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Quantum treatment of two-stage sub-Doppler laser cooling of magnesium atoms

O. N. Prudnikov,1,2,* D. V. Brazhnikov,1,2,† A. V. Taichenachev,1,2 V. I. Yudin,1,2,3 A. E. Bonert,2

R. Ya. Il’enkov,1,2 and A. N. Goncharov1,2,3

1Novosibirsk State University, Novosibirsk 630090, Russia
2Institute of Laser Physics SB RAS, Novosibirsk 630090, Russia

3Novosibirsk State Technical University, Novosibirsk 630073, Russia
(Received 1 May 2015; revised manuscript received 13 November 2015; published 15 December 2015)

Deep laser cooling of 24Mg atoms has been theoretically studied. We propose a two-stage sub-Doppler
cooling strategy using electrodipole transition 3 3P2 → 3 3D3 (λ = 383.8 nm). The first stage implies exploiting
magneto-optical trap with σ+ and σ− light beams, while at the second stage lin ⊥ lin molasses is used. We
focus on achieving a large number of ultracold atoms (Teff < 10 μK) in a cold-atomic cloud. The calculations
have been based on quantum treatment, taking into full account the recoil effect and beyond many widely used
approximations. Steady-state values of average kinetic energy and linear momentum distributions of cold atoms
have been analyzed for various light-field intensities and frequency detunings. The results of conducted quantum
analysis have been significantly different from the results achieved under a semiclassical approximation based
on the Fokker-Planck equation. The second cooling stage allows achieving sufficiently lower kinetic energies
of the atomic cloud as well as increased fraction of ultracold atoms at certain conditions compared to the first
one. We hope that the obtained results can help in overcoming current experimental problems in deep cooling of
24Mg atoms by means of laser field. Cold magnesium atoms cooled in a large amount to several μK are of huge
interest to, for example, quantum metrology and to other many-body cold-atoms physics.
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I. INTRODUCTION

Laser cooling and trapping of neutral atoms play an
important role in many directions of modern quantum physics.
For example, quantum metrology is among these directions,
which has been rapidly developing in recent years. It is aimed
at creating standards for physical quantities and conducting
highly accurate measurements with the help of them (e.g.,
see [1]). Today, the most precise measurements are possible
for such physical quantities as frequency and time due to
success achieved in producing etalons (standards) for them.
Modern time standard is based on the frequency standard,
which determines its stability and accuracy to a considerable
degree. Meanwhile, frequency etalons can be used not only
as a basis for time standards, but also to measure precisely
other physical quantities and constants such as, for instance,
electrical current and voltage, magnetic field, length, the
Rydberg and fine-structure constants.

High-accuracy experiments for versatile examination of
relativistic and quantum theories have become feasible owing
to modern frequency standards. Among practical applications
of time and frequency standards, the broadband commu-
nication networks and navigational and global positioning
systems should be especially mentioned. Many laboratories
of world-known scientific centers conduct their studies in the
field of frequency standards. One of the latest trends in this field
is connected with the concept of intercity or even international
quantum clock network that could combine time-keeping
standards all over the world into one system [2–6].

Today, there are two main development strategies for
primary frequency standards: based on the electric quadrupole
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ion trap and based on many neutral atoms trapped in the
optical lattice (e.g., see [7,8]). The latter strategy is the
most modern and has been rapidly developing. The idea of
neutral atoms trapping in a periodic light potential is not
new and was actively studied in the 1970s (see [9] and
references therein). As for metrological purposes, this idea
experienced its rebirth in the beginning of the 21st century after
noticeable progress in technique and methods of laser cooling
of atoms, development of the “magic”-wavelength concept
[10,11], and also experimental and theoretical success in
spectroscopy of forbidden atomic transitions [12–16]. Today,
stability of optical lattice-based frequency standards stands
practically on the same level with single-ion standards and
in some cases even exceeds them. Relative instability and
uncertainty of the state-of-the-art prototypes of frequency
standards have reached extremely low levels 10−17–10−18

[17–20].
Alkaline-earth and alkaline-earth-like atoms such as Yb

(for instance, see [21–23]), Ca [24], Sr [18,19,25], Hg [26],
and Mg [27,28] are among the main candidates to create
frequency standards of a new generation. They are the most
appropriate because of narrow spectroscopic lines connected
with forbidden optical transitions from the ground state 1S0 to
the lowest excited triplet state 3P0,1,2 (see Fig. 1). Moreover,
one more key circumstance is the existence of so-called
“magic” wavelength for these transitions at which the first-
order light shift from optical lattice field vanishes. Also, one
of the last trends is connected with spectroscopy of transition
1S0 → 3P0 in even isotopes (with zero nucleus spin), which
is highly forbidden. Frequency of this transition is immune
to many frequency-shift effects, therefore, it can be exploited
as a good “clock” transition. In spite of the fact that such
transition is highly forbidden, it has already been observed by
magnetic-field-induced spectroscopy [29] in 174Yb [21], 88Sr
[25,30–32], and 24Mg [33,34].

1050-2947/2015/92(6)/063413(11) 063413-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.063413


O. N. PRUDNIKOV et al. PHYSICAL REVIEW A 92, 063413 (2015)

FIG. 1. Partial energy diagram of 24Mg atom. Solid lines denote
the cooling transitions with corresponding temperature limits, while
dashed lines denote possible “clock” transitions, which can be used
for laser stabilizing.

