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Wigner representation of ionization and scattering in strong laser fields
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The interaction of single-electron atoms with a strong laser field is studied in the Wigner representation.
The Wigner function is a quasiprobability function in phase space that allows one to study position-momentum
correlations. These correlations give a physical interpretation of the emergence of the above-threshold-ionization
(ATI) energy spectrum. Conversely, the quantum-mechanical interference between electrons from neighboring
photon orders can explain the spatial bunching of the electron density by the laser field. Furthermore, the Wigner
function offers one a rather accurate and relatively efficient quasiclassical estimate of the bound-state population.
This method is applied to laser-induced electron-ion scattering and the stationary regime of the bound-state
population can be determined. The present calculations are performed for a one-dimensional Rosen-Morse
potential. Extensions to general spherically symmetric atomic potentials are indicated.
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I. INTRODUCTION

The behavior of atoms in strong laser fields is of fundamen-
tal importance for present-day laser physics and technology
[1]. The ionization of atoms in strong fields is known as above-
threshold ionization (ATI) [2], leading to electron energies of
very high multiphoton orders. Recombination in strong laser
fields can be applied to the generation of high-order harmonics
[3] and to the production of attosecond pulses. Scattering and
rescattering are likewise important multiphoton processes that
have been studied extensively in atomic physics with important
applications for inverse-bremsstrahlung absorption of laser
light in plasmas [4–9]. Since most of these processes require
nonperturbative methods, a number of theoretical approaches
have been successfully developed in this field. These include,
e.g., the strong-field approximation (SFA) [10], the related
quantum-orbit approximation [11], and various computational
methods for the solution of the time-dependent Schrödinger
equation (TDSE) [12–14].

In this work, strong-field laser-atom interactions are studied
in the Wigner representation [15]. For simplicity, the calcula-
tions are based on numerical solutions of the one-dimensional
(1D) TDSE with the atom represented by a symmetric Rosen-
Morse potential [16]. Generalizations to spherically symmetric
atomic potentials are discussed to some extent in the final
section of this paper. In the context of strong-field laser-atom
interactions, the Wigner representation has apparently been
studied only occasionally to visualize, e.g., stabilization [17],
tunneling [18], ionization [19,20], and double ionization [21].
In a previous work, the emergence of the ATI spectrum from
the Wigner phase-space distribution has been discussed but
limited to laser-induced electron-ion scattering with impact
velocities larger than the quiver velocity [22].

The Wigner function is a well-known quasiprobability
distribution function in phase space. In contrast to a classical
probability function, the Wigner function can assume both
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positive and negative values. Negative values indicate nonclas-
sical behavior associated, e.g., with the interference between
two plane waves. From the Wigner function one can obtain
integrated probability distributions for position or momentum
only. These are always positive-definite and agree with their
usual quantum-mechanical definitions. The time evolution of
the Wigner function is governed by a kinetic equation known
as the Moyal equation [23]. Its classical counterpart is the
Liouville equation.

We first analyze the ATI energy spectrum for the Rosen-
Morse potential as a function of the electric field of the
laser. The various multiphoton orders, their modulation, and
the closing of the channels with increasing field strengths
will be illustrated in a unified manner. Then the emergence
of the ATI spectrum from the Wigner function is analyzed
and thereby previous work on laser-induced scattering [22]
is extended to laser-induced ionization with electron energies
smaller than the quiver velocity. In the scattering problem, the
electrons scattered in different periods of the laser field have
been found separable into different wave packets. It was then
possible to distinguish between interperiodic and intraperiodic
interferences in the Wigner function. The corresponding
interference fringes are found related to the common ATI peaks
and their envelope modulations, respectively, in the energy
spectrum. More definitely, the positions of the wave packets
emitted in subsequent laser periods with momentum p̄ will be
spatially separated by �x = (p̄ T )/m = (2πp̄)/(ωm) where
T denotes the laser period, ω the circular frequency, and m

the electron mass. The interference between localized wave
packets leads to oscillations of the Wigner function in the
momentum direction with the wavelength �p = (2π�)/�x =
(�ωm)/p̄. Setting �p = pn+1 − pn and p̄ = (pn+1 + pn)/2,
where n refers to the photon order, one obtains for the
separation between subsequent energy peaks

�E = 1

2m
p2

n+1 − 1

2m
p2

n

= 1

2m
(pn+1 + pn)(pn+1 − pn) = p̄

�p

m
= �ω. (1)
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Interperiodic interference therefore accounts for the familiar
ATI peak sequence separated by the photon energy.

