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Differential ionization of a one-electron target under bare-ion impact:
Application to proton-impact ionization of atomic hydrogen
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A single-center coupled pseudostate approximation originally used by McGovern et al. [Phys. Rev. A 79,
042707 (2009)] to study differential ionization under ion impact is extended to take account of electron exchange.
The approximation is fully quantal and includes the interaction between the projectile and target nuclei as well
as post-collisional interactions between the ionized electron and the two nuclei. Calculations are presented for
proton-impact ionization of atomic hydrogen at 75 keV. These include fully (triple) differential cross sections
which illustrate how the post-collisional interaction switches from being dominated by the interaction between the
ejected electron and the target nucleus to being dominated by the electron interaction with the projectile nucleus
(charge exchange to the continuum). Comparison is made with some measurements of the double differential
cross section with respect to ejected electron energy and proton scattering angle. While overall agreement between
theory and the experimental data is encouraging, detailed agreement is lacking. The need for more experimental
work is emphasized.
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I. INTRODUCTION

To fully understand ionization dynamics it is essential
to study it at the differential level. To guide theoretical
understanding the availability of suitable experimental mea-
surements is important. For heavy particle impact such mea-
surements, of increasing sophistication, have recently become
available, e.g., [1–20]. Most useful are fully differential mea-
surements [11–20]. Mostly the target has been He or something
heavier [5,8–10,20]. But with such targets understanding the
dynamics is further complicated by not having exact target
wave functions. Ideally, the target is H for which exact analytic
wave functions exist. While fully differential measurements
have not yet been made for H, some very testing double
differential data have recently appeared [18,19]. A number
of different theoretical approximations have been matched
against these data [19] but none have provided a completely
satisfactory description.

Recently, we developed a powerful coupled pseudostate
approximation to describe differential ionization under heavy
particle impact [21–24]. This has been applied to ionization of
He and Li by protons, C6+, O8+, Au24+, and Au53+ [25–28]
at elevated impact energies. The approximation is designed
for energies and geometries in which charge exchange is
considered not to be important. Then, it is adequate to expand
the system wave function in pseudostates centered on the target
nucleus. However, with reducing impact energy it becomes
essential to take explicit account of charge exchange channels.
In particular, as far as ionization is concerned, we need to tackle
the problem of charge exchange to the continuum [29,30]
in which the ionized electron ends up asymptotically under
the influence of the projectile rather than the target. It is
our purpose here to extend the aforementioned pseudostate
approximation to include explicit allowance for exchange.
In this first step we restrict ourselves to a hydrogenic target
and report results for ionization of H by protons [31] which,
at the double differential level, can be compared with the
measurements from [18,19].

Although semiclassical in appearance, it should be em-
phasized that the approximation we use is fully quantal. As
shown in [21] it results from a quantal treatment in which
the scattering angle is assumed to be very small and where
the propagator 1/(k2

β − k2 + iε) is replaced by 1/(2kβ(kβ −
kz) + iε), where the z direction is the direction of incidence of
the projectile. Both of these are very good approximations for
heavy particle collisions at all but the lowest energies. In [19]
Schulz et al. emphasized the importance of the PT interaction,
i.e., the interaction between the projectile and target nuclei, and
of the post-collisional interaction (PCI) between the electron
and the ionized target and scattered projectile. Both are taken
into account in our approximation. Indeed, the importance
of the PT interaction was emphasized in the original version
of the approximation described in [21–28]. There are three
aspects to PCI. The first is when the ejected electron moves
with a “low” velocity relative to the target. Ever since the work
of Curran and Walters [32,33] on electron impact it has been
clear that this is well taken into account by pseudostates on
the target. This has been conclusively demonstrated again in
our earlier studies of heavy particle collisions [21–28]. The
second is when the ejected electron velocity is low relative
to the scattered projectile ion, the so-called charge exchange
to the continuum [29,30]. In the present approximation this
is accommodated by the pseudostates on the projectile. The
third aspect, when the ejected electron is equally affected by
both the target and projectile ions, is more problematic and is
a matter that comes under discussion in the present work.

