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Universal nonmonotonic structure in the saturation curves of magneto-optical-trap-loaded Na+ ions
stored in an ion-neutral hybrid trap: Prediction and observation
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We predict that the maximal, steady-state ion capacity Ns(λ) of radio-frequency (rf) traps, loaded at a rate of λ

particles per rf cycle, shows universal, nonlinear, nonmonotonic behavior as a function of loading rate λ. The shape
of Ns(λ), characterized by four dynamical regimes, is universal; i.e., it is predicted to manifest itself in all types
of rf traps independent of the details of their construction and independent of particle species loaded. For λ � 1
(region I), as expected, Ns(λ) increases monotonically with λ. However, contrary to intuition, at intermediate λ ∼ 1
(region II), Ns(λ) reaches a maximum, followed by a local minimum of Ns(λ) (region III). For λ � 1 (region IV),
Ns(λ) again rises monotonically. In region IV, numerical simulations, analytical calculations, and experiments
show Ns(λ) ∼ λ2/3. We confirm our predictions both experimentally with magneto-optical-trap-loaded Na+ ions
stored in a hybrid ion-neutral trap and numerically with the help of detailed ab initio molecular-dynamics
simulations.
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I. INTRODUCTION

Radio-frequency (rf) traps [1,2] are important devices in
widespread use for the long-term storage of charged particles.
These traps come in a multitude of shapes and sizes [1–6] and
their applications range from high-resolution spectroscopy [7]
to atomic clocks [8] and quantum computers [9]. They have
also been used in nonlinear dynamics for the investigation
of nonlinear phenomena ranging from crystallization [10–13]
to the investigation of strange attractors [14]. A fundamental
problem of great theoretical and practical interest is the
maximal ion capacity Ns(λ) of rf traps loaded at a constant
rate of λ particles per rf cycle. While the absolute value of
Ns depends on the trap’s physical size and the details of its
construction, the qualitative dependence of Ns(λ) on λ does
not. In fact, we found that the shape of Ns(λ) is universal, i.e.,
it is the same for any kind of rf trap, and shows four clearly
defined dynamical regimes, which we label regions I to IV. In
this paper, based on physical arguments and detailed ab initio
molecular-dynamics simulations, we predict the qualitative
shape of the universal curve Ns(λ) and experimentally verify
our predictions with the help of a magneto-optical-trap-loaded
(MOT-loaded) ion-neutral trap [15]. While knowledge of the
steady-state ion capacity Ns of rf traps in general is in itself
an important fundamental problem, the results are also of
practical interest in atomic physics. Collision-rate experiments
[15–20], e.g., use the steady-state ion capacity to measure
the total collision rate, because it ensures constant density,
size, and temperature conditions during the measurement.
This is particularly helpful when working with optically dark,
closed-shell ions such as Rb+ and Na+.

Our paper is organized as follows. In Sec. II we present the
basic dynamical equations for the three-dimensional (3D) Paul
trap and the linear Paul trap used in our molecular-dynamics
simulations together with the methodology according to which
our simulations are performed. In this section we also present
the theoretical evidence for the four nonlinear loading regimes
encountered in these two trap types. In Sec. III we present

our experimental evidence that confirms the prediction of
the four different dynamical regimes. In particular, in the
case of the linear Paul trap, we confirm the presence of the
dip characterizing the dynamical region III. In Sec. IV we
discuss our results. We summarize and conclude our paper
in Sec. V. We also provide an Appendix in which we derive
the differential equation whose stationary solution yields the
fundamental scaling relation Ns(λ) ∼ λ2/3 in region IV.

