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Dipole phase and photoelectron group delay in inner-shell photoionization

A. S. Kheifets*

Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia

S. Saha and P. C. Deshmukh
Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

D. A. Keating and S. T. Manson
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

(Received 2 October 2015; published 28 December 2015)

We conduct a systematic study of the dipole phase and the photoelectron group delay (Wigner time delay)
in inner shell photoionization of noble gas atoms from Ne to Xe. Our study encompasses the tender x-ray
spectral range and extends to 1 keV photoelectron energy. We employ both the relativistic and the nonrelativistic
versions of the random-phase approximation with exchange. We identify the long-range Coulomb and short-range
Hartree-Fock contributions to the dipole phase which governs the Wigner time delay variation from the threshold
to the whole considered range of photoelectron energies.
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I. INTRODUCTION

Perfect or complete scattering experiments enable a deep
insight into the collision mechanisms and provide a stringent
test of theory [1]. This is particularly true for photoionization
where a complete experiment can be realized by simultaneous
measurements of photoelectron angular distributions and spin-
polarization parameters [2]. In such a complete experiment,
the photoionization amplitudes and their relative phases can
be obtained experimentally and compared with ab initio
calculations [3].

Recent advances in ultrashort laser generation techniques
have given an alternative experimental access to the dipole
photoionization phase. The availability of the phase-locked
XUV pump and IR probe laser pulses has allowed for an
accurate determination of the phase of the dipole photoion-
ization amplitude and the photoelectron group delay. In the
attosecond streaking technique, an isolated XUV pump pulse
is superimposed with a phase-locked IR probe to convert
the relative XUV-IR phase into the kinetic energy of the
photoelectron [4]. This conversion is used to obtain the timing
of the photoelectron wave packet release [5]. The latter can
be interpreted in terms of the photoelectron group delay (also
known as the Wigner time delay or the Wigner-Eisenbud-
Smith time delay [6–8]). An alternative RABBITT (reconstruct
the attosecond beatings caused by interference of two-photon
transitions) technique employs an attosecond pulse train as
a pump superimposed with a spectrally narrow IR probe to
reconstruct the attosecond beatings caused by interference
of two-photon transitions [9]. The phase of these beatings
encodes the dipole photoionization phase which again can
be converted to the Wigner time delay [10,11]. Yet another
alternative method to reconstruct the photoionization phase
is the high-harmonic generation (HHG) technique. Because
photorecombination is the inverse process to photoionization,
their phases are identical. The photorecombination phase is
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encoded in the spectral phase of the harmonic comb and can
be retrieved using the RABBITT technique [12] or harmonic
spectroscopy based on two-color driving pulses [13].

So far, these phase retrieval techniques have been exploited
in the XUV spectral range not significantly exceeding the
photon energy of 100 eV. However, recent experiments with
mid-IR driving pulses have allowed the extension of the
harmonic emission to much higher photon energies [14,15].
This extension allows the study of photoemission processes
in inner atomic shells and the retrieval of the phase and
timing information. At the same time, accurate modeling of
the HHG process in this spectral range requires knowledge of
the photorecombination phase [16].

A parallel development, which potentially allows the study
of the photoionization phase over an extended spectral range,
is the streaking of a free-electron laser (FEL) radiation with a
THz probe [17,18]. The same idea of the THz streak camera
allows for a high-precision measurement of the arrival time
of a FEL pulse [19–21]. The photoionization time delay
is also needed for understanding the energy spectra of the
photoelectrons created by the FEL pulses [22]. These spectra
do not exactly mimic the spectrum of the photon pulse, rather
they have contributions from the photon pulse spectrum and
the emission spectrum corresponding to the ionization time.
Depending on the ionization time and the temporal structure of
the FEL pulse, the spectrum of the electrons can be dominated
by one of these components.

To address these needs, we conduct a systematic study of
the dipole photoionization phase and the Wigner time delay in
inner shells of the noble gas atoms from Ne to Xe. This study
encompasses the tender x-ray spectral range and extends to
1 keV photoelectron energy. This includes the K and L shells
of Ne; the K , L, and M shells of Ar; and the L and M shells
of Kr and Xe (see Table I for respective binding energies). The
present study partially overlaps with, and is complementary
to, our previous work [24] where time delay in valence shell
photoionization of noble gases was investigated.

Our methodology (Sec. II) is similar to that of the previous
works [24,25] and employs both nonrelativistic and relativistic
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TABLE I. Electron binding energies, in electron volts, as collated in the X-Ray Data Booklet [23].