In the present ionization problem, we observe a more
advanced stage of the evolution, which is characterized by
a coalescence of the wave packets from different periods.
Coalescence occurs early since the characteristic drift mo-
menta are smaller than the quiver momentum. It is then no
longer possible to distinguish between the electrons emitted
in different laser periods. However, one still obtains the ATI
spectrum and can reverse the above argument. The interference
between the delocalized plane waves of neighboring photon
orders leads to a spatial bunching of the electron density at the
average momentum p̄ with the bunch length �x = (p̄ T )/m.
In the present work, we actually observe this spatial bunching
effect. Since spatial bunching occurs at certain energies Ē =
p̄2/(2m) only, the Wigner representation is essential to resolve
its presence unambiguously. Experimental evidence of this
bunching effect would be a nice confirmation of the Wigner
quasiprobability in a nonclassical phase-space area.

As a second important application of the Wigner represen-
tation in laser-atom interactions, we consider the bound-state
population of the atom. It will be shown, that one can obtain an
accurate and efficient estimate of the bound-state population
at each zero of the laser field. This estimate is defined by the
quantum-mechanical probability that the electron can be found
in the phase-space area enclosed by the classical separatix
between bound and free orbits. Near the separatrix, the
states are highly excited and the quasiclassical approximation
appears therefore quite reasonable. Validations of this method
in comparison with exact results show only minor differences
of at most a few percent in the cases considered. We first
validate this method for a Rosen-Morse potential with one
bound state. Then we demonstrate its applicability for laser-
induced electron-ion scattering and obtain the steady-state
bound-state population in the presence of the laser field. Finally
extensions of the method to spherically symmetric atomic
potentials are discussed and validated for a hydrogen atom.
It is noted that the calculation of bound-state populations from
the wave function in configuration space is often a cumbersome
procedure. According to the quantum-mechanical definition,
the populations of the bound states are obtained by projections
on the energy eigenstates of the atomic Hamiltonian. Exact cal-
culations, requiring the knowledge of a complete set of energy
eigenstates, are rarely feasible. To avoid such extensive atomic
physics calculations one often uses other approximations, e.g.,
the spatial volume method [24–26], the spatial surface-flux
method [27], the resolvent-operator technique [28], or the
window-operator method [29,30]. The present approach is
based on the quantum-mechanical quasiprobability given by
the Wigner function and the quasiclassical behavior near the
ionization threshold in phase space. It has the advantage that
it can be applied instantaneously, since a spatial separation of
free and bound parts of the wave function is not required.

This paper is organized as follows: In Sec. II, the physical
model, including the atomic potential and the laser field,
is introduced. Atomic units will be used if not otherwise
stated. In Sec. III, ionization of the model atom by the laser
field is considered. Energy spectra and Wigner functions are
calculated to discuss the dynamic Stark shift, channel closing,
as well as coalescence and bunching in phase space. In Sec. IV,

the quasiclassical method for calculating the bound-state
population by the Wigner function is presented. Validations
of this method, applications to laser-driven electron-ion scat-
tering, and extensions to spherically symmetric potentials are
discussed.

II. BASIC EQUATIONS

The time evolution of the wave function ψ(x,t) is subjected
to the TDSE and reads in atomic units (� = me = e = 1)

i∂tψ(x,t) = Hψ(x,t),

H = − 1
2∂2

x + V (x) + xE(t), (2)

where V (x) stands for an atomic potential and E(t) represents
the electromagnetic light wave in the electric-dipole approxi-
mation.