II. THEORY

Initially, we discovered the nonlinear, nonmonotonic struc-
ture of Ns(λ) in molecular-dynamics loading simulations of a
three-dimensional (3D) Paul trap. We denote by r0 and z0 the
distances of the ring electrode and the end-cap electrodes from
the trap’s center, respectively; by U0 and V0 the amplitudes
of the dc and ac voltages applied to the trap, respectively; by �

the damping constant (generated, e.g., by laser cooling [12]);
and by ω the (angular) frequency of the trap’s ac voltage. The
(dimensionless) equations of motion of N particles in the trap
[�r = (x,y,z)] are [21,22]

�̈ri + γ �̇ri + [a − 2q sin(2t)]

⎛
⎝ xi

yi

−2zi

⎞
⎠ =

N∑
j = 1
j �= i

�ri − �rj

|�ri − �rj |3 , (1)

where i = 1, . . . ,N labels the trapped particles;

q = 4QV0

mω2
(
r2

0 + 2z2
0

) , a =
(

2U0

V0

)
q, (2)

are the two control parameters of the Paul trap [1,12,13]; time
is measured in units of

τ0 = 2

ω
; (3)

and distances are measured in units of

l0 = (Q2/πε0mω2)1/3, (4)
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where Q is the charge and m is the mass of each of the trapped
particles, ε0 is the permittivity of the vacuum, and

γ = τ0� = 2�

ω
(5)

is the dimensionless damping constant. We use dimensionless
quantities in this section because only this way is it possible
to see that the equations of motion of particles in the Paul
trap do not depend on the six physical parameters r0, z0,
�, ω, Q, and m separately, but only on the three scaled,
dimensionless parameters a, q, and γ . Therefore, instead
of the need to explore a six-dimensional parameter space,
which is practically impossible, we only need to explore
a three-dimensional parameter space. This grows to four
dimensions, if we include the loading rate λ.

In our simulations particles are created, one at a time,
at times tk , k = 1,2, . . ., either with zero initial velocity (a
good approximation for MOT-loaded ions [23]) or with a
thermal velocity distribution as discussed below. Assuming
that the creation times are uncorrelated, the time intervals
	tk = tk+1 − tk are Poissonian distributed with probability
distribution P (	t) = λ exp(−λ	t). Concerning their spatial
distribution, we assume that the particles are created at random
positions with uniform distribution within an ellipsoidal
volume with semimajor axes Lx,Ly,Lz, centered at the origin
of the trap. This includes the case of a spherical loading zone
of radius R, in which case we have R = Lx = Ly = Lz. In the
time interval between any two creation events, i.e., for tk < t <

tk+1, the particles in the trap are governed by the equations of
motion (1). When arriving at tk+1, and before creating the
next particle, we check whether one or more particles have
left the trap by crossing an absorbing boundary. The existence
of an absorbing boundary is a fundamental property of all
rf traps, which determines and limits the storage capacity of
any given trap. This boundary may be due to any number of
unavoidable physical causes, such as the trap’s electrodes or
instabilities induced by higher-order rf multipoles [5]. Since all
traps are constructed differently, and to show that our predicted
effect is robust with respect to various geometries of absorbing
boundaries, we used spherical boundaries of radius Rsph; boxes
with side lengths 2xbox,2ybox,2zbox; and cylinders with radius
Rcyl in the x-y plane and length 2zcyl = {[q2/(4B)] − 1/2}1/2

in z direction to cover a wide variety of possible boundary
geometries. Following instantaneous deletion of all particles
that exceed the confines of the absorbing boundary, the next
particle is loaded at t = tk+1. This procedure is followed for
all tk until a prespecified maximal simulation time is reached.

The result of a typical trap loading simulation for a spherical
loading zone with R = 3 is shown in Fig. 1. The red (gray)
fluctuating line in Fig. 1 shows the time evolution of the particle
number N (t) in the trap for λ = 1 as a function of t (in rf
cycles) for q = 0.2, a = 0.02, and Rsph = 15. A near linear
rise of N (t) is followed by a sharp bend into a steady state in
which N (t) fluctuates around Ns = 〈N (t)〉t , the time average
of N (t) in the steady state.

For many applications (see, e.g., Refs. [15,19]) it is
necessary to know Ns(λ) for a given rf trap. Figure 2 shows
Ns(λ) as a function of loading rate λ for the same Paul trap
control parameters used to generate Fig. 1. The resulting
curve in Fig. 2 clearly shows four distinct regimes, labeled
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FIG. 1. (Color online) Number of particles N (t) in a 3D Paul trap
as a function of t (in rf cycles), loaded with loading rate λ = 1 particle
/ rf cycle inside of a spherical volume of radius R = 3 centered at the
origin of the trap. Particles are absorbed at a critical distance Rc = 15.
Trap control parameters are γ = 0, q = 0.2, a = 0.02. Inset: Test of
the loading equation (6) for a loading rate λ = 300 particles / rf
cycle. Red (gray) solid line: Number of particles N (t) obtained via
numerical simulation of the loading process. Blue (gray) dotted line:
Prediction according to (8).