The experimental results to date have demonstrated that the
first four elements (Yb, Ca, Sr, and Hg) can be effectively
cooled by the laser methods to ultralow temperatures, close to
the recoil energy limit, that is required for effective loading
of an optical lattice (∼1–10 μK). Besides, even subrecoil
temperatures can be obtained by using the evaporative cooling
technique, getting the Bose-Einstein condensation [35–37].
Unfortunately, researchers have not been able to reach the same
great success with Mg atoms. In particular, neither two-photon
laser cooling [38] nor laser quenching [39] methods have
appeared to be effective in case of magnesium. The minimum
temperature of a magnesium cloud that has been obtained by
laser cooling is about 500 μK, that is rather far from desirable
range of values, in particular, from the recoil temperature
(3–10 μK, depending on the atomic transition).

At the same time, magnesium atoms have some advantages
compared to the other candidates in terms of the frequency
standard. Thus, the blackbody radiation (BBR) shift is one
of the main limiting factors for accuracy and stability of the
quantum frequency standard (e.g., see [2,8,19]). BBR shift
of the clock transition 3 1S0 → 3 3P0 for magnesium is much
smaller than for Yb, Ca, Sr and just a little bit higher than for a
mercury atom (see Table I). However, from the viewpoint of the

TABLE I. Data for several atomic elements relevant for new-
generation frequency standards: λcl is a wavelength of the clock
transition 3 1S0 → 3 3P0 and λm is its magic wavelength, BBR
frequency shifts are indicated with respect to absolute frequencies
of clock transition (λcl is taken from NIST Atomic Spectra Database
[40]). The boldface row corresponds to magnesium atom, which is
considered in our paper.

Atom λcl λm BBR shift

Sr 698.5 813.5 [12] −5.5 × 10−15 [42]
Yb 578.4 759.4 [21,23] −2.6 × 10−15 [42]
Ca 659.7 735.5 [24] −2.6 × 10−15 [42]
Mg 457.7 ≈468 [41] −3.9 × 10−16 [42]
Hg 265.6 362.6 [26] −2.4 × 10−16 [15,43]

experiment, Mg has some advantages against Hg. In particular,
mercury atoms require noticeably smaller wavelengths for
laser spectroscopy, cooling, and trapping than magnesium
atoms do. For instance, an optical potential depth at the level of
50–300 in the recoil energy units is needed to effectively trap
cold atoms in the nondissipative optical lattice and create the
Lamb-Dicke regime (e.g., see [8,19]). It means that a highly
intensive laser field at the magic wavelength λm should be
applied. As it can be seen from Table I, λm(Mg) ≈ 468 nm
and λm(Hg) ≈ 363 nm, therefore, for experimental purposes,
creation of a deep optical potential for mercury atoms is a
more difficult task than for magnesium atoms due to the much
smaller wavelength. Aside from the relatively small BBR shift,
the magnesium atom has one more advantage with respect
to Ca and Sr: there is no optical pumping of atoms on the
nonresonant level 3 1D2 during laser precooling stage with the
help of strong dipole transition 3 1S0 → 3 1P1 (see Fig. 1) and
temperatures at the level of a few mK are easy achievable
[27,28,44,45].

Recent experiments [33,34,46] showed some noticeable
progress in cooling of 24Mg atoms. The atoms were cooled
down to the record temperature equaled to 1.3 μK and confined
in an optical lattice. However, the final number of atoms
was about 104 that made approximately 0.01% of the initial
number of atoms in the magneto-optical trap (MOT) based
on the cyclic triplet dipole transition 3 3P2 → 3 3D3. That
great loss in atomic number was due to the fact that atomic
velocity selection (roughly speaking, similar to evaporative
cooling method) was used to reach such ultralow temperature,
but laser cooling in the MOT, unfortunately, showed the
cloud temperature equaled to about 1 mK. That result lagged
significantly behind the successful results achieved with other
elements (Ca, Sr, Yb, Hg). However, we believe that improved
strategy of laser cooling of magnesium atoms may allow
getting much better results of laser-cooling temperature as
well as the number of atoms trapped.

Therefore, we can state that the problem of deep cooling
of magnesium atoms by laser radiation is still unsolved.
Moreover, increasing ultracold atomic number has principal
importance for many applications of cold atoms. For instance,
authors of the paper [47] managed to obtain the Bose-Einstein
condensation composed of ∼107 strontium atoms. Besides,
frequency-standard stability increases with increasing number
of atoms in an optical lattice [1,48]. All things considered, we
can conclude that it is important to solve the problem of deep
laser cooling of magnesium atoms (down to T ∼1–10 μK) as
well as to provide a much larger number of ultracold atoms in
a lattice.

II. LASER COOLING IN A MOT: SEMICLASSICAL
APPROXIMATION

Laser cooling of neutral atoms in a magneto-optical trap is
one of the main cooling methods. The laser field composed
of six beams with orthogonal circular polarizations (σ+σ−
configuration) was suggested in [49] as an effective way to cool
and trap atoms simultaneously. Narrow spectral lines allow
laser cooling of various atoms down to a few tens and units
of μK, and even lower. In particular, narrow intercombination
transition 4 1S0 → 4 3P1 in 40Ca (γ ≈ 2π × 400 Hz) provides
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temperatures around 4–6 μK [50,51] just with the help
of Doppler cooling technique. Exploiting intercombination
transitions showed also good results with other elements: Sr
[52], Yb [21,53], and Hg [43], both for even and odd isotopes.
In some extent, even isotopes, having a zero nuclear spin, are
more attractive for frequency standards of a new generation,
based on cold atoms trapped in a three-dimensional (3D)
optical lattice. However, as it has been already mentioned
in the Introduction, still no satisfactory results of cooling
24Mg atoms by means of laser radiation have been observed
in contrast to the other elements.