Due to the linear coupling of electric field and position
in (2), a small time step is required to propagate the wave
function numerically in time. It is therefore convenient to
describe the interaction with the laser field in the so-called
Kramers-Henneberger (KH) frame [31,32]. It is an accelerated
reference frame attached to the quiver motion of the electron.
Performing the transformations

ψ̃(x,t) = exp

(
−ixξ̇ (t) + i

2

∫ t

0
dt ′ ξ̇ 2(t ′))ψ(x,t) (3)

and

φ(u,t) = ψ̃(u + ξ (t),t), (4)

where ξ (t) obeys the classical equation of motion of the
electron in the electric field, ξ̈ (t) = −E(t), the TDSE for the
wave function φ(u,t) in the KH frame becomes

i∂tφ(u,t) = {− 1
2∂2

u + V (u + ξ (t))
}
φ(u,t). (5)

The interaction with the light wave is now contained in the
time-dependent displacement of the atomic potential. In the
present work, the Rosen-Morse potential [16]

V (x) = − 1

cosh2(x)
(6)

is used in all 1D calculations. In the absence of a laser field,
this model potential is reflectionless and it has only one bound
eigenstate,

ψ0(x,t) = 1√
2 cosh(x)

e−iE0t , (7)

where E0 = −0.5 stands for its energy [33].
The electric field is approximated by a monochromatic sine

wave,

E(t) = E0 sin (ωt), (8)

with field strength E0 and frequency ω. For a given initial
wave function φ(u,t = 0) = φ0(u), the TDSE (5) has been
solved numerically by using a fast-Fourier-transform (FFT)
split-operator method [34]. In the simulations, step sizes of
�x = 0.1 and �t ≈ 0.01 have been used, which turned out to
be adequate.

The Wigner function enables a description of a quantum-
mechanical state in a phase space. It can be calculated from
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the position representation of the wave function [15],

W (p,q) =
∫ ∞

−∞
dr ψ

(
q + r

2

)
ψ∗

(
q − r

2

)
e−ipr . (9)

According to its definition, the Wigner function is real valued.
However, it can take on positive as well as negative values in
contrast to classical phase-space probability density functions.
Because of this property, the Wigner function allows one for
the identification of quantum-mechanical behavior.

III. LASER-INDUCED IONIZATION

To be able to study the laser-induced ionization of the model
atom (6), the system has to be prepared in its ground state at the
initial time t = 0. Resulting from (3), (4), and (7), the initial
wave function in the KH frame has to be chosen as

φ0(x) = 1√
2 cosh(x)

exp(iξ̇0x). (10)

Here ξ̇0 = E0/ω symbolizes the underlying quiver momentum
at the initial time.

In the simulations, frequencies of ω = 0.1 and ω = 0.2
(ω = 0.2 corresponds to a wavelength of 225 nm and to a pho-
ton energy of �ω = 5.5 eV) and field strengths E0 between 0.06
and 0.28 (associated with intensities of 0.13–2.75 PW/cm2)
have been used to parametrize the laser. Such parameters
can be achieved by present-day free-electron lasers [35] and
frequency-upconverted short-pulse lasers [36].

A. Energy distribution outside the laser field

Energy spectra of the unbound electrons are subsequently
discussed. In the KH frame, the spectrum characterizes the
probability density of detecting an electron with drift energy
E = k2/2 outside the laser field and has been defined by

f (E) = 1

2π |k| {|φ̂free(k)|2 + |φ̂free(−k)|2}, (11)

with the states φ̂free(k) that are representing the freed electron
in the k space. They have been calculated from the position
representation of the free-electron states by using spatial
Fourier transforms. Based on the single bound state of the
model atom, the determination of the free states φfree(x,t)
can be performed in the standard manner by subtracting the
projection on the ground state,

φfree(x,t) = φ(x,t) − ρ(t) φ0(x,t),

ρ(t) =
∫ ∞

−∞
dy φ∗

0 (y,t)φ(y,t).
(12)

At this point one has to keep in mind the time dependence of
φ0(x,t) in the KH frame.