I to IV. Region IV is the most straightforward to understand
physically; therefore, we discuss it first. In region IV, the
loading rate is so large that a large space-charge density
develops in the loading region. The resulting large electric field
accelerates the loaded particles outward toward the absorbing
boundary where the particles are lost from the trap. Since in this
case the forces due to the space charge completely overwhelm
the forces due to the trap fields, the particles’ dynamics are
accurately described as a Coulomb explosion [24]. Denoting
the number of particles inside of the loading zone by Ñ (t) [in
contrast to N (t), which refers to the total number of particles
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FIG. 2. (Color online) Nonmonotonic loading curve Ns(λ) for a
3D Paul trap with γ = 0, q = 0.2, a = 0.02, R = 3, and Rsph = 15.
Solid green (gray) dots: Results of 3D molecular dynamics loading
simulations. The red (gray) bars indicate the amplitudes of the N (t)
fluctuations in the saturated state. For the first two dots the N (t)
fluctuations are smaller than the plot symbols. The four distinct
regions of the loading curve are labeled I to IV. The red (gray)
solid line is the curve Ns(λ) = 5.2 × λ2/3, which confirms the ∼λ2/3

behavior of 3D Paul traps in region IV.
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in the trap], the temporal evolution of the number of particles,
Ñ (t), inside of the loading zone is governed by the differential
equation (see the Appendix)

dÑ (t)

dt
= λ̃ −

(
Ñ (t)

R̃

)3/2

, (6)

where R̃ = [16/(9π )]2/3R ≈ R is the effective radius of the
loading volume and λ̃ is the number of particles loaded per
unit of dimensionless time. According to (A1), λ̃ is related to
λ, the number of particles loaded per rf cycle by λ̃ = λ/π .
In the stationary state, we have dÑ (t)/dt = 0. Therefore, we
obtain from (6)

Ñs(λ) = R̃ λ̃2/3 =
(

16

9π2

)2/3

R λ2/3. (7)

Because of continuity, the steady-state number of particles in
the trap, Ns(λ), is proportional to the number of particles in
the loading region, Ñs(λ). Therefore, the λ2/3 dependence of
Ñs(λ) is reflected in Fig. 2 (solid red [gray] line). Because
there are more particles in the trap than there are in the loading
zone, the prefactor 5.2 of λ2/3, stated in the caption of Fig. 2, is
larger than the prefactor (16/π2

√
3)2/3 ≈ 1 of λ2/3, computed

from (7) with R = 3.
The solution of (6) can be stated implicitly in closed form:

t = − 2R̃

3λ̃1/3

{
ln(α − Ñ1/2) − 1

2
ln(Ñ + αÑ1/2 + α2)

+
√

3 arctan

(
2Ñ1/2 + α

α
√

3

)
−

√
3 arctan

(
1√
3

)}
, (8)

where α = R̃1/2λ̃1/3. That (8) is indeed a solution of (6) may
be checked immediately by differentiating (8) with respect to
t . Since the trap potentials are not important in region IV, the
results (6)–(8) apply universally to all rf traps, for instance 3D
or linear Paul traps.

In order to test (8), we chose R̃ = 3 and a large loading
rate of λ = 300 particles / rf cycle to be sure that we are in
region IV. The result of the corresponding molecular dynamics
simulation of N (t) is shown as the solid, fluctuating red (gray)
line in the inset of Fig. 1. The blue (gray) dotted line in the
inset of Fig. 1 is the prediction according to (8). Both agree
perfectly within the expected fluctuations of N (t), which are
due to the Poissonian loading process.