We begin in Sec. II with the formulation of the coupled
pseudostate theory, now with explicit inclusion of exchange.
As in [21] we start with an impact parameter formulation, in
Sec. II A, and then show its connection to the wave treatment
(i.e., a quantal treatment), in Sec. II B. Next we consider the
extraction of ionization data from the theory in Sec. II C, first
for the total ionization cross section and then, for the main task
of this paper, for fully differential ionization. Here we discuss
an ambiguity in the theory and suggest two possible avenues
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of attack, “coherent” and “incoherent.” Results are presented
in Sec. III for proton impact on atomic hydrogen at 75 keV, an
energy at which about one-third of the total ionization cross
section comes from charge exchange to the continuum, and
therefore a good test of the new “with exchange” theory. First
(Sec. III A), as a test of our computations, we show that we
get good agreement with the earlier extensive work of Winter
[34] on integrated cross sections, not only for ionization but
also for discrete excitations. Next, in Sec. III B, we explore our
results for fully (triple) differential cross sections, illustrating
the transition between the case where the ejected electron is
slow relative to the target ion to where it moves with the
projectile, i.e., illustrating the changes in PCI. We also examine
the differences between the “coherent” and “incoherent”
approaches to differential ionization. Finally, in Sec. III C, we
look at the double differential cross section d2σL/dEd�p and
compare it to the data of [18,19]. Once more we are interested
in how PCI changes and in the difference between “coherent”
and “incoherent” cross sections. In Sec. IV we present our
conclusions.

Throughout we use atomic units (a.u.) in which � = me =
e = 1. All reported differential cross sections refer to the
laboratory frame of reference [21].

II. THEORY

We consider a bare projectile ion of mass MP and charge
ZP incident with velocity v0 upon a one-electron target of
nuclear mass MT and nuclear charge ZT which is stationary
in the laboratory. We first look at the time-dependent impact
parameter treatment of this problem and then show how it
is related to the wave treatment. This relationship shows, as
before [21], that, although the time-dependent approach is
often described as “semiclassical,” when correctly interpreted
it is a fully quantal approximation under the assumption that
the projectile is scattered through a small angle and with small
velocity change, which is indeed the case for heavy ionic
projectiles at all but the very lowest energies.

A. Impact parameter treatment

Let the projectile move along a straight line with constant
velocity v0 and at impact parameter b relative to the target
nucleus. Let R be the position vector of the projectile at time
t relative to the target nucleus and such that

R = b + v0t. (1)

Let rT (rP ) be the position vector of the electron relative to
the target (projectile) nucleus. Then

rP = rT − R. (2)

The wave function � describing the dynamics of the electron
satisfies the time-dependent Schrödinger equation

H� = i
∂�

∂t
, (3)

where rT and t are independent variables. The Hamiltonian H

may be split as

H = HT + VT = HP + VP , (4)

where

HT = −1

2
∇2

T − ZT

rT

,

VT =
(

ZP ZT

R
− ZP

|R − rT |
)

,

(5)

HP = −1

2
∇2

P − ZP

rP

,

VP =
(

ZP ZT

R
− ZT

|R + rP |
)

,

with ∇2
T (∇2

P ) being with respect to the coordinate rT (rP ).
HT (HP ) is the Hamiltonian of the electron in the field of
the target (projectile) nucleus. VT (VP ) is the interaction of
the target (projectile) nucleus and electron with the projectile
(target) nucleus.

The wave function � may be expanded as

� =
N∑

α=1

aα(b,t)e−iεα tψα(rT )

+
M∑

β=1

bβ(b,t)e−i

(
Eβ+ v2

0
2

)
t
φβ(rP )eiv0·rT , (6)

where ψα(rT ) (φβ(rP )) correspond to states of the electron
about the target (projectile) nucleus of energy εα (Eβ). These
states diagonalize HT and HP according to

〈ψα|HT |ψα′ 〉 = εαδαα′ , 〈ψα|ψα′ 〉 = δαα′ ,

〈φβ |HP |φβ ′ 〉 = Eβδββ ′ , 〈φβ |φβ ′ 〉 = δββ ′ , (7)

and, in general, are a mixture of eigenstates and pseudostates.
Substituting (6) into (3) and forming the scalar product with
each ψα(rT ) and each eiv0·rT φβ(rP ) leads to the coupled
equations

iS
dA
dt

= FA, (8)

where

A ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

.