We tried to solve the problem with deep laser cooling of
magnesium in the recent work [54], where the detailed theoret-
ical study of magnesium kinetics in the one-dimensional (1D)
MOT using the dipole transition 3 3P2 → 3 3D3 was conducted.
The theory was based on the widely used semiclassical
approach [9,55], based on the well-known assumptions

ωrec � min{γ,γ S} (1)

and

�p � �k . (2)

Here, ωrec = �k2/2M is the recoil frequency, M is mass of an
atom, k = 2π/λ is wave number. The saturation parameter S

is defined as

S = R2

(γ /2)2 + δ2
, (3)

where γ is the spontaneous relaxation rate of excited state,
δ = ω − ω0 is detuning of laser radiation frequency ω from
the transition frequency ω0, and R is the Rabi frequency.

Condition (1) implies that recoil frequency must be rather
small in comparison with a typical rate of steady state settling
among atomic internal degrees of freedom. In particular, in
case of an atom without any degeneracy of the ground state,
this rate is defined by γ . If there is a degenerate ground
state, and optical pumping can occur, this rate is defined by
γ or the pumping rate γ S, depending on what is smaller.
The second semiclassical requirement (2) implies that typical
width of stationary linear momentum distribution f (p) must be
significantly larger than the recoil momentum from emission
and absorption of a photon.

Doppler limit for temperature of laser cooling TD , achieved
at the frequency detuning δ = −γ /2, can be figured out from
equation for minimum kinetic energy in the one-dimensional
case

Emin
kin = 1

2
kBTD = 7

40
�γ. (4)

Strictly speaking, this equation is valid for transition Jg =
0 → Je = 1. It was found in [56] under σ+σ− configuration
(also see [57]). If we use this formula to estimate TD in case of
transition 3 3P2 → 3 3D3 (γ ≈ 2π26.7 MHz), we immediately
find TD ≈ 425 μK. To trap atoms effectively with such
relatively high temperature, the large intensity of continuous
wave (cw) optical lattice field at the level of tens of MW/cm2

would be required, which is hardly feasible in the experiment.
Therefore, much lower temperature of the atomic cloud is
needed. At the same time, since the considered transition has
degenerate energy levels, it is possible to anticipate so-called

sub-Doppler mechanism to be activated during laser cooling
in a MOT under the polarization-gradient field. In principle,
this process would overcome the Doppler limit (4) and show
much lower temperature than in the case of Jg = 0 → Je = 1.

A semiclassical approach is based on a kinetic equation
of Fokker-Planck type for the Wigner distribution function in
phase space f (z,p). That equation can be derived by reducing
the exact quantum kinetic equation for the density matrix by
decomposition technique on small parameter �k/�p � 1 to
the second-order terms. This procedure is well known and it
has been used by many authors (e.g., see [58–61]). Eventually,
the following equation can be obtained:

p

M

∂

∂z
f (z,p) =

[
− ∂

∂p
F (z,p) + ∂2

∂p2
D(z,p)

]
f (z,p). (5)

Here, F (z,p) is the laser-field force that affects the atom,
D(z,p) is atom diffusion in the laser field. This equation
must be completed with the normalizing condition that
in one-dimensional periodic laser field has the following
form:

1

λ

∫ +λ/2

−λ/2
dz

∫ +∞

−∞
f (p,z)dp = 1.

One-dimensional σ+σ− laser-field configuration allows sig-
nificant simplifying of the formula (5), thus, the dependence
f on z vanishes (see Sec. III B).

Our semiclassical calculations [54] have been done beyond
many widely used approximations (for instance, slow atoms
and weak-field approximations). As it has been shown, the
minimum kinetic energy achievable in the MOT is close to
30Erec, where Erec = �ωrec is recoil energy. The effective
temperature, which can be associated to this value, is Teff ≈
150 μK. It is approximately three times lower than the Doppler
limit TD ≈ 425 μK, but, unfortunately, it is still very far
from desirable range of values and, in particular, the recoil
temperature Trec = 5 μK.

Let us consider the question of the applicability of semi-
classical approach to the magnesium problem. Indeed, as
it will be shown further, on the basis of 1D semiclassical
treatment, the optimal parameters of cooling field for transition
3 3P2 → 3 3D3 can be chosen as δ = −2π × 130 MHz and
I = 500 mW/cm2. The corresponding saturation parameter
S ≈ 4 × 10−2. In spite of such low saturation, the first
semiclassical requirement (1) seems to be satisfied since
ωrec = 2 × 10−3 γ (see also Sec. III D). At the same time,
typical momentum distribution width �p may not satisfy
the second semiclassical condition (2). Indeed, in general the
momentum distribution of atoms can be complicated. In par-
ticular, Fig. 2 shows two examples of momentum distributions
for different values of the light-field intensity. The distribution
has bimodal profile at low intensity I = 20 mW/cm2: there is
the high-contrast spike on top of the wide background. This
background conditionally describes “hot” fraction of atoms in
a cloud with effective temperature Teff ∼ 1–10 mK, while the
spike corresponds to the ultracold fraction with Teff ∼ 1 μK.
Similar distributions were observed earlier (e.g., see [62] with
semiclassical low-saturation-limited calculations of Sisyphus
cooling of Cs atoms involved transition Fg = 4 → Fe = 5
or the quantum-treatment calculations for atomic W-type
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FIG. 2. Momentum distributions of magnesium atoms at δ =
−5γ ≈ −2π × 130 MHz, I = 20 mW/cm2 (solid line), and I =
470 mW/cm2 (dashed line).