K LI LII LIII MI MII MIII MIV MV
1s 2s 2p1/2 2p3/2 3s 3p1/2 3p3/2 3d3/2 3d5/2

Ne 870.2 48.5 21.7 21.6
Ar 3206 326.3 250.6 248.4 29.3 15.9 15.7
Kr 14 326 1921 1731 1678 292.8 222.2 214.4 95.0 93.8
Xe 34 561 5453 5107 4786 1149 1002 940.6 689.0 676.4

versions of the random phase approximation with exchange
(RPAE and RRPA, respectively). As a test of accuracy, we
compare our calculated subshell photoionization cross sections
with the experimental values collated by Berkowitz [26] for
Ne, Ar, and Kr and calculated by Band et al. [27] for Xe
(Sec. III A). Satisfied with these tests, we proceed with the
photoionization phase calculation (Sec. III B). We compare the
phase results from correlated RPAE calculations with those
from the single-electron Hartree-Fock (HF) approximation.
Thus we can identify clearly the effect of many-electron
correlation. Then we convert the phase into the Wigner time
delay calculated in the direction of the polarization of the
XUV radiation (Sec. III C). We do not evaluate the corrections
induced by the coupling of the long-range Coulomb ionic
potential and the streaking field (CLC corrections). These
corrections are of universal nature and can be found in the
literature [28,29]. Finally, we elucidate the role of relativistic
effects by making a comparison of the time delay results from
the RPAE and RRPA calculations (Sec. III D)

II. THEORETICAL METHOD AND
COMPUTATION DETAILS

For the nonrelativistic RPAE, we follow closely the pho-
toionization formalism as outlined in our previous work [24];
the relativistic RRPA development is essentially the same,
but based on the Dirac equation rather than the Schrödinger
equation [25]. Here we reproduce only a few essential
details to benefit the reader. We evaluate the single-photon
dipole matrix element 〈ψ (−)

k |ẑ|φi〉 from a bound state φi(r) =
Ylimi

(r̂)Rnili (r) to an incoming scattering state with the given
photoelectron momentum k:

ψ
(−)
k (r) = (2π )3/2

k1/2

∑
lm

ile−iδl (E)Y ∗
lm(k̂)Ylm(r̂)Rkl(r). (1)

We conduct the spherical integration to arrive at the following
expression:

〈ψ (−)
k |ẑ|φi〉 = (2π )3/2

k1/2

∑
l=li±1
m=mi

eiδl (E)i−lYlm(k̂)

×
(

l 1 li
m 0 mi

)
〈kl‖ D̂ ‖nili〉. (2)

Here 〈kl‖ D̂ ‖nili〉 is the reduced dipole matrix element,
stripped of all the angular momentum projections. The partial
photoionization cross section for the transition from the
occupied state nili to the photoelectron continuum state kl

is calculated as

σni li→kl(ω) = 4
3π2αa2

0ω|〈kl ‖ D̂ ‖nili〉|2, (3)

with ω being the photon energy, α the fine structure constant,
and a0 the Bohr radius. The atomic units e = m = � = 1 are
used in this expression and throughout the paper.

In the independent electron HF approximation, the reduced
dipole matrix element is evaluated as a radial integral:

〈kl‖ D̂ ‖nili〉 = [l][li]

(
l 1 li
0 0 0

) ∫
r2drRkl(r)r Rni li (r),

(4)
where the notaion [l] = √

2l + 1 is used. The basis of the
occupied atomic states ‖nili〉 is defined by the self-consistent
HF method and calculated using the computer code [30]. The
continuum electron orbitals 〈kl‖ are defined within the frozen-
core HF approximation and evaluated using the computer code
[31].

In the RPAE, the reduced dipole matrix element is found
by summing an infinite sequence of Coulomb interactions
between the photoelectron and the hole in the ionized shell.
This leads to a system of integral equations which can be
represented graphically by the diagrams of Fig. 1. Figure 1(a)
represents the sum of all Coulomb interactions, Fig. 1(b)
depicts the HF term given by Eq. (4), and Figs. 1(c)–1(f)
represent RPAE corrections. Figures 1(c) and 1(d) are known
as time direct (foreward), and Figs. 1(e) and 1(f) are known
as time reverse (backward). Figures 1(d) and 1(f) account for