By energy conservation, one expects drift energies at

E = nω − |E0| − E2
0

4ω2
, (13)

where n stands for the number of absorbed photons and
E2

0 /(4ω2) accounts for the dynamic Stark shift of the con-
tinuum states by the ponderomotive potential. Figure 1 finally
shows the variation of the energy distribution with the field
strength E0 for a laser with frequency ω = 0.1 after the

FIG. 1. (Color online) Spectral density as a function of electric
field strength E0 and drift energy E, recorded for a laser with
frequency ω = 0.1 after an interaction time of three laser periods.
According to (13), the absorption of n = 7, . . . ,16 photons is shown.

interaction time of 3T (T = 2π/ω is the laser period). One can
clearly recognize the formation of discrete stripes, indicating
the quadratic dependence of the drift energy on the field
strength due to (13). Neighboring stripes are shifted in the
E direction by the photon energy ω, which characterizes the
ATI spectrum. Consequently, each stripe is associated with
the corresponding number of absorbed photons n. However,
instead of displaying a continuous profile the discrete stripes
consist of islandlike areas of high spectral densities. This
insular behavior yields a modulation of the spectrum which
has been previously observed in the case of scattering spectra,
where the modulations could be ascribed to the intraperiodic
quantum interference of electron trajectories [22]. Beyond,
Fig. 2 illustrates energy spectra for different laser-field
strengths in a field with frequency ω = 0.2. It can be seen
that an increase of the intensity reduces the drift energy of
the outgoing electron. Considering especially the threshold
strength E0 = 0.13, the lowest ATI peak vanishes due to the
fact that three-photon absorption is insufficient to transfer a
finite drift energy to the electron. The closing of an ionization
channel is subsequently discussed in the framework of the
Wigner function.

-2

-1

0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

lo
g 1

0
f
(E

)

E [a.u.]

E0 = 0.11
E0 = 0.12
E0 = 0.13

FIG. 2. (Color online) Laser-driven (ω = 0.2, t = 8T ) energy
distribution function for different laser strengths.
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B. Wigner representation of laser-induced ionization

Equation (9) has been used to determine the Wigner
function from the free states (12). In agreement with the
definition of the spectral density, left and right moving
electrons are equally considered. In the Wigner approach, an
energy-position distribution function can be defined by

W (E,q) = |p|−1{W (p,q) + W (−p,q)}. (14)

Position-energy correlations are finally discussed by plot-
ting W (E,q) versus q and E = p2/2. Figure 3 shows the
dependence of the Wigner function on the electric field E0 for a
laser with frequency ω = 0.2 after the interaction time of eight
laser periods. Positive values of the distribution function are
red (light-gray) and negative ones are blue (dark-gray). One
can recognize the emergence of horizontal red (light-gray)
beams, e.g., observable for an energy of E ≈ 0.4 in Fig. 3.

FIG. 3. (Color online) Wigner function for laser field strengths
(a) E0 = 0.11, (b) E0 = 0.12, and (c) E0 = 0.13 (frequency ω = 0.2)
after an interaction time of eight laser periods.

These beams can be understood as plane-wave states for the
ATI peaks of the spectrum (Fig. 2). This correspondence can
be explained by the relation∫ ∞

−∞
dq W (p,q) = |φ̂free(p)|2. (15)

Consequently, the integration of the Wigner function W (E,q)
along the q axis determines the spectral density function f (E).
Horizontal red (light-gray) beams contribute significantly to
the value of the integral and thereby lead to the observed
energy peaks. The emergence of ATI peaks also allows for
the identification of channel closing in the Wigner function,
expressed by the disappearance of the low-energy peak in
Fig. 3(c).