While for large λ the trap potentials are not important,
they become progressively more important when λ is lowered.
In this case, for sufficiently low λ, particles created close to
the edge of the loading zone no longer have enough energy
to overcome the trap potentials and are reflected back into
the interior of the trap. When back-reflection occurs, fewer
particles escape and Ns(λ) increases for decreasing λ up to a
maximum in region II, effectively creating a dip in region III
(see Fig. 2). However, the reflected particles will not stay in
the trap forever. Due to rf heating [12,21], and given enough
time (small loading rates), these particles will heat out of the
trap, eventually lowering the number Ns(λ) of stationary-state
particles in the trap below the bottom of the dip in region
III (see Fig. 2), thus explaining both the formation of the
maximum in Ns(λ) (region II in Fig. 2) and the eventual decline
of Ns(λ) in the direction of ever diminishing loading rates
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FIG. 3. (Color online) 3D Paul trap capacities Ns(λ) for various
trap control parameters q and γ = 0. Solid red (gray) squares: q =
0.1; open blue (gray) circles: q = 0.15; solid cyan (gray) circles:
q = 0.2; open black triangles: q = 0.25; solid gray triangles: q = 0.3.
The trap parameter a associated with each of the five q values is
a = q2/2. The four dynamical regimes are labeled I to IV. The solid
red (gray) lines connecting the data points are drawn to guide the eye.
All five curves asymptote to Ns(λ) ∼ λ2/3 for large λ.

(region I in Fig. 2). Since rf heating is a universal feature of all
rf charged-particle traps, we predict that the qualitative shape
of Ns(λ) is universal for all rf traps.

To strengthen the claim of universality of the nonmonotonic
curve shown in Fig. 2, we show in Fig. 3 the saturated number
of particles Ns(λ) as a function of loading rate λ for several
values of q with a = q2/2, Lx = Ly = 3, Lz = 6, and xbox =
ybox = zbox = 15. All five curves in Fig. 3 clearly show all four
dynamical regimes, again labeled I to IV. This shows that the
nonmonotonic behavior is robust with respect to (a) a change in
q, (b) a change in the geometry of the loading zone (spherical
in Fig. 2; ellipsoidal in Fig. 3), and (c) a change in the geometry
of the absorbing boundary (spherical in Fig. 2; cubic in Fig. 3).
This applies in particular to region IV, in which all five curves
in Fig. 3 are seen to converge to the same ∼λ2/3 asymptote. The
independence of a and q in region IV is explained by (6), which
is independent of the trap potentials and therefore independent
of the trap parameters a and q. Figure 3 also shows that the
dip becomes shallower with both increasing and decreasing
q and shifts to the right with increasing q. In addition, we
see that region II becomes more extended with decreasing q.
At present we do not have a theoretical explanation for these
observed effects.

To check the universality of the nonmonotonic behavior,
we also simulated a linear Paul trap [25] whose equations of
motion, in the notation and units of (1), are given by⎛

⎝ẍi + [a − 2q sin(2t)]xi − Bxi

ÿi − [a − 2q sin(2t)]yi − Byi

z̈i + 2Bzi

⎞
⎠ =

Nk∑
j = 1
j �= i

�ri − �rj

|�ri − �rj |3 , (9)

where B is a positive constant. We simulate the loading process
of the linear Paul trap in analogy to the 3D Paul trap as
discussed above with a loading region of radius R = 3, located
at the geometric center of the linear trap and a cylindrical
absorbing boundary with Rcyl = 15. This time, however, we
use the equations of motion (9) between creation times.
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FIG. 4. (Color online) Saturation curves Ns(λ), for a linear Paul
trap. Pluses (red [gray]): q = 0.35; crosses (blue [gray]) q = 0.40;
diamonds (cyan [gray]): q = 0.45; open squares (black): q = 0.50;
solid squares (gray): q = 0.55; open circles (green [gray]): q = 0.60;
solid circles (magenta [gray]): q = 0.65; open triangles (brown
[gray]): q = 0.70. The solid lines (red [gray]) connecting the data
points are drawn to guide the eye. All eight curves asymptote to
Ns(λ) ∼ λ2/3 for large λ. The labels I to IV refer to the four different
dynamical regimes.

Figure 4 shows the resulting Ns(λ) for eight different q values
with a = 0 and B = 0.042. We clearly see the four different
regions of Ns(λ), observed previously in the case of the 3D Paul
trap. This provides corroborating evidence for the universal
nature of the shape of Ns(λ) for all types of rf traps.