FIG. 1. Diagramatic representation of the photoionization ampli-
tude 〈kl|D̂|nili〉 in the RPAE. Here, the time axis is directed from
left to right, the lines with arrows to the left (right) correspond to
holes (electrons) in a filled atomic shell, a dotted line represents an
incoming photon, a dashed line represents the Coulomb interaction
between charged particles, and a shaded circle marks the effective
operator D̂ for the photon-atom interaction, which accounts for
electron correlation in the atom.
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the exchange interaction in the atom, and thus are called the
exchange diagrams. As is seen from Fig. 1, a virtual excitation
in the shell j to the ionized electron state k′ may affect the
final ionization channel from the shell i. This way the RPAE
accounts for the effect of the intershell i ↔ j correlation,
also known as interchannel coupling. It is important to note
that, within the RPAE framework, the reduced dipole matrix
element is complex and, thereby, adds to the phase of the dipole
amplitude.

The photoelectron group delay, which is the energy deriva-
tive of the phase of the complex photoionization amplitude, is
evaluated as

τ = d

dE
arg f (E) ≡ Im[f ′(E)/f (E)]. (5)

Here f (E) is used as a shortcut for the amplitude 〈ψ (−)
k |ẑ|φi〉

given by Eq. (2) and evaluated for E = k2/2 and k̂ ‖ z.
In the RRPA, we use the following expression for the

photoionization amplitude [32]:

T
(λ)
JM ∝

∑
κ̄m̄

[χ †
ν�κ̄m̄(k̂)](−1)j̄−m̄

(
j̄ J j

−m̄ M m

)

× i1−l̄ eiδκ̄
〈
ā
∥∥Q

(λ)
J

∥∥a
〉
. (6)

Here λ = J = 1 and M = 0 for the dipole electric transition
with the light which is linearly polarized in the z direction.
The reduced matrix element is expressed as

〈
ā
∥∥Q

(λ)
J

∥∥a
〉 = (−1)j+1/2[j̄ ][j ]

(
j j̄ J

−1/2 1/2 0

)

×π (l̄,l,J − λ + 1) R
(λ)
J (ā,a). (7)

Here π is parity and the radial integral R
(λ)
J (ā,a) is calculated

between the initial state a = (nκ) and the final (energy
scale normalized) state ā = (E,κ̄). The variables n, κ , and
m are principal and angular momentum quantum numbers;
κ = ∓(j + 1/2) for j = l ± 1/2, where j and l are the total
and orbital angular momenta. The spherical spinor is given
in terms of spherical harmonics and two-component Pauli
spinors:

�κm(n̂) =
∑

λ=±1/2

C
jm

l (m−λ),1/2 λYl (m−λ)(n̂)χλ. (8)

The amplitude Eq. (6) is evaluated in the polarization z
direction and fed into Eq. (5) to calculate the time delay.

 0.01

 0.1

 1

 10

 10  100  1000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Ne
inner 1s

valence 2s
2p

 0.001

 0.01

 0.1

 1

 10

 100

 10  100  1000  10000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Ar
inner 1s

2s
2p

valence 3s
3p

 0.001

 0.01

 0.1

 1

 10

 100

 10  100  1000  10000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Kr
inner 1s

2p
3s
3p
3d

 0.001

 0.01

 0.1

 1

 10

 100

 10  100  1000  10000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Kr
valence 4s

4p
 0.001

 0.01

 0.1

 1

 10

 100

 100  1000  10000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Xe
inner 2s

2p
3s
3p
3d
4d

 0.001

 0.01

 0.1

 1

 10

 100

 100  1000  10000

C
ro

ss
-s

ec
tio

n 
(M

b)

Photon energy (eV)

Xe

FIG. 2. (Color online) Shell photoionization cross sections of Ne, Ar, Kr, and Xe from nonrelativistic RPAE calculations are shown with
lines. Similarly colored dots represent the literature values collated by Berkowitz [26] for Ne, Ar, and Kr and calculated by Band et al. [27] for
Xe.
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III. RESULTS AND DISCUSSION

A. Shell photoionization cross sections

The partial (subshell) photoionization cross sections from
the RPAE calculations are displayed in Fig. 2 for Ne and Ar
(top) and Kr and Xe (bottom). The present calculated results
are compared with experimental values collated by Berkowitz
[26] for Ne, Ar, and Kr and calculated by Band et al. [27]
for Xe. Agreement with the literature data is good for inner
shells but some deviation is visible for the valence shells.
This deviation may be due to interchannel correlations that are
not accounted for by the RPAE, e.g., interchannel coupling
with ionization-plus-excitation channels. The inner shells are
tightly bound by the nucleus and their electron states are
well described by the independent electron HF approximation.
Note further, that our RRPA results (not shown) are essentially
identical to the RPAE results on the scale shown in Fig. 2.