.

.

aN

b1

.

.

.

bM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

S ≡
(

I S12

S†
12 I

)
, (10)

(S12)αβ = e
i

(
εα−Eβ− v2

0
2

)
t 〈ψα(rT )|φβ(rP )eiv0·rT 〉, (11)

F ≡
(

F11 F12
F21 F22

)
, (12)

(F11)αα′ = ei(εα−εα′ )t 〈ψα(rT )|VT |ψα′ (rT )〉, (13)

(F12)αβ = e
i

(
εα−Eβ− v2

0
2

)
t 〈ψα(rT )|eiv0·rT (H − Eβ)φβ(rP )〉,

(14)
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(F21)βα = ei(Eβ+ v2
0
2 −εα )t 〈eiv0·rT φβ(rP )|(H − εα)ψα(rT )〉,

(15)

(F22)ββ ′ = ei(Eβ−Eβ′ )t 〈φβ(rP )|VP |φβ ′(rP )〉, (16)

α, α′ (β, β ′) run from 1 to N (M), and † indicates Hermitian
conjugate. F11 and F22 represent direct interactions, and F12

and F21 describe electron transfer between the projectile and
target nuclei. S, F11, and F22 are Hermitian matrices but

(F†
21)αβ = (F12)αβ + e

i

(
εα−Eβ− v2

0
2

)
t

×
[(

v2
0

2
+ Eβ − εα

)
〈ψα(rT )|eiv0·rT φβ(rP )〉

− iv0 · 〈ψα(rT )|eiv0·rT ( ∇P φβ(rP ))〉
]
. (17)

The result (17) is needed to show that the normalization of
the wave function � remains constant in time, i.e.,

d

dt
〈�|�〉 = d

dt
(A†SA) = 0. (18)

From (18) it follows that

A†A(t = −∞) = A†A(t = +∞) (19)

since, from (10) and (11), S(t = −∞) = S(t = +∞) = I.
Thus, probability is conserved, as required. The evaluation of
the matrix elements needed in (11), (14), and (15) is described
in the Appendix.

If the electronic states ψα and φβ are quantized along the
direction of v0 with magnetic quantum numbers mα and mβ ,
respectively, then, as in [21], it can be shown that dependence
on the azimuthal angle φb of the impact parameter b may be
removed from Eqs. (8). Specifically (see the Appendix, for
example), it can be shown that

Aγ (b,t) = e−imγ φbAγ (b,t), (20)

Sγ δ(b,t) = ei(mδ−mγ )φbSγ δ(b,t), (21)

Fγδ(b,t) = ei(mδ−mγ )φbF γ δ(b,t). (22)

If the equations are then solved subject to

Aγ (b,−∞) = δγ 0, (23)

it follows that the solution of Eqs. (8) with

Aγ (b,−∞) = δγ 0 (24)

is

Aγ (b,t) = ei(m0−mγ )φbAγ (b,t). (25)

Further, as in [21], it can be shown that (see the Appendix)

Sγ ′,−mγ ;δ′,−mδ
= (−1)mδ−mγ Sγ ′mγ ;δ′mδ

(26)

and similarly F , where we write γ ≡ γ ′mγ , with γ ′ standing
for quantum numbers other than mγ . If m0 = 0, it follows that

Aγ ′,−mγ
= (−1)mγ Aγ ′mγ

(27)

so we need only consider non-negative values of the magnetic
quantum numbers in solving Eqs. (8), thereby reducing the
labor by a factor of 2.