scheme in [63]). In our case, the narrow-spike width is
about �k, and the requirement �p � �k is not satisfied at
all. With increasing intensity (I = 470 mW/cm2) bimodal
profile disappears. However, the distribution as a whole is
still sufficiently narrow, and the second requirement (2) is not
satisfied with a good margin. Also, it should be noted that
the condition (2), as a matter of fact, depends on the value of
the total angular momentum Fg . In other words, at the same
saturation parameter S the requirement (2) will be satisfied for
a small value of Fg and not be satisfied with its increasing.

In view of the aforesaid, we can conclude that more precise
theoretical treatment is needed in case of magnesium to
adequately describe its kinetics under laser field. The treatment
can be based on the kinetic equation on the density matrix with
a full view of the recoil effect (e.g., see [9,58,64]). Moreover, as
it will be described in the next section, the quantum-treatment
results noticeably differ from the semiclassical ones, based on
Eq. (5). That difference, in particular, gave us an idea to exploit
the second stage of sub-Doppler laser cooling for getting the
desirable results.

III. FULL ACCOUNT OF THE RECOIL EFFECT

Let us consider the problem of magnesium atoms laser
cooling beyond the semiclassical approximation as well as be-
yond some other widely used approximations (weak-saturation
limit, secular approximation, etc.).

A. Problem statement

We assume the laser field to be one dimensional, composed
of two plane monochromatic counterpropagating light waves
with equal frequencies and amplitudes (the quantization axis
z is collinear to the wave vectors):

E(z,t) = E0e1e
−i(ωt−kz) + E0e2e

−i(ωt+kz) + c.c.

= E0e(z) e−iωt + c.c., (6)

where e1,2 are the unit complex vectors of waves’ polarizations,
while e(z) is the following complex vector:

e(z) = e1e
ikz + e2e

−ikz. (7)

Nonzero components of the vectors e1,2 in the spherical basis
are

e−1
1 = − sin(ε1 − π/4), e+1

1 = − cos(ε1 − π/4),

e−1
2 = − sin(ε2 − π/4) eiϕ, (8)

e+1
2 = − cos(ε2 − π/4) e−iϕ .

Here, ε1,2 are the ellipticity parameters (in particular, ε =
±π/4 corresponds to right- or left-circular polarized wave,
ε = 0 is for linear polarization), ϕ is the angle between
main axes of polarization ellipses. For instance, the case
with ε1,2 = 0 and ϕ = π/2 corresponds to lin ⊥ lin field
configuration.

Here, quantum treatment of atomic kinetics under the laser
field (6) is based on the equation on single-atom density matrix
in coordinate two-point representation that has the form (e.g.,
see [9,55,64])

∂ρ̂(z1,z2,t)

∂t
= − i

�
[Ĥ (z1,t) ρ̂ − ρ̂ Ĥ (z2,t)] + ̂{ρ̂}, (9)

with the Hamiltonian

Ĥ (zi,t) = (
p̂2

i

/
2M

) + Ĥ0 + V̂ (zi,t). (10)

The first term in the Hamiltonian is the operator of kinetic
energy of an atom (p̂i is the linear momentum operator),
Ĥ0 describes intratomic degrees of freedom, operator V̂

corresponds to the atom-field dipole interaction, and the
linear operator functional ̂{. . . } is responsible for relaxation
processes in an atom. Let us introduce the projection operator
onto the excited atom state

P̂ e =
∑
me

|Fe,me〉〈Fe,me|, (11)

and the Wigner vector operator T̂, whose spherical components
are

T̂σ =
∑

me,mg

C
Fe,me

Fg,mg ;1σ |Fe,me〉〈Fg,mg|, (12)

with σ = 0, ± 1 and C
Fe,me

Fg,mg ;1σ the Clebsch-Gordan coeffi-

cients (e.g., see [65]). Then, the terms Ĥ0 and V̂ from (10) in
the resonant approximation can be written as

Ĥ0 = −�δP̂ e (13)

and

V̂ (zi) = −�R T̂ · e(zi) + H.c. = −�R V̂ eg(zi) + H.c. (14)

Here, R = E0d/� is the Rabi frequency (d is the reduced
matrix element of dipole operator of an atom), V̂ eg(zi) = T̂ ·
e(zi) is the dimensionless operator of atom-field interaction,
depending on the coordinate in the general case, H.c. means
Hermitian-conjugate term.

We introduce new coordinates

z = k(z1 + z2)/2, q = k(z1 − z2), (15)

in which the spontaneous relaxation operator from (9) has the
following form:

̂ = −γ

2
(P̂ eρ̂ + ρ̂P̂ e) + γ

∑
σ=0,±1

ζσ (q)T̂ †
σ ρT̂σ , (16)
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with

ζ±1 = 3

2

[
sin(q)

q
− sin(q)

q3
+ cos(q)

q2

]
,

ζ0 = 3

[
sin(q)

q3
− cos(q)

q2

]
. (17)

Note that without recoil effect, i.e., in the limit q → 0, we
have ζσ = 1.