B. Phase analysis

The phases of the dipole photoionization amplitudes
arg f (E), as calculated in the RPAE, are displayed in Fig. 3
for Ne and Ar (top) and Kr and Xe (bottom). To demonstrate
the effect of correlation, primarily in the form of interchannel
coupling, the RPAE phases are compared with the HF results.
For better visual comparison, the long-range Coulomb phase
is subtracted from both the RPAE and the HF results. At the
HF level, the reduced matrix element, Eq. (4), is real and thus

the phase of the complex dipole matrix element, Eq. (2), is
defined by the scattering phases δli±1(E). According to Fano’s
propensity rule [33], the dipole transition with the increased
momentum l = li + 1 is usually dominant. In such a situation,
arg f (E) 
 δli+1(E). It is this phase, from which the Coulomb
long-range phase is subtracted, that is labeled as HF in the
legend of Fig. 3.

The scattering potential acting upon the photoelectron is
the sum of the Coulomb field of the nucleus and the HF
potential of the frozen electron core of the residual ion.
So the photoelectron scattering phase δl(E) contains both
the long-range Coulomb and the short-range Hartree-Fock
components. The Coulomb phase is given by the expression
σl(E) = arg �(1 + l + iη), where the Sommerfeld parameter
η = −Z/

√
2E is determined by the final-state ionic charge;

for photoionization of neutral atoms, Z ≡ 1. The Coulomb
phase at small photoelectron energy diverges [34]:

σl(E) 
 η[ln
√

(l + 1)2 + η2 − 1] → η ln |η|. (9)

The phase shift due to the short-range potential, i.e., the
difference of the total phase and the Coulomb phase, is
related to the asymptotic quantum defect μ∞ according to the
Levinson-Seaton theorem δL(E → 0) − σL(E → 0) = μ∞π

[35], where E is the photoelectron energy.
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FIG. 3. (Color online) Phases of the photoionization amplitude in various shells of Ne, Ar, Kr, and Xe from nonrelativistic RPAE calculations
are shown with dots. Similarly colored solid lines represent the HF scattering phase in the corresponding dominant photoionization channel.
The corresponding Coulomb phases are subtracted from both the RPAE and the HF results. So only the short-range contributions to the phases
are plotted.
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TABLE II. Quantum defect parameters from the discrete binding energy fit Eni li nl = −Z2
eff/(n − μ)2, with Zeff = 1 compared with the

logarithmic phase interpolation to the 1 eV photoelectron kinetic energy for various Rydberg series. The hole state nl is underlined in the table
captions.

Neon Argon Krypton Xenon

nilinl 1snp 2snp 2pnd 1snp 2snp 3snp 2pnd 2snp 3snp 2pnd 3pnd 3dnf 2snp 3snp 2pnd 3pnd 3dnf

Nl 1 1 0 2 2 2 0 3 3 1 1 0 4 4 2 2 0
μ 1.07 0.85 0.011 1.97 1.86 1.67 0.53 2.84 2.76 1.58 1.51 0.004 3.77 3.72 2.90 2.90 0.006
� 0.99 0.82 0.01 1.84 1.77 1.62 0.66 2.72 2.67 1.60 1.57 0.02 3.61 3.61 2.62 2.62 0.0

The asymptotic quantum defects μ∞ are obtained for the
various nilinl Rydberg series using the following expression:

Enilinl = − Z2

(n − μ∞)2
, Z = 1, n → ∞.

Here Enilinl is the energy of the state (nili)−1nl (in Rydbergs)
with respect to the (nili)−1 threshold of the ion; the results are
shown in Table II. When analyzing these results, one should
bear in mind that, for a neutral target, the scattering phase
at zero energy is related to the number of the bound target
states of angular momentum l, Nl , by the Levinson’s theorem,
δl(k → 0) = Nlπ . Looking at Table II, we see indeed that for
lighter atoms generally μ ∼ Nl . For instance, in the ionic core
of Ne+, there is one occupied 2p orbital and no nd orbitals.
Hence the short-range phase tends to one unit of π for 1s and
2s shell photoionization and to zero for 2p photoionization.
As the number of occupied shells grows from Ne to Xe, the
same increase in the μ parameters can be seen in the table.
In addition, in Kr and Xe the number of occupied d shells

is mismatched by one unit from the quantum defect. This
reinforces the idea that Levinson’s theorem applies only very
approximately to positive ions.