B. Connection with wave treatment

In the wave treatment, and in the relative coordinate system
(“center-of-mass coordinate system”) in which the target is
treated as if it were at rest, the differential cross section for
scattering of the projectile is given by

dσf 0

d�P

= μ2
f

v′
f

v0
|ff 0|2, (28)

where μf is the reduced mass in the final state. Here, for the
moment, we consider only final states in which the electron
is bound to the target nucleus [(T + e) type, where T denotes
target nucleus] or bound to the projectile nucleus [(P + e)
type). Ionized final states are addressed in Sec. II C. The
velocity v′

f is that of the center of mass (c.m.) of the scattered
system [P or (P + e)] relative to the c.m. of the final target
state [(T + e) or T ]. The scattering amplitude is given by

ff 0 = − 1

2π
〈eiμf v′

f ·RP ψf (rT )|VT |�+〉,
μf ≡ MP (MT + 1)/(MP + MT + 1), (29)

for (T + e)-type final states, and by

ff 0 = − 1

2π
〈eiμf v′

f ·RPeφf (rP )|VP |�+〉,
μf ≡ (MP + 1)MT /(MP + MT + 1), (30)

for (P + e) final states. In (29) and (30), RP (RPe) is the
position vector of the projectile nucleus [(P + e) c.m.] relative
to the (T + e) c.m. (target nucleus), ψf and φf are the final
states of the electron, and �+ is the full scattering wave
function of the system with outgoing scattered waves:

�+ asymp.−→ eiμiv0·RP ψ0(rT ) + outgoing scattered waves,

μi ≡ MP (MT + 1)/(MP + MT + 1), (31)

with ψ0 being the initial state of the target electron.
To make the connection with the impact parameter approx-

imation we follow the line of argument of [21]. In [21] there
were only (T + e)-type channels. The difference here is the
presence of charge exchange (P + e) final states. So let us
concentrate upon these. In the first Born approximation the
amplitude for a transition to a final (P + e)-type channel is
[see Eqs. (2), (5), (30), and (31)]

f B1
f 0 = − 1

2π

∫
e−iμf v′

f ·RPeφ∗
f (rP )

×
(

ZP ZT

R
− ZT

rT

)
eiμiv0·RP ψ0(rT )dRP drT (32)

where * denotes complex conjugation. After some manipula-
tion (32) can be written (exactly) as [35]

f B1
f 0 = − 1

2π

∫
eiq·Re−ivf ·rT φ∗

f (rT − R)

×
(

ZP ZT

R
− ZT

rT

)
ψ0(rT )dRP drT ,

= − 1

2π

∫
eiq·R〈eivf ·rT φf (rP )|VP |ψ0(rT )〉dR, (33)
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where vf is the final velocity of the c.m. of the (P + e) system
in the laboratory and

q ≡ MP (v0 − vf ). (34)

Making the approximation outlined in [21], i.e.,

vf ≈ v0 + O(1/M), (35)

where M is a typical nuclear mass (an excellent approximation
at all but the lowest impact energies), (33) may be written

f B1
f 0 = − 1

2π

∫ [ ∫ ∞

−∞
e
i

(
Ef + v2

0
2 −ε0

)
t

×〈eiv0·rT φf (rP )|VP |ψ0(rT )〉dt

]
eiq·bd2b. (36)

This is now recognized as

f B1
f 0 = −v0i

2π

∫
eiq·bbB1

f (b,∞)d2b, (37)

where bB1
f is the corresponding first Born approximation to

the coupled Eqs. (8) obtained on taking

aα(b,−∞) = δα0, bβ(b,−∞) = 0 (38)

[see Eqs. (5), (8), (9), and (15)]. This is exactly the same form
of result as is obtained for the (T + e) channels; see [21]. Thus,
in general [36],

f B1
f 0 = −v0i

2π

∫
eiq·b[AB1

f (b,∞) − δf 0
]
d2b (39)

for any final channel f .
By considering an iterative solution, as in [21], of Eqs. (8)

and the corresponding wave version [37] we conclude that for
the full scattering amplitude, in the approximation (35),

ff 0 = −v0i

2π

∫
eiq·b[Af (b,∞) − δf 0]d2b,

= −v0i
mf −m0+1ei(m0−mf )φq

×
∫ ∞

0
J(mf −m0)(qtb)(Af (b,∞) − δf 0)bdb (40)

(see [21]), where JM is a Bessel function and qt is the
magnitude of the transverse component of q, i.e., perpendicular
to v0.