The density matrix can be divided into four matrix blocks:

ρ̂ =
(

ρ̂gg ρ̂ge

ρ̂eg ρ̂ee

)
. (18)

Matrix blocks ρ̂gg and ρ̂ee describe populations of ground and
excited states as well as low-frequency (Zeeman) coherences.
Blocks ρ̂ge and ρ̂eg are responsible for optical coherences.
Using all introduced notations in new coordinates (15), new
equations on the density matrix blocks can be easily derived
from Eq. (9). So, in the steady state we have the following:

−2iωr

∂2

∂q∂z
ρ̂gg(z,q)

= γ
∑

σ=0,±1

ζσ (q)T̂ †
σ ρT̂σ

+ iR

[
V̂ eg †

(
z + q

2

)
ρ̂eg − ρ̂geV̂ eg

(
z − q

2

)]
, (19)

(
γ − 2iωr

∂2

∂q∂z

)
ρ̂ee(z,q)

= iR

[
V̂ eg

(
z + q

2

)
ρ̂ge − ρ̂egV̂ eg †

(
z − q

2

)]
, (20)

(γ

2
+ iδ − 2iωr

∂2

∂q∂z

)
ρ̂ge(z,q)

= iR

[
V̂ eg †

(
z + q

2

)
ρ̂ee − ρ̂ggV̂ eg †

(
z − q

2

)]
, (21)

(γ

2
− iδ − 2iωr

∂2

∂q∂z

)
ρ̂eg(z,q)

= iR
[
V̂ eg

(
z + q

2

)
ρ̂gg − ρ̂eeV̂ eg

(
z − q

2

)]
. (22)

These equations make a basis for further theoretical analysis.
For instance, probability density of atomic distribution in the
momentum space can be found by the formula

f (p) = 1

(2π )2

∫ +∞

−∞
dq

∫ π

−π

dz Tr{ρ̂(z,q)}e−ipq . (23)

Here, the linear momentum of an atom is evaluated in
the recoil momentum units �k and Tr[. . . ] denotes the trace
operation. Momentum distribution f (p) must be normalized:∫ +∞

−∞
f (p)dp = 1. (24)

This means that the set of equations (19)–(22) must be
supplemented with the condition

1

2π

∫ π

−π

Tr{ρ̂(z,q = 0)}dz = 1. (25)

Average kinetic energy of an atom in terms of recoil energy
can be evaluated, for instance, with the help of the following
formula:

Ek =
∫ +∞

−∞
p2f (p)dp. (26)

B. First stage: Cooling in a MOT

Let us assume the atoms to be localized in a weak
magnetic field region of a trap (near the trap’s center).
Therefore, magnetic field does not affect significantly the
temperature of a cloud, and we omit it here. In other words,
we consider kinetics of atoms in 1D laser field, composed
of two counterpropagating beams with orthogonal circular
polarizations (σ+σ− configuration). Then, we can take ε1 =
π/4, ε2 = −π/4, ϕ = 0 in Eq. (8), and polarization vector of
the total light field in spherical basis takes the following form:

e(zi) = e−1e
−ikzi − e+1e

ikzi . (27)

This form corresponds to the laser field with linear polariza-
tion, which rotates by the angle α = −kzi during propagation
along the z axis. At that the dimensionless operator V̂ eg from
(14) is

V̂ eg(zi) = T̂−1e
−ikzi − T̂+1e

ikzi . (28)

The considered field configuration has some unique fea-
tures. First of all, the field has homogeneous intensity (it does
not depend on z coordinate). Second, the field polarization
also can be made homogeneous (e.g., see [63,66]). Indeed,
let us pass to the new coordinate system K ′, in which the
z′ axis coincides with z axis in the old K system, while
the axes x ′ and y ′ rotate around the z axis by the angle
α = −z = −k(z1 + z2)/2 (see Fig. 3). In the K ′ system, the
linearly polarized total-field vector does not rotate anymore
(without loss of generality it can be considered to be directed
along the x ′ axis). Then, in the new system the interaction
operator V̂ eg from (14) does not depend on the coordinate zi :

V̂ eg(z1) =⇒ V̂1(q) = T̂−1e
−iq/2 − T̂+1e

iq/2, (29)

V̂ eg(z2) =⇒ V̂2(q) = V̂ ∗
1 (q). (30)

Since the relaxation operator ̂ from (16) also does not depend
on z, the density matrix in the new coordinate system is not
the function of z and it depends only on the q coordinate. This
circumstance significantly simplifies numerical evaluations of
the density matrix equations.

FIG. 3. Transformation the old coordinate frame K to the new
one K ′.
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FIG. 4. Comparison of the results of semiclassical (dashed line) and quantum (solid line) treatments at δ = −5γ ≈ −2π × 130 MHz. (a)
Average kinetic energy of an atom as the function of light-field intensity, (b) ultracold fraction of atoms in a cloud.