In Table II, we also show the HF phase difference with the
Coulomb phase in the dominant photoionization channel near
the threshold:

� = 1

π
[δ�i+1(ε) − σ�i+1(ε)]ε→0.

Thus defined phase difference � may be compared with the
quantum defect parameter μ. This comparison made in Table II
shows a close correspondence between the two parameters
μ and � for the various np series and for some of the nd

series; these are the channels where the short-range HF phase
is monotone decreasing from the threshold [36]. In the other
nd channels, along with the nf channel, there are significant
shape resonances in the threshold region so the extrapolation
is less accurate.

Comparison of the short-range RPAE and HF phases in
Fig. 3 shows that for the inner shells, especially in heavier
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FIG. 4. (Color online) Photoelectron group delays (Wigner time delays) in various shells of Ne, Ar, Kr, and Xe from nonrelativistic RPAE
calculations are shown with dots. Similarly colored solid lines represent the analogous HF results summed over all the photoionization channels.
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atoms, these two calculations produce very similar results.
This means that the role of the correlation is limited for
the inner-shell photoionization processes. Indeed, the inner-
shell electrons are tightly bound by the nuclear Coulomb
potential and their interaction with the neighboring subshells is
generally relatively weak. In Ne, the innermost 1s phase does
not show any visible difference between the RPAE and HF
phases. The deviation is quite visible however, for the valence
2s and 2p shells. In Ar, all the HF and RPAE phases are rather
close except for the 3s shell, which demonstrates a very strong
deviation due to profound correlation with the outer 3p shell.
This result is acknowledged in our previous work [24]. In Kr,
the inner 2s, 2p, and 3s phases are well described by the
HF model while the intermediate 3p and 3d electrons show
noticeable deviation of the HF from the RPAE results. In Xe,
all the phases shown are HF-like because we only studied the
innermost shells.

Note that, in all cases shown, the phases exhibit a monotone
increase from threshold at the lower energies, owing to the
dominance of the Coulomb phase near threshold. At the higher
energies, as mentioned above, the Coulomb phase rapidly
approaches zero, so the behavior of the total phase is dominated
by the phase generated by the short-range potential. For the
ns → εp channels this phase is monotone decreasing, and this
leads to the situation seen in Fig. 3 where the total phases in
the ns → εp channels increase rapidly from threshold, reach
a maximum, and then decrease monotonically towards zero,
with increasing energy. The np → εd channels, on the other
hand, do not all behave in the same manner. For Ne and Ar,
the short-range d-wave phase never reaches an appreciable
value, so the turnover of the total phase occurs at a rather large
value of the energy, larger than is displayed in Fig. 3. For
Kr and Xe, on the other hand, there are shape resonances in
the np → εd channels [36,37] so the short-range phases do
reach appreciable values; as a result, the behavior of the total
phases is just like that of the ns → εp channels. And for the
3d → εf channels, the turnovers again are well beyond the
plotted values.

C. Time delay

Photoelectron group delays (Wigner time delays) in various
shells of Ne and Ar (top) and Kr and Xe (bottom) are shown
in Fig. 4. The typical behavior of the group delay can be
understood from the phase analysis of the previous section.
The Coulomb singularity, Eq. (9), drives the phase to large
negative values as the photoelectron energy decreases near the
threshold. Hence the Wigner time delay becomes very large
and positive τW ∝ E−3/2 ln(1/E) as can be seen by taking
the derivative of Eq. (9) with respect to E. We note that the
same energy dependence is carried by the CLC corrections
τCLC ∝ E−3/2 ln(aE + b) [28,38,39] but these corrections are
negative. This results in the large and negative net atomic
time delay τa = τW + τCLC when the time delay measurement
is taken very close to the threshold. However, the Wigner
component τW cannot be entirely neglected when analyzing the
near-threshold time delay measurement results as in Ref. [18].

At modest photoelectron energies, the phase bends over
as it becomes influenced by the short-range HF component.
Somewhere near this point, the time delay changes its sign and

becomes negative. The exception is the np shells in Ne and
Ar and the nd shells in Kr and Xe where the photoelectrons
in the dominant li + 1 photoionization channel do not have
bound states with matching orbital character in the ionized
core. At large photoelectron energies, the time delay gradually
goes to zero because the long-range Coulomb contribution to
the phase becomes vanishingly small and the short-range HF
contribution approaches zero extremely slowly, so slowly that
its derivative also becomes vanishingly small.