C. Ionization

The total ionization cross section is calculated from

σion =
N∑

α=1

σD
α gα +

M∑
β=1

σE
β hβ, (41)

where

σD
α =

∫
|aα(b,∞)|2d2b,

(42)

σE
β =

∫
|bβ(b,∞)|2d2b,

and gα (hβ) is the fraction of the target state ψα (projectile
state φβ) lying in the continuum [21]. The sum over the target
states (α) in (41) corresponds to direct ionization, and that

over the projectile states (β) represents charge exchange to the
continuum of the projectile [29,30].

Our interest here, however, is primarily differential ion-
ization. For this we first turn to the wave expression for the
ionization amplitude,

fion = − 1

2π
〈�f |VI |�+〉, (43)

where �f represents the final state of the projectile and ionized
electron and H = HI + VI . By an appropriate choice of HI

we can take into account explicitly whatever interactions we
consider to be important in the final state. The choice of HI

matters not if �+ is exact, but if �+ is approximated it does
matter [38]. Let the ionized electron be moving with velocity
(momentum) κ in the laboratory (where the target is initially
at rest). If its velocity is low relative to the target nucleus then
an appropriate choice for HI is HT , as in [21]. This leads to
the amplitude expression [see (29)]

fion = − 1

2π

〈
eiμf v′

f ·RP ψ−
κ (rT )|VT |�+〉

. (44)

However, if the electron is moving with the projectile (charge
exchange to the continuum), a better choice would be HI =
HP , leading to [see (30)]

fion = − 1

2π

〈
eiμf v′

f ·RP eφ−
(κ−vP )(rP )|VP |�+〉

, (45)

where φ−
κ ′ is the wave function for an electron of momentum

κ ′ relative to the projectile nucleus and vP is the final velocity
of the projectile nucleus in the laboratory.

To extract the differential motion of the electron from the
pseudostates we assume that they are, for matrix element
purposes, a good approximation to a complete set. Thus, if
the states ψα(rT ) are such, then inserting them into (44) we
get, as in [21],

− 1

2π

N∑
α=1

〈ψ−
κ (rT )|ψα(rT )〉〈eiμf v′

f ·RP ψα(rT )|VT |�+〉

≡ f T
ion (say). (46)

Similarly, if the states φβ(rP ) were effectively complete, (45)
could be written

− 1

2π

M∑
β=1

〈φ−
(κ−vP )(rP )|φβ(rP )〉〈eiμf v′

f ·RPeφβ(rP )|VP |�+〉

≡ f P
ion (say). (47)

But, if �+ is approximated as in [37] then for R greater than
some R0 the overlap between the states ψα(rT ) and φβ(rP )
becomes negligible and so (46) does not pick up that part
of the wave function �+ coming from the φβ components,
i.e., the charge exchange to the continuum channels. This
probably would not matter much if κ were small and the final
state interaction between the ionized electron and the target
nucleus were dominant. But it might make a lot of difference
if the electron were ejected into a low-velocity state relative to
the projectile nucleus, i.e., (κ − vP ) small. The situation for
the approximation (47) is the opposite way around: one might
expect it to do well for low (κ − vP ) but to be poor for low κ . It
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seems that both situations might be covered by simply adding
(46) and (47), i.e., by forming the “coherent” combination

f CO
ion = f T

ion + f P
ion (48)

with the triple differential cross section (TDCS) therefore
being proportional to [see (55)]∣∣f T

ion + f P
ion

∣∣2
. (49)

However, for R < R0 there is overlap between the states
ψα(rT ) and φβ(rP ) and so we are double counting in some way.

