grid rj ,j = 1,2, . . .

are given by

f
(p)
l (rj ,t) = −i

dt

p

∑
l′

Hl,l′ (rj ,t)f
(p−1)
l′ (rj ,t) (C1)

and

C
(p)
nλ (t) = −idt

p

∑
n′λ′

Hnλ,n′λ′(t)C(p−1)
n′λ′ (t)

+ idt

p

∑
l∈lλ

Pnl(RI)F
(p−1)
l (r,t),

where the partial-wave terms for the inner boundary are
recalculated as

f
(p)
lλ

(rj ,t) =
∑

n

C
(p)
nλ (t)Pnlλ(rj ) ∀ rj � RI. (C2)

The Taylor sums are then

fl(rj ,t + τ ) =
P∑
p

f
(p)
l (rj ,t) ∀j � b, (C3)

Cnλ(t + τ ) =
P∑
p

C
(p)
nλ (t). (C4)
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