Apart from the plane-wave states and the channel closing,
the formation of another interference pattern is visible in
the quasiprobability function. Plane-wave states with different
momenta p (corresponding to different energies E) interfere,
yielding an alternating series of blue and red (dark- and light-
gray) areas in the subspace between two beams. The Wigner
representation of plane waves has been discussed previously in
our group [22]. The interference pattern describes a quantum-
mechanical wave along the q direction that propagates with
the mean momentum p̄ of the interfering states. The associated
wavelength is determined by the difference momentum �p of
the interfering states which is accompanied by an energy shift.
This shift can be expressed in terms of an integral multiple s

of the photon energy as described in the Introduction,

�E = p̄ �p ≡ sω. (16)

Restricting attention to the most dominant interference channel
s = 1, the wavelength can be written as

λq = 2π

�p
= p̄T , (17)

and is therefore equal to the distance that a particle with
momentum p̄ moves during one laser period. The wave-
length (17) of the quantum-mechanical interference pattern
clearly corresponds to the classical bunch length of density
modulations by the laser field. Finally, numerical evaluations
yield λq ≈ 31 for energies E = 0.4 and E = 0.6, which is in
agreement with the data shown in Fig. 4. Here, the interference
structure has been transformed to the q space by integrating
the Wigner function in a small vicinity around Ē = p̄2/2,

g(q) =
∫ Ē+δE

Ē−δE

dE W (E,q), (18)

which nicely visualizes the wavelength λq . One can also
recognize the maximum extension up to the travel distance
dmax = 8p̄ T ≈ 249 within the interaction time of eight peri-
ods.

As a further remark, we consider the influence of inter-
ference channels with s �= 1. In this case, it is possible that
the energy Ē coincides with one of the ATI peaks. The
corresponding interference pattern leads to a modulation of
the height of the ATI peak. We have seen such modulations
previously in the discussion of the spectral density function.

Finally, we show the Wigner function in the phase-space
area in the vicinity of the atom in Fig. 5. The parameters are
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FIG. 4. (Color online) Results of the integral (18) with param-
eters Ē ≈ 0.5 and δE = 0.02 Ē. One can clearly recognize the
wavelength λq ≈ 31.

the same as in the large-scale representation of Fig. 3. We also
indicate in the figure the separatrix (20) between classically
free and bound states. Since the bound state has been removed
from the wave function by the projection method, the Wigner
function gives a phase-space representation of the free ATI
electrons after ionization. Before channel closing [Fig. 5(a)],
one can recognize that the probability of electrons near
the top of the separatrix is quite low, corresponding to a
white area there [note the magnified color (gray) scale used
in (a)]. During channel closing, low-energy electrons are
produced that populate a band with positive probability along
the separatrix line [Figs. 5(b) and 5(c)]. This increase of
low-energy electrons is also consistent with an increase in the
bound-state population, considered in the following Sec. IV.

IV. BOUND-STATE POPULATION IN PHASE SPACE

We now present a method that quantifies the bound-state
population of a system by using the Wigner function. The
method is based on a quasiclassical approximation of the
dynamics at the ionization threshold in the phase space.

A. Wigner-function method

We first consider a classical particle within the Rosen-
Morse potential V (q), given in (6). Its dynamics can be
obtained by studying its total energy in the laboratory system,

E = 1
2p2 + V (q). (19)

From a classical point of view, positive energies (E > 0) lead
to free orbits and negative energies (E < 0) to bound orbits.
Consequently, E = 0 defines the separatrix line,

p = ±
√

2 |V (q)|, (20)

that separates the bound and unbound regions from each
other. A quasiclassical estimate of the bound-state population
is now defined by integrating the Wigner quasiprobability
density over the phase-space region enclosed by the classical

FIG. 5. (Color online) Wigner function near the classical separa-
trix (solid line) between free and bound states for laser field strengths
(a) E0 = 0.11, (b) E0 = 0.12, and (c) E0 = 0.13 (frequency ω = 0.2)
after an interaction time of eight laser periods.

separatrix,

�bound =
∫ ∞

−∞
dq

∫ p(q)

−p(q)

dp

2π
W (p,q). (21)

For classical systems, (21) corresponds to the exact population
of bound states which follows from Liouville’s theorem
and the fact that classical trajectories do not intersect each
other. However, the method is extended to determine also
the bound-state population of laser-driven quantum systems.
In these systems, �bound is evaluated only at the zeros of
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FIG. 6. (Color online) Dependence of the bound-state population
[atom modeled by Eq. (6)] on the field strength E0 for a sine wave with
frequency ω = 0.2 after a fixed interaction time of 8T . Data points
have been recorded by using the exact projection (cross symbols) and
the Wigner-function method (diamond symbols).

the electric field such that the classical energy is given
by (19). Additionally, note that the Wigner function has to
be calculated from the full time-propagated states in the
laboratory system, where canonical and physical momenta
coincide. One obtains the corresponding wave functions by
reversing the KH transformations (3) and (4).

To verify the applicability of the presented method, test
calculations have been performed. Equation (6) is used again
as a model potential, and Fig. 6 finally shows the results
for the bound-state population, determined by using the
Wigner function (diamond symbols) and the exact quantum-
mechanical approach [cross symbols, representing the square
of the absolute value of ρ; see Eq. (12)]. One can immediately
recognize that the Wigner-function (WF) approach determines
the bound-state population with high accuracy.

B. Application to laser-driven scattering

We now consider the laser-driven (E0 = 0.2, ω = 0.2)
scattering by the model potential. Therefore the electron
is prepared in a free initial state that moves with a drift
momentum k0 towards the potential. The initial state is
represented by a plane wave that is modified with a spatial
envelope function, φ(x) = f (x)eik0x . In the simulations, the
initial drift momentum has been chosen small in comparison
to the typical quiver momentum (k0 = 0.25 ξ̇0) such that it
should be possible to observe significant recombination [7,8].
The spatial envelope, shown in Fig. 7, is made up of two Fermi
functions

f (x) = Cfr (x)fl(x), fr,l(x) = 1

exp
( x−xr,l

�r,l

) + 1
, (22)

where C is a normalization constant and the parameters xr,l ,
�r > 0, �l < 0 model a smooth incidence of the electron,
followed by a plateau. The long plateau symbolizes a constant
probability current and can be used to study the steady state of
recombination-ionization dynamics. However, one has to keep
in mind, that the free propagation of the wave packet leads to
some modifications of its shape. This can be seen from Fig. 7,

0.00
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|φ
(x

)|

x [a.u.]

t = 0 T

t = 16 T

t = 40 T

FIG. 7. (Color online) Evolution of the electron wave function
under free propagation in the absence of a laser field and of an atomic
potential. The initial wave packet (t = 0) is compared to the wave
packets after the propagation times t = 16T and t = 40T measured
in units of the laser period T . For visual convenience, the propagated
wave functions are shifted backwards by the propagation distance
�x = k0t . One can recognize the evolution of two humps at the edges
of the distribution. Parameters are k0 = 0.25, T = 2π/ω ≈ 31.4,
xr = −5k0T , xl = xr − 60k0T , and �r = −�l = (0.6/ ln 10) |xr |.

where the initial wave function at t = 0 is compared to the
shapes of the freely propagated wave functions at the times t =
16T and t = 40T . The wave functions develop an interference
pattern with two large humps at the edges of the distribution.
This same structure will subsequently be observed in the time
dependence of the laser-induced bound-state population.

In the absence of the laser field recombination is negligible.
This follows from the fact that the potential is reflectionless
under stationary conditions and the stationary state is achieved
by the smooth turn-on and turn-off of the incident beam.
This has also been verified numerically by the projection
method. With laser field a significant fraction of the incident
beam recombines. The dynamics of the bound-state population
is shown in the upper panel of Fig. 8, again obtained by
using the exact (black curve) and the WF method [red
(light-gray) curve]. From a qualitative point of view, both
approaches predict the same behavior. In the beginning, the
bound-state population increases due to the smooth incidence
of the electron beam. The subsequent stationary bound-state
population is of particular importance. Recombination and
ionization balance each other as long as the constant part
of the probability current interacts with the ion. This leads
effectively to a kind of steady state in the system. The
steady state exists until the incoming probability current
decreases (t ≈ 55T ), which finally results in an exponential
depopulation of the bound state. Quantitatively, one can see
that the WF approach slightly overpredicts the bound-state
population for the discussed laser parameters.