III. EXPERIMENT

The ultimate test of our theoretical predictions is an ex-
periment. For this purpose we used a MOT-loaded ion-neutral
hybrid trap [15]. Figure 5 shows the results of our experiments.
All four predicted dynamical regimes are present and the shape
of the experimental Ns(λ) curve is seen to be qualitatively
the same as predicted by the model simulations and our
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Ns

FIG. 5. (Color online) Experimental saturation curve for the hy-
brid trap [15], operated with q = 0.26. All four predicted dynamical
regimes are present. The solid line (red [gray]) is the curve Ns =
48000λ2/3. The error bars represent the statistical errors associated
with multiple data runs. The zero point of the horizontal scale is
suppressed.

qualitative analysis of the physical mechanisms that determine
the steady-state populations in rf traps. From the experimental
data we obtain ε = 0.745 ± 0.098 for the exponent ε in
Ns(λ) ∼ λε , which is consistent with the predicted value
ε = 2/3 in region IV (solid line in Fig. 5). We note that,
corroborating the universality claim, the qualitative shape of
the nonlinear, nonmonotonic behavior of Ns(λ) was observed
in all of our simulations and experiments, independent of rf
amplitudes, rf frequencies, and MOT sizes. With a depth of
about 5%, the dip in Fig. 5 is small. However, notice that
the experimental q of q = 0.26 is small; this observation is
consistent with Fig. 4, which shows that the depth of the dip
decreases with decreasing q.

IV. DISCUSSION

To strengthen the universality claim and to emphasize the
robustness of our predictions, we performed numerous addi-
tional simulations that all confirmed that the qualitative shape
of the saturation curve, characterized by its four dynamical
regimes, is insensitive to both the type of traps used and their
particular loading mechanisms. In particular, we performed
additional simulations with (a) various shapes of the loading
ellipse with aspect ratios of Lx : Ly : Lz up to 1:1:4, (b)
replacing the Poissonian distribution of loading times with a
uniform distribution, (c) replacing the uniform spatial distribu-
tion with a Gaussian distribution, (d) various geometries of the
absorbing boundary and boundary locations, and (e) increasing
the number of trapped particles to up to 1000 by changing
the diameter of the absorbing boundary. All five numerical
tests confirmed the qualitative shape of Ns(λ) as shown in
Figs. 2–5. In addition, we performed the following two checks
concerning ion cooling and the effect of temperature.

In many ion-trap experiments, strong laser cooling is
continuously switched on, even during the loading stage (see,
e.g., Ref. [12]). Therefore, to test the influence of cooling
during trap loading, we ran additional 3D Paul-trap loading
simulations with strong damping switched on, so strong in
fact, that it would crystallize the ions [10–12,25] if we were
not constantly loading. This corresponds to γ values between
5 × 10−4 and 10−3. As a result we find that we still have all
four dynamical regimes, in particular the dip. Moreover, the
Ns(λ) curves in the two cases (with and without damping,
respectively) are nearly identical, differing from each other
only within the natural fluctuations of Ns due to the Poissonian
loading process. In some of our more recent simulations, just
to push the envelope, we increased the damping to five times
the one needed for crystallization (γ = 5 × 10−3). It still did
not have any effect on the qualitative shape of the loading
curves. Thus, we conclude that the presence of laser cooling
that can realistically be achieved experimentally has no effect
on our predicted phenomena. We also mention that a large
laser cooling power does not necessarily result in a large γ ,
since γ represents the balance between laser cooling and the
substantial amount of heating caused by the loading process.

In our experiments we load from a cold MOT and the
assumption of zero kinetic energy at the instance of charged-
particle creation is justified. However, in case the trap is loaded
by ionizing the rest gas or via a thermal neutral beam, the
particles may be created with substantial initial kinetic energy.
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To test the effect of initial kinetic energy on our predictions,
we performed additional loading simulations, imparting a
random velocity on each particle at the instant of its creation
whose energy equivalent was up to 20% of the trap depth.
In our experiments this would be equivalent to about room
temperature. Even in this case we are still able to observe all
four dynamical regions. The explanation is that in steady state
there is an equilibrium between particles created and particles
leaving the trap. Those that leave already have kinetic energies
of the order of the trap’s depth, which they are able to impart,
via Coulomb collisions, to newly created particles. Therefore,
the fact that particles are created with a kinetic energy less than
the trap’s depth is only a minor perturbation on the energetic
particle dynamics that is already going on inside of the trap.

In our simulations we found that the dip in region III is
more pronounced if the absorbing boundaries are further from
the edges of the loading zone. This observation explains why
the dip is more pronounced in Fig. 2 compared with the dips in
Fig. 3. In Fig. 3 we used an elliptical loading zone with Lz = 6
compared with the spherical loading zone in Fig. 2 with R = 3.
Therefore, in the z direction, it is easier for the particles in Fig. 3
to bridge the gap to the absorbing boundary, because many of
them are already created closer to the absorbing boundary. The
shorter distance to cover results in a shallower dip.

V. SUMMARY AND CONCLUSIONS

In this paper we report the discovery of the nonmonotonic
shape of the saturated ion number Ns(λ) of rf traps as
a function of loading rate λ and present evidence for its
universality. Four dynamical regions are predicted. In region
I, Ns(λ) increases monotonically with λ, reaching a maximum
(region II) at intermediate loading rates λ, followed by a valley
(region III), and an ultimate ∼λ2/3 increase of Ns(λ) for very
large loading rates. We argue that the four regions are expected
on the basis of physical reasons and are caused by the interplay
between trap potentials, space-charge effects, and rf heating.
The validity of our predictions, in particular their universality,
is corroborated with the help of ab initio molecular-dynamics
simulations of a 3D Paul trap and a linear Paul trap, which
both show the predicted qualitative shape of Ns(λ). The
theoretical predictions are confirmed experimentally with the
help of Na+ ions in a MOT-loaded linear Paul trap.

Apart from our research group [15], several other groups
[16–20] have the necessary experimental facilities to test our
predictions in the case of MOT-loaded traps, and since, as we
showed, the predicted phenomenon is robust with respect to
rf trap types, loading mechanisms, and temperature effects,
we hope that other research groups may soon test and confirm
our predictions.
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APPENDIX: REGION IV DIFFERENTIAL EQUATION

In this Appendix we present a simple, explicitly solvable,
analytical model that reproduces the λ2/3 scaling of Ns in

region IV, the fast-loading regime. While in Sec. II we used
dimensionless quantities to bring out the scaling properties of
the Paul-trap equations, it is more convenient in this Appendix
to derive our equations using SI units. In these units, we denote
time (measured in seconds) by τ , the loading rate (measured
in particles per second) by �, and the radius of the loading
zone (measured in meters) by R̂. However, in order to make
contact with the formulas in Sec. II, it is convenient to define
λ, as we did in Sec. II, as the number of particles loaded per rf
cycle, and by

λ̃ = τ0� = 2�/ω = λ/π (A1)

the dimensionless loading rate per unit of dimensionless time.
The unit of time, τ0, in (A1) is defined in (3). The last equality
in (A1) comes about since in dimensionless time an rf cycle
has a length of π [see (1)].

We are now ready to start our derivation of Eq. (6) in Sec. II,
which holds in region IV. As discussed in Sec. II, in this region
we may neglect the trap potential altogether. We assume that
the trapped particles are created at random locations inside of
a sphere of radius R with uniform probability distribution and
loading rate λ. If there are Ñ particles present inside the sphere
of radius R̂, the charge density, approximated as a continuous
distribution, is

ρ = 3ÑQ

4πR̂3
, (A2)

where Q is the charge of each trapped particle. Using Gauss’s
law, the radial electric field, pointing outward, a distance r

away from the center of the sphere, is

E = ρr

3ε0
. (A3)

Therefore, the radial, outward-directed force experienced by
an ion a distance r away from the loading sphere is

F =
(

ρQr

3ε0

)
=

(
ÑQ2

4πε0R̂3

)
r. (A4)

This equation shows that the force experienced by a single
trapped particle is like the harmonic force of an inverted
oscillator. Therefore, the equation of motion of the ion is

mr̈ = F ⇒ r̈ = Ñ2r, (A5)

where m is its mass and

 =
(

Q2

4πε0mR̂3

)1/2

. (A6)