The deviation of the HF and RPAE phases is exemplified
in the time delay plots. It is most clearly visible in the valence
shells of Ne and Ar, along with the 3d subshell of Kr. In all
cases, however, the HF and RPAE time delays are qualitatively
similar. To summarize, the low (kinetic)-energy time delay is
dominated by the Coulomb phase. The high-energy region
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FIG. 5. (Color online) Time delay in photoionization of the 1s,
2s, and 2p shells of Ne. Nonrelativistic RPAE results (red solid
circles) are compared with RRPA results (blue solid lines) for 1s →
εp, 2s → εp, and 2p → εd ionization channels. The HF calculation
for the 2p → εd ionization channel is shown by the (green) open
circles.
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seems to be dominated by the short-range HF phase; correla-
tion in the form of interchannel coupling becomes relatively
unimportant at high energy (except possibly near inner-shell
thresholds). Thus, correlation plays no role in the qualitative
behavior of the time delay vs energy, but it can affect the
quantitative behavior.

D. Comparison of RPAE and RRPA calculations

To elucidate the role of relativistic effects in time delay
calculations, we compare the RPAE and RRPA results. These
comparisons for Ne, Kr, and Xe are shown in Figs. 5–7,
respectively.

Non surprisingly, for such a light atom as Ne, there is
no visible deviation between the RPAE and RRPA results
in the 1s and 2s ionizations. However, a deviation can be
detected in the 2p shell ionization. This is largely because the
RPAE calculation includes the sum of the two photoionization
channels 2p → εd and 2p → εs, whereas the RRPA result
includes only the stronger 2p → εd channel. To match this
calculation, we make a comparison with the analogous HF
result and agreement is much improved.

A similar comparison for Kr and Xe is made in Figs. 6
and 7, respectively. Even though, these atoms are significantly
heavier than Ne, relativistic effects do not show up in the
time delay of the 2s shell and both the RPAE and the RRPA
results practically coincide. The difference between the two
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FIG. 6. (Color online) Time delay in photoionization of the 2s

and 2p shells of Kr. Nonrelativistic RPAE results (red filled circles)
are compared with RRPA results (blue solid lines) for 2s → εp and
2p → εd ionization channels. The HF calculation for the 2p → εd

ionization channel is shown by the (green) open circles.
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FIG. 7. (Color online) Time delay in photoionization of the 2s

and 2p shells of Xe. Line styles are the same as those in Fig. 6.

calculations for the 2p shell can again be attributed to the
partial summation of the photoionization channels. When only
the 2p → εd channel is included in the HF calculation, it
becomes very close to the analogous RRPA result.

IV. CONCLUSION

We conduct a systematic study of the dipole phase and
the photoelectron group delay (Wigner time delay) in inner-
shell photoionization of noble gas atoms from Ne to Xe.
Our study encompasses the tender x-ray spectral range and
extends to 1 keV photoelectron energy. We employ both the
relativistic and the nonrelativistic versions of the random phase
approximation with exchange. We identify the long-range
Coulomb and the short-range Hartree-Fock contributions to the
dipole phase which governs the Wigner time delay variation
from the threshold to the whole range of photoelectron
energies. Intershell correlations (interchannel coupling) are
found to be significant in the 2s and 2p shells of Ne, the 3s

subshell of Ar, and the 3d subshell of Kr. Relativistic effects
do not significantly change the time delay results.

An interesting intershell correlation effect was reported
recently [40] where an outer-shell photoionization cross
section was influenced strongly by an inner shell near its
threshold. We observed a strong modification of the time delay
in such a situation and this was caused by exactly the same kind
of interchannel coupling responsible for the structure reported
in Ref. [40]. A more detailed report on this effect will be
presented elsewhere.
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We hope that our numerical results will serve as a useful
benchmark in time-resolved studies of atomic ionization.
Because the correlations do not play a determinative role in
the photoionization of inner atomic shells, relatively simple
HF or Dirac-Fock calculations may be sufficient for time
delay evaluation that can be performed for a wide range of
atoms with both closed and open shells. Because the inner
shells are not strongly influenced by the chemical environment,
similar time delays will be observed in corresponding inner
shells of molecules and solids. Thus, it is expected that the
phenomenology found for the photoionization time delay and
the phases of the dipole amplitudes of noble gas atoms will be
generally applicable to the qualitative behavior of inner shells
in other atoms, both open- and closed-shell, molecules, and
solids as well.
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[21] P. N. Juranić, A. Stepanov, R. Ischebeck, V. Schlott, C.
Pradervand, L. Patthey, M. Radović, I. Gorgisyan, L. Rivkin,
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