A different viewpoint comes from the total cross section
ansatz (41), where the cross section is obtained from an “inco-
herent” combination of the amplitudes aα and bβ . This formu-
lation is consistent with the unitarity (19) of the approximation.
This suggests we should take the incoherent combination

TDCS ∝ ∣∣f T
ion

∣∣2 + ∣∣f P
ion

∣∣2
. (50)

We explore both possibilities (49) and (50).
Finally, we use (40) to write [39]

f T
ion = −iv0

N∑
α=1

〈ψ−
κ (rT )|ψα(rT )〉imα−m0ei(m0−mα )φq

×
∫ ∞

0
J(mα−m0)(qtb)(aα(b,∞) − δα0)bdb, (51)

f P
ion = −iv0

M∑
β=1

〈
φ−

(κ−vP )(rP )|φβ(rP )
〉
imβ−m0ei(m0−mβ )φq′

×
∫ ∞

0
J(mβ−m0)(q

′
t b)bβ(b,∞)bdb, (52)

where now

q ≡ MP (v0 − vP ) (53)

is the momentum transfer to the projectile and

q′ ≡ q − κ (54)

is the momentum transfer to the “projectile + electron.” Note
that in obtaining (52) from (40) we must take vf in (34) to be
the velocity of the center of mass of the (P + e) system, which
for ionization is (MP vP + κ)/(MP + 1). Then, recognizing
that vP = v0 + O(1/MP ) and that v0 · b = 0, and dropping
terms of order 1/MP , q · b in (40) becomes q′ · b, and (52)
follows.

III. RESULTS

We present results for proton impact on atomic hydrogen at
an impact energy of 75 keV where there are interesting double
differential measurements [18,19]. We show calculations of
the TDCS as observed in the laboratory [21], i.e.,

d3σL

dEd�ed�P

= vf κ

v0
M2

P |fion|2. (55)

This is the cross section for the electron being ejected with
energy in the range E to E + dE and into the solid angle
d�e while the projectile is scattered into the solid angle d�P .
In (55), v0, vf , and κ are respectively the incident and final
velocity of the projectile, and the momentum of the ejected
electron, all as observed in the laboratory. We study the

different options (49) (“coherent”) and (50) (“incoherent”)
for determining the TDCS and show how the individual
contributions of |f T

ion|2 and |f P
ion|2 compare.

We begin by looking at integrated cross sections which we
can compare with the extensive work of Winter [34], who, as
here, has also used pseudostates (he calls them “Sturmians”)
in the time-dependent impact parameter approximation. His
largest calculation employs s, p, d, and f states up to
n = 13 [40] on both the projectile and the target. We use the
same number but with a different pseudostate basis. Taking
advantage of the symmetry (27) this results in 220 complex
coupled equations, or equivalently 440 real equations. While
the two pseudostate bases are not the same we would expect
to get comparable results if there is convergence.

For our basis we have taken the Laguerre functions [21,41]

χklm(r) = (λlr)lL2l+2
k−1 (λlr)e−λlr/2Ylm(r̂),

k = 1, . . . ,15 − l, l = 0, . . . ,3, (56)

with λl = 2.1559, 2.2453, 2.4068, 2.6391 for l = 0, . . . ,3
respectively. Diagonalizing HT (equivalently HP ), this
generates states up to n = 15. We remove the high-energy
n = 14 and 15 states to help ease problems with linear
dependence. The choice of the values of λl ensures that the
n = 7 states have an energy of 5 eV, which means that for
a 5-eV ejected electron f T

ion is calculated in the unrelaxed
approximation of [21] rather than the relaxed approximation
of [25]. This is an arbitrary question of taste. The n = 1
and 2 states obtained from the diagonalization are excellent
approximations to the corresponding eigenstates; the n = 3
states are good approximations. The integrated discrete direct
and exchange cross sections are calculated from∫

|aα(b,∞) − δα0|2d2b,

∫
|bβ(b,∞)|2d2b, (57)

respectively, and the integrated ionization cross section from
(41). Finally, we integrate the coupled Eqs. (8) over z = v0t

from z = −106 a.u. to +106 a.u. but only switch on the
exchange interaction (F12 and F21) between z = −35 a.u. to
+35 a.u.