The general solution of (A5) is

r(τ ) = A exp(
√

Ñτ ) + B exp(−
√

Ñτ ), (A7)

where A and B are constants. If we assume that at τ = 0 the
particle is created a distance s away from the center of the
loading sphere, (A7) may be written as

r(τ ) = s cosh(
√

Ñτ ), (A8)

and the velocity of the particle is

ṙ(τ ) = s
√

Ñ sinh(
√

Ñτ ). (A9)
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Define T0 as the time it takes the particle to reach the rim of
the loading sphere at radius R̂ if the ion starts at radius s with
zero velocity. Then

R̂ = s cosh(
√

ÑT0) (A10)

⇒ cosh(
√

ÑT0) = R̂

s
. (A11)

When it arrives at R̂, the velocity of the ion is

v0 = s
√

Ñ sinh(
√

ÑT0). (A12)

Use (A11), together with cosh2(x) − sinh2(x) = 1, to write
(A12) in the form

v0 =
√

Ñ
√

R̂2 − s2. (A13)

Next, we compute the average velocity v̄0 with which a
randomly created particle arrives at R̂. Denoting by V the
volume of the loading sphere, V = 4πR̂3/3, and using the fact
that we assume a uniform probability distribution of particle
creation positions within the sphere, we obtain

v̄0 =
√

Ñ

V

∫
V

√
R̂2 − s2 dV

= 3
√

Ñ

R̂3

∫ R̂

0
s2

√
R̂2 − s2 ds = 3

16
πR̂

√
Ñ . (A14)

Since the average ion arrives at R̂ with an average velocity v̄0,
directed radially outward, the average number dNl of particles
lost from the loading sphere in time dτ is the number of
particles in a shell of radius R̂ and width v̄0dτ . Explicitly,

dNl = ρ

Q
4πR̂2v̄0dτ =

(
9π

16

)
Ñ3/2dτ. (A15)

The number of particles gained due to loading with rate � is

dNg = �dτ. (A16)

Therefore the total change dÑ in the number of particles
present in the loading sphere is

dÑ = dNg − dNl = �dτ − CÑ3/2dτ, (A17)

where

C = 9π

16

(
Q2

4πε0mR̂3

)1/2

. (A18)

Dividing (A17) by dτ , we obtain a first-order differential
equation for the number of particles Ñ inside the loading
sphere:

dÑ

dτ
= � − CÑ3/2. (A19)

To transform this equation into its dimensionless form, we use
the unit of time, τ0, and the unit of length, l0, defined in (3)
and (4), respectively, which relates τ , �, and R̂ in SI units
to their dimensionless counterparts, t , λ, and R, respectively,
according to [see also (A1)

τ = tτ0, � = λ̃/τ0, R̂ = Rl0. (A20)

Using (A20) in (A19) and defining

R̃ =
(

16

9π

)2/3

R, (A21)

we arrive at

dÑ

dt
= λ̃ −

(
Ñ (t)

R̃

)3/2

, (A22)

which is identical with (6) of Sec. II.

[1] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
[2] P. K. Ghosh, Ion Traps (Clarendon Press, Oxford, 1995).
[3] H. Dehmelt and N. Yu, Proc. Natl. Acad. Sci. USA 94, 10031

(1997).
[4] C. Champenois, M. Knoop, M. Herbane, M. Houssin, T. Kaing,

M. Vedel, and F. Vedel, Eur. Phys. J. D 15, 105 (2001).
[5] R. Alheit, Th. Gudjons, S. Kleineidam, and G. Werth, Rapid

Commun. Mass Spectrom. 10, 583 (1996).
[6] C. A. Schrama, E. Peik, W. W. Smith, and H. Walther, Opt.

Commun. 101, 32 (1993).
[7] J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. A

36, 428 (1987).
[8] J. C. Bergquist, S. R. Jefferts, and D. J. Wineland, Phys. Today

54, 37 (2001).
[9] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[10] F. Diedrich, E. Peik, J. M. Chen, W. Quint, and H. Walther, Phys.
Rev. Lett. 59, 2931 (1987).

[11] D. J. Wineland, J. C. Bergquist, W. M. Itano, J. J. Bollinger, and
C. H. Manney, Phys. Rev. Lett. 59, 2935 (1987).
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