One can observe transient overshoots of the bound-state
population after approximately 12 and 55 laser periods. These
overshoots can be attributed to the humps at the edges of the
electron wave packet in Fig. 7. Note that the two humps in
the bound-state population are different, occurring at the same
position but at different times. The lower front hump arrives
earlier and the higher rear hump later at the position of the ion.
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FIG. 8. (Color online) Time dependence of the bound-state pop-
ulation, recorded for the laser-driven (E0 = 0.2, ω = 0.2) scattering
of slow electrons (k0 = 0.25 ξ̇0) by the model potential (6). Data
points are calculated with (a) the exact projection method, the WF
approach and (b) the spatial-filter approximation.

One can convince that the humps in both figures are actually
coincident. The propagation times t/T = 16,40 correspond to
propagation distances �x = 125,314, respectively. At the time
t = 16T the first hump has just passed; at the time t = 40T

the second hump is just approaching the ion.
To be able to assess the improvements gained by the pre-

sented approach, a comparative analysis has been performed
with another well-established method. Spatial filters, which
assume that only electrons in a small vicinity x0 around
the atomic center are bound, approximate the bound-state
population as

�′
bound =

∫ x0

−x0

dx |φ(x)|2. (23)

Values of x0 = 5, 7.5, and 10 have been used in the
simulations. The results are given in the lower panel of
Fig. 8, all showing the previously described behavior of
the bound-state population. However, one can recognize that
the bound-state population deviates already at the edges and
strongly depends on the selected parameter x0. Considering in
particular x0 = 7.5 and 10, the spatial filter predicts a much
too high binding fraction. Only for x0 = 5, �′

bound accidentally
offers similar results as those found with the exact and the

WF method. These differences result from the instantaneous
evaluation of (23). Free parts of the wave function, which
are located in the center of the grid, do not have enough
time to leave this region and are thus counted erroneously as
bound part. In contrast, the phase-space method allows for an
instantaneous approximation concerning calculations of the
bound-state population and is not as arbitrary as the spatial
method, which depends sensitively on the boundaries of the
integration region.

C. Extension to spherically symmetric potentials
in three dimensions

We now extend the WF approach for the bound-state pop-
ulation to the physically interesting case of three-dimensional
(3D) potentials. The Wigner function for a 3D wave function
is defined on a six-dimensional phase space and its calculation
would be extremely expensive. However, for spherically
symmetric potentials, one can reduce the problem to a
set of 1D radial wave equations and their corresponding
Wigner functions. In this case the WF method becomes
again advantageous in comparison with the projection method.
We therefore consider a spherically symmetric potential and
choose the hydrogen atom as an example. In the following it
is demonstrated that the WF method gives accurate results for
various bound states of hydrogen.

Due to the study of spherically symmetric potentials, we
expand the wave function in terms of spherical harmonics
Ylm(θ,φ),

ψ(r,θ,φ,t) =
∑
l,m

1

r
χlm(r,t) Ylm(θ,φ), (24)

where χlm(r,t) is the radial wave function that contains all
information about occupied or unoccupied states of the system.
In the absence of a laser field (E0 = 0), one obtains from
(24) for each set (l,m) of quantum numbers a 1D Schrödinger
equation for the radial part,

i∂tχlm(r,t) =
{
−1

2
∂2
r + V l

eff(r)

}
χlm(r,t),

V l
eff(r) = V (r) + l(l + 1)

2r2
.

(25)

Using the exact method, the bound-state population for a
given wave function ψ(r,θ,φ,t) is defined by the sum over all
bound-state probabilities of the various quantum sets (n,l,m).
The occupation of one bound state is now determined by the
projection of the corresponding eigenfunction ψnlm(r,θ,φ) =
Ylm(θ,φ) unl(r)/r on the full wave function,

�nlm =
∣∣∣∣∫ d3r ψ∗

nlm ψ

∣∣∣∣2

=
∣∣∣∣∫ ∞

0
dr unl(r) χlm(r)

∣∣∣∣2

, (26)

where we have used the orthogonality of the spherical
harmonics and the real character of the radial eigenfunctions
unl(r). The total bound-state population is given by the sum

�bound =
∑
n,l,m

�nlm =
∑
l,m

(∑
n

�nlm

)
=

∑
l,m

�lm, (27)

where we have defined the orbital population �lm. Considering
(25)–(27), one can clearly recognize the equivalence to pure
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FIG. 9. Section of the bound-state region (hydrogen atom) for
angular-momentum l = 2. The shaded part represents the domain of
integration for spherically symmetric potentials.

1D systems. Consequently, we can approximate �lm by using
the WF approach for the radial function χlm(r) in the potential
V l

eff(r). However, the domain of definition for the Wigner
function requires some extension because of the restriction
r � 0 for the radial wave function. For this purpose, we
extend the radial wave function to a negative r axis by using
the symmetry properties of the space-inverted wave function
ψ(r,π − θ,φ + π,t),

χ̃lm(r) =
{

χlm(r), r � 0,

(−1)l χlm(|r|), r < 0.
(28)

Using these states, the Wigner function and the phase-space
integral (21) can be evaluated for the effective potential V l

eff(r).
To calculate the bound-state population correctly, (21) has to be
multiplied by an additional factor one-half which accounts for
the normalization of χ̃lm. Alternatively, based on the symmetry
properties (28), the physical bound-state population is obtained
if one restricts the domain of integration in (21) to the positive
half space q � 0 (see Fig. 9), thereby reducing the numerical
effort. Note that the computational effort is also reduced for
linearly polarized fields since the magnetic quantum number
m is conserved.

Test calculations have been performed by assuming that
the system is in a stationary bound state (n0,l0,m0) of the
hydrogen atom. In the following m0 = 0 is chosen in all
simulations. In this case, the radial wave function is equal
to χlm(r) = rRn0,l0 (r)δl,l0δm,m0 . Figure 10 finally shows the
results for different quantum numbers (n0,l0). One can see
that the WF approach yields populations in a small vicinity
around 1. Significant deviations can only be observed for the
ground state of the hydrogen atom, where the WF method
deviates about 15% from the exact result. Therefore, for future
applications of this method it is advisable to calculate the
ground-state population exactly by the projection method and
to remove subsequently this projection from the full wave
function. The numerical effort does not increase significantly.
We have also verified the procedure for a few superpositions of
bound states and found similar accuracy as for the individual
states in the superposition. It is further noted that the radius
of the Bohr orbit for quantum number n is r = n2 and
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FIG. 10. (Color online) Results for the bound-state population
that are obtained for different stationary states of the hydrogen atom
with the WF method. For visual convenience the results for different
radial quantum numbers n0 are shifted by n0 − 1. The exact values
are therefore given by 1 + n0 − 1 = n0 in this representation.

therefore equal to r = 225 for the maximum quantum number
n = 15. Evidently, a comparable accuracy of the bound-state
population could not be achieved with spatial filter methods
assuming atomic radii of the order of 1–10.

V. CONCLUSION

In the present work, the Wigner representation of ionization
has been discussed by solving the TDSE for a 1D model
atom. Energy spectra, which can be measured outside the laser
field, have been evaluated as a function of the electric field
amplitude, nicely showing the Stark shift of the continuum
states. The Wigner function of the freed electron displays the
emergence of ATI peaks by forming plane-wave-like states.
The interference of plane waves leads to typical fringes that
could be observed in the corresponding Wigner representation.
The phase-space visualization of ATI peaks has enabled the
identification of channel closing in the model system.

In addition, a method has been introduced that can be
used to determine the bound-state population of a quantum
system with the assistance of the quasiprobability density.
This approach is not as arbitrary as the well-known spatial
approximation and enables the possibility of calculating the
binding fraction instantaneously at the zeros of the laser field.
One does not need to wait for an asymptotic state where free
and bound parts of the wave function become separated. Using
the present method, it has been also possible to resolve a steady
state in the system while subjecting the ion to a stationary
probability current in a laser field.

In the final part of this work, we have indicated the extension
of the WF method to calculate the bound-state population of
more realistic 3D atoms with spherical symmetry.
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