A. Integrated cross sections

The results for our integrated cross sections are shown in
Table I, where they are seen to be in very good agreement with
the corresponding n � 13(s,p,d,f ) calculations of Winter
[34]. About one-third of the total ionization cross section at
this energy comes from charge exchange to the continuum,
i.e., the second sum in (41).

B. Triple differential cross section (TDCS)

We have calculated the TDCSs, see (55),

T ≡ K
∣∣f T

ion

∣∣2
,

P ≡ K
∣∣f P

ion

∣∣2
,

INCO ≡ K
(∣∣f T

ion

∣∣2 + ∣∣f P
ion

∣∣2)
,

CO ≡ K
∣∣f T

ion + f P
ion

∣∣2
,

K ≡ vf κ

v0
M2

P , (58)
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TABLE I. Cross sections (in units of 10−17 cm2) for proton impact
on atomic hydrogen at 75 keV. Comparison is made between present
results and those of Winter [34] in his � 13(s,p,d,f ) approximation.

(a) Direct Transitions and Ionization

1s 2s 2p 3s 3p 3d Ionization

Present 5.49 1.30 7.84 0.29 1.27 0.24 15.99
Winter 1.3 7.5 0.3 1.2 0.2 16.1

(b) Exchange Transitions

1s 2s 2p 3s 3p 3d

Present 2.07 0.45 0.096 0.149 0.034 0.0022
Winter 2.10 0.44 0.09 0.15 0.03 0.002

for ejected electron energies of 5, 10, 16.395, 26.395, and
36.395 eV and momentum transfers up to q = 1.5 a.u.
The last three energies are those of the double differential
measurements of [18,19] and correspond to energy losses
of 30, 40, and 50 eV, respectively. We note that an ejected
electron would need an energy of 40.85 eV in order to
move at the same speed as the projectile. INCO and CO
are the incoherent and coherent approximations discussed
in Sec. II C; see (49) and (50). T and P give us some
feeling for the relative importance of direct and exchange
ionization. In Figs. 1–5 we show a selection of our results for
coplanar geometry. We adopt the following conventions. We
take the Z direction to be the direction of the incident proton.
The incident and scattered protons define the X-Z plane with
the scattered proton emerging on the negative X side. The
lowest momentum transfer q in each figure corresponds to
forward scattering of the proton.

Figure 1 shows the TDCS for the case of 5-eV ejection.
At such a low ejection energy we would expect the electron
to be largely under the influence of the target nucleus. That
expectation is borne out for all our values of q by the relative
size of T and P and the consequent proximity of T to INCO.
However, CO indicates a larger role for f P

ion with increasing
q [42]. T , INCO, and CO display clear binary and recoil
peaks, although the recoil peak is very much smaller than
the binary. Furthermore, both peaks are rotated away from
the momentum transfer direction q towards the direction of
the outgoing proton as the proton attracts the ejected electron
towards it. This is classic behavior that has been seen in
electron impact ionization [32,33,38], although in this case the
peaks are repelled away from the negatively charged projectile.
The reader should also be aware of the rapidly reducing size of
the cross section with increasing q; often the most interesting
features occur where the cross section is relatively small and
therefore harder to measure.

Figure 2 shows the situation at 10-eV ejection energy where
T and P are comparable at small q. However, with increasing
q, T begins to dominate once again. Both T and P show
rotation away from the direction of q towards the outgoing
proton, P more so than T , and T less so than at 5 eV; see
Fig. 1. INCO also shows clear rotation and so does CO, at
least up to q = 0.77 a.u. At q = 0.97 a.u. and beyond, CO is
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E = 5 eV
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FIG. 1. (Color online) Laboratory frame TDCS (in a.u.) for
proton impact ionization of atomic hydrogen at 75 keV in coplanar
geometry and for an ejected electron energy, E, of 5 eV. (a) Forward
scattering of the proton. The direction of the momentum transfer
q, see (53), is indicated in (b) and (c). The approximations are as
described in (58).

not so much rotated as structured. CO starts off being much
larger than INCO, eventually becoming smaller by q = 1.5 a.u.