The operator of rotation D̂(n,α) can be exploited to get the
equations on density matrix in the new basis (e.g., see [65]).
Here, the unit vector n defines a rotation axis, while α is a
rotation angle. In our case, it is natural to coincide n with
quantization axis z and take α = −z. Then, influence of the
rotation operator on the wave function |Fa,ma,zi〉 reduces to
the simple multiplication by eimα , i.e.,

D̂(n,α)|Fa,ma,zi〉 = eimaα|Fa,ma,zi〉, (31)

with (a = e,g). In the system K ′ the set of equations (19)–(22)
takes the following form:

2ωr

∂

∂q
[F̂z,ρ̂(q)] = ̂{ρ̂(q)} + iδ[P̂ e,ρ̂]

+ iR [V̂1(q)ρ̂ − ρ̂V̂2(q)]. (32)

At that the normalizing condition (25) becomes rather
simple:

Tr{ρ̂(q = 0)} = 1. (33)

Figure 4(a) shows average kinetic energy of an atom as
the function of light-field intensity, calculated on the basis
of numerical solution of Eq. (32). Analogical dependence
is also presented, which was gained by applying semiclas-
sical approach on the basis of Fokker-Planck equation (5).
Figure 4(a) shows that the semiclassical approach (dashed
line) gives the minimum kinetic energy of an atom at the
level of Emin ≈ 30Erec, that is several times smaller than
the Doppler limit ED ≈ 87.5Erec. At the same time, the
quantum approach (solid line) shows the result for energy
just a little bit smaller than the Doppler limit (Emin ≈ 62Erec).
Hence, the quantum treatment of the problem demonstrates
that it is hardly possible to cool magnesium atoms in a
MOT down to desirable range of temperatures on the basis of
transition 3 3P2 → 3 3D3. All this agrees with the experiments
of research group from the University of Hannover [33,34,46].
Effective temperature corresponding to the minimum at the
plot E(I ) for the quantum-treatment result is about 310 μK
at frequency detuning δ = −5γ ≈ −2π × 130 MHz and the
light-field intensity I ≈ 1100 mW/cm2.

Aside from the temperature of an atomic ensemble, it is also
important to consider the profile of momentum distribution of

atoms in a cloud. It may be found very useful, in particular, for
velocity-selection “cooling” to achieve ultralow temperatures
(∼1 μK). Let us consider a group of atoms in the momentum
space with p � 3 �k. Figuratively speaking, we call this
fraction “ultracold.” Figure 4(b) shows the number of atoms
in the ultracold fraction Nc as the function of light-field
intensity I . The figure shows there is a maximum near
500 mW/cm2. It should be noted that position of this optimum
is not immediately the same as for the minimum of the
dependence Ekin(I ). Figure 4(b) demonstrates that about 40%
of atoms can be concentrated in the ultracold fraction. For
comparison, analogical dependence is presented, calculated
on the basis of semiclassical approach (dashed line), which
lies noticeably higher than the former one. The dependencies
Ekin(I ) and Nc(I ) lose to the semiclassical ones because
quantum treatment provides significantly different results for
the momentum distribution in the vicinity of p ≈ 0. Indeed,
Fig. 5 shows a very sharp spike in the semiclassical case and
a tiny peak as the result of quantum calculations.

C. Second stage: Cooling in an optical molasses

Fortunately, solution of the problem of deep laser cooling
of magnesium atoms can be found by involving the second

FIG. 5. Momentum distributions of magnesium atoms: compari-
son of semiclassical (dashed line) and quantum (solid line) treatments
δ = −5γ , R ≈ 0.22γ (I ≈ 20 mW/cm2).
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FIG. 6. (a) Average kinetic energy of an atom under lin ⊥ lin light-field configuration calculated on the basis of quantum treatment,
(b) ultracold fraction of atoms in a cloud. Light-field detunings are δ = −2γ (dashed line) and δ = −5γ (solid line).

stage of sub-Doppler cooling with the help of one-dimensional
optical molasses. The molasses is composed of two counter-
propagating light waves with orthogonal linear polarizations
(lin ⊥ lin configuration).

In contrast to σ+σ− configuration, in the case of lin ⊥
lin field the total-field polarization transforms from linear
to circular (and back) along the z axis (e.g., see [63]).
Consequently, there is no rotating transformation of coordinate
frame K that would make density matrix independent of the
z coordinate. Therefore, we must solve the set of equations
(19)–(22) on matrix ρ̂(z,q). We have solved the equation
numerically on the basis of the matrix continued fractions.
The details of the method can be found, for example, in [64]
and we do not reproduce it here. Instead of that, we just present
the numerical results.

Figure 6(a) demonstrates much lower minimum kinetic
energy than in case of σ+σ− field [see Fig. 4(a), solid line).
In particular, the minimum corresponds to E ≈ 16Erec at
I ≈ 300 mW/cm2 (Teff ≈ 80 μK). Besides, Fig. 6(b) shows
that ultracold fraction of atoms under lin ⊥ lin light field can
be higher than in case of σ+σ− [compared to Fig. 4(b)]. The
narrow structure in momentum profile near p ≈ 0 becomes
more visible than under σ+σ− field (compare Figs. 7 and 5,
solid lines). Therefore, the second cooling stage involving

FIG. 7. Quantum calculations of momentum distributions at δ =
−5γ . Field strengths: R ≈ 0.22γ , I ≈ 20 mW/cm2 (solid line) and
R ≈ 1.13γ , I ≈ 600 mW/cm2 (dashed line).

optical molasses can provide lower temperature as well as
a larger number of atoms in ultracold fraction (up to 60%).
After the second sub-Doppler cooling stage atoms may be
loaded, for instance, to a shallow dipole trap. At that, a “hot”
fraction of atoms (the wide background at Fig. 7) can be moved
away by proper choice of the light potential depth, saving only
the ultracold fraction in the trap with effective temperature
∼1 μK (stage of atomic velocity selection). It should be noted
that implementation of the second sub-Doppler stage should
eventually provide a much larger number of ultracold atoms
in a dipole trap (or an optical lattice) after velocity selection
in comparison with the case without the second sub-Doppler
stage.

D. Semiclassical remarks on laser cooling under
σ+σ− and lin ⊥ lin laser fields

Let us provide here some qualitative explanation of no-
ticeable difference in achievable kinetic energy of atoms
due to laser cooling under σ+σ− and lin ⊥ lin field’s
configurations. Indeed, Figs. 4(a) and 6(a) (solid lines) show
optical molasses demonstrates much lower temperatures than
in case of σ+σ− field in a MOT. It is well known that
these two configurations of laser field provide absolutely
different mechanisms of sub-Doppler cooling, which has
been theoretically and experimentally studied in details in
many papers (see, for instance, [63]). In our case, we can
state that sub-Doppler mechanism under σ+σ− field almost
does not work. Here, we give a qualitative explanation using
semiclassical concept of radiation force.

In the regime of sub-Doppler cooling (within low-saturation
limit S � 1), the light force has a dispersionlike profile (see
Fig. 8). In vicinity of small atomic velocities

kυ � γ S (34)

radiation force is a linear function of Doppler shift kυ. So, for
slow atoms this force can be treated as effective friction force
with friction coefficient ξ . Slope of the friction-force profile
near kυ ≈ 0 is defined by sub-Doppler cooling mechanism
[63]. Otherwise, at large atomic velocities regular Doppler
mechanism is put in action. This cooling process occurs
due to disbalance of spontaneous radiation forces from two
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FIG. 8. Force of radiation pressure affecting atoms with transition
Jg = 2 → Je = 3 under one-dimensional σ+σ− laser field config-
uration. Frequency detuning is δ = −5γ , saturation parameter is
S0 = 0.2. Linear approximation for slow atoms is denoted by dashed
line (friction force).

counterpropagating waves (see, for example, [9]). In particular,
neglecting localization effects of atoms under heterogeneous
optical potential of a laser field one can figure out that
for slow-atoms condition steady-state velocity distribution of
atoms is represented by simple Gaussian profile (see, for
instance, Refs. [9,55] and Ref. [54]). Shape of this profile
is defined by temperature as the ratio 〈D〉z to 〈ξ 〉z. Here, D

is diffusion coefficient independent on atomic velocity, 〈. . . 〉z
means averaging over space coordinate z. Eventually, under
low-saturation limit temperature is linearly proportional to
saturation parameter

kBT = �γβS0, (35)

where β is the dimensionless function of frequency detuning δ,
S0 is the saturation parameter (3) at exact resonance condition
δ = 0. Function β in significant manner depends on the
light-field configuration. In cases of optical atomic transitions
Jg = 1/2 → Je = 3/2 under lin ⊥ lin light-field configuration
and Jg = 1 → Je = 2 under σ+σ− configuration equations
for the coefficients of diffusion D and friction ξ were found in
Ref. [63] (for arbitrary laser-field configuration the equations
were derived in Ref. [67]). Figure 9 shows the profile of
function β for magnesium atom and transition Jg = 2 →
Je = 3. It means that at certain saturation parameter (intensity
of light field) for considering frequency detuning region the
temperature of atoms under lin ⊥ lin configuration is always
noticeably lower than under σ+σ− field. Nevertheless, it
should be noted that with small saturation parameters the linear
dependence of temperature (35) is valid only for slow atomic
velocity assumption (34). Combining (34) and (35) we come
to the new requirement

�k2

γM
β � S0 , (36)

that leads to severe limitation in the case of small saturation
parameters (S0 < 1)

ω̃recβ � S0, (37)

FIG. 9. Semiclassical estimation of sub-Doppler cooling tem-
perature in units of �γ S0/kB for atoms with transition Jg = 2 →
Je = 3 under the condition (34). Solid line is for σ+σ− laser field
configuration and dashed line is for lin ⊥ lin one.

where dimensionless recoil frequency ω̃rec = ωrec/γ . This new
strict requirement is similar to the semiclassical condition (1),
and it must be satisfied to make the semiclassical approach
valid [60].

In case of magnesium, the parameter ωrec/γ can be not
small enough to satisfy the strict requirement (37) and,
therefore, Eq. (35) can be inadequate for estimating the
temperature. In this case, the full (nonlinear) dependence of
diffusion coefficient and radiation force on the atomic velocity
must be taken into account. Then, in general, steady-state
velocity distribution is not just Gaussian type and should be
defined via the equation [54]

f (υ̃) = const

〈D(υ̃)〉z exp

[∫ υ̃

−∞

〈F (υ̃ ′)〉z
2ωrec〈D(υ̃ ′)〉z dυ̃ ′

]
. (38)

Here, radiation force F and diffusion coefficient D are
defined by �kγ and (�k)2γ , respectively, υ̃ is the dimen-
sionless Doppler shift kυ/γ . In the one-dimensional case the
corresponding effective temperature can be found from the
following equation:

Teff/Trec = 1

4ω̃rec

∫ +∞

−∞
υ̃2f (υ̃)dυ̃ , (39)

where Trec = 2�ωrec/kB is the recoil temperature.
As one can see, function β is much larger for the σ+σ−

field than for the lin ⊥ lin one. It means that linear regime
(35) for certain saturation parameter S0 may be justified for
the lin ⊥ lin field, showing sub-Doppler temperatures, and
may be not valid for the σ+σ− field, that results in much
higher temperatures in the last case. In other words, light
magnesium atoms, having not enough small recoil frequency
ωrec, do not feel influence of sub-Doppler mechanism on the
friction force, and the cooling process is determined mainly by
regular Doppler cooling mechanism under counterpropagating
waves.

IV. CONCLUSION

In conclusion, we would like to summarize the main
results of our work. We have suggested using the second
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sub-Doppler cooling stage to solve the problem of deep laser
cooling of magnesium atoms. The first stage implies using
a regular magneto-optical trap involving dipole transition
between triplet states 3 3P2 and 3 3D3. In particular, this stage
was used in the experiment of researches from Hannover
University [46]. In spite of the level 3 3P2 is degenerate
and one could anticipate activation of effective sub-Doppler
mechanism of cooling under polarization-gradient field [63],
however, conducted theoretical analysis (in 1D) has figured
out the minimum temperature at the level of 310 μK, which
is just a little bit lower than the estimate for Doppler
limit of cooling (TD ≈ 425 μK). To reduce this value by
several times we have proposed and analyzed the second
laser-cooling stage involving an optical molasses composed
of two counterpropagating orthogonally linearly polarized
waves (lin ⊥ lin field configuration). In contrast to the σ+σ−
field, usually applied in a MOT, the optical molasses can
provide much lower temperature (80 μK). At the same time,
the minimum achievable temperature of laser cooling in the
case of 24Mg still is noticeably higher than for some other
atoms, where sub-Doppler mechanism brought much better
results. It is most likely due to relatively large recoil energy
of magnesium atom. For instance, for considered transition
in magnesium recoil frequency ωrec ≈ 2π × 53 kHz, while
for 133Cs (2S1/2, F = 4 → 2P3/2, F = 5) this frequency
is significantly smaller (ωrec ≈ 2π × 2 kHz), that allowed
cooling cesium atoms down to 2.5 μK [68].

Aside from temperature (average kinetic energy) of the
atomic ensemble, we have also paid attention to the linear
momentum distributions in the steady state. In particular, we
have investigated the problem of increasing concentration of
atoms in the ultracold fraction (a region in momentum space in
the vicinity of p = 0). Conducted numerical calculations have
revealed the optimum parameters of laser field to maximize
the ultracold fraction (Teff ∼ 1 μK). This fraction can be easily
localized in the shallow optical trap, while the other fraction
(“hot” atoms) can be removed from the trap by proper choice of
the optical depth (it can be called as “cooling” by selection of
atomic velocities). At that, it is the second stage of sub-Doppler
cooling to provide great increase of ultracold atomic number
in comparison with the case when only the first stage has been
implemented (e.g., as in the experiments [33,34,46]).

In our theoretical analysis, quantum treatment has been
exploited with taking into account the recoil effect, i.e., we
have not been limited by semiclassical or secular approxima-
tions as well as a weak-field limit. It has allowed us to study
kinetics of cold magnesium in a wide range of intensity and
frequency detuning to determine the optimum parameters of a
laser field. Also, we have compared data provided by quantum

and semiclassical approaches. As a result, we can conclude that
the semiclassical approach in case of transition 3 3P2 → 3 3D3

in 24Mg is not valid for an adequate understanding of the
kinetics of ultracold magnesium atoms for a wide range of
light-field parameters. Moreover, we can also conclude that to
get an adequate estimate of cooling parameters and understand
the problems of deep laser cooling of magnesium atoms, it is
quite necessary to treat the problems with the help of a quantum
approach.

In the end, we should note that in spite of the fact that a
theoretical analysis has been performed beyond many widely
used approximations, we have assumed the problem to be
one dimensional. However, light-field configuration used in
a magneto-optical trap is always three dimensional (three
pairs of circularly polarized beams). Therefore, obviously,
the results of such 1D analysis may differ from the real
experiment with a 3D field. For example, one can refer to
the papers [69,70] for getting the estimate of such kind of
difference. In these papers, calculations were made for 1D and
3D configurations by the example of simple transition Fg =
0 → Fe = 1 under limits of semiclassical and slow-atoms
approximations. At the same time, an optical molasses (the
second cooling stage suggested), which is the most interesting
from the viewpoint of deep laser cooling, can be implemented
both in 3D and 1D configurations. Three-dimensional optical
molasses for various transitions of the type Fg = F → Fe =
F + 1 was investigated in Ref. [71] under weak-saturation
approximation and with the help of adiabatic reduction of
density matrix equations to the ground state. Unfortunately,
that approximation does not give good results for a wide
range of light-field intensity and frequency detuning that are
of a great interest to laser cooling (e.g., see the work [64],
where the results of adiabatic approximation were compared
to the results of a full quantum treatment). Three-dimensional
quantum treatment with a full account of the recoil effect and
beyond the aforesaid approximations is quite challenging and
requires to be studied separately.
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