062712-6



DIFFERENTIAL IONIZATION OF A ONE-ELECTRON . . . PHYSICAL REVIEW A 92, 062712 (2015)

-2 0 2 4 6 8
X (107 a.u.)

-2

0

2

4

6

8

Z 
(1

07  a
.u

.)
(a)

E = 10 eV
q = 0.50075 a.u.

CO

INCO

P

T

0 0.4 0.8 1.2 1.6 2
X (107 a.u.)

0

0.4

0.8

1.2

1.6

2

Z 
(1

07  a
.u

.) q

CO

INCO

TP

(b)
E = 10 eV

q = 0.77 a.u.

0 0.04 0.08 0.12 0.16 0.2
X (107 a.u.)

0

0.04

0.08

0.12

0.16

0.2

Z 
(1

07  a
.u

.)

(c)
E = 10 eV
q = 1.3 a.u.

q

INCO

T

CO

P

FIG. 2. (Color online) Laboratory frame TDCS (in a.u.) for
proton impact ionization of atomic hydrogen at 75 keV in coplanar
geometry and for an ejected electron energy, E, of 10 eV. (a) Forward
scattering of the proton. The direction of the momentum transfer
q, see (53), is indicated in (b) and (c). The approximations are as
described in (58).

The results for ejection energies of 16.395 and 26.395 eV,
Figs. 3 and 4, are similar in pattern to Fig. 2 except that now
P is very much dominant for most of the momentum range
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FIG. 3. (Color online) Laboratory frame TDCS (in a.u.) for
proton impact ionization of atomic hydrogen at 75 keV in coplanar
geometry and for an ejected electron energy, E, of 16.395 eV. (a)
Forward scattering of the proton. The direction of the momentum
transfer q, see (53), is indicated in (b) and (c). The approximations
are as described in (58).

shown and for 26.395 eV ejection remains dominant up to
q = 1.5 a.u., although T is growing.

At an ejection energy of 36.395 eV, Fig. 5, the electron is
now moving with a speed comparable to that of the proton
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FIG. 4. (Color online) Laboratory frame TDCS (in a.u.) for
proton impact ionization of atomic hydrogen at 75 keV in coplanar
geometry and for an ejected electron energy, E, of 26.395 eV. (a)
Forward scattering of the proton. The direction of the momentum
transfer q, see (53), is indicated in (b) and (c). The approximations
are as described in (58).

and so we would expect to see P very dominant, and indeed
we do. For forward scattering, Fig. 5(a), the electron is very
much dragged behind the proton, resulting in a cross section
that looks like a spike. This forward spike also persists at
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FIG. 5. (Color online) Laboratory frame TDCS (in a.u.) for
proton impact ionization of atomic hydrogen at 75 keV in coplanar
geometry and for an ejected electron energy, E, of 36.395 eV. (a)
Forward scattering of the proton. The direction of the momentum
transfer q, see (53), is indicated in (b) and (c). The approximations
are as described in (58).

q = 1.3 a.u. and 1.5 a.u. [Figs. 5(b) and 5(c)], although now a
smoother structure develops (both in INCO and CO) towards
the direction of q but rotated from it towards the outgoing
proton.
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FIG. 6. (Color online) Laboratory frame double differential cross section (59) for proton impact ionization of atomic hydrogen at 75 keV
and for ejected electron energies E as indicated. The approximations are as described in (58). INCO, red solid curve; CO, blue solid curve; T ,
black dashed curve; P , green dashed curve. The experimental data are from [18,19].

C. Double differential cross section d2σ L/d Ed� p

In Fig. 6 we show the double differential cross section
(DDCS)

d2σL

dEd�P

=
∫

d3σL

dEd�ed�P

d�e, (59)

as observed in the laboratory for electron ejection energies
of 5, 10, 16.395, 26.395, 36.395, and 39.395 eV. As for the
TDCS we plot the contributions T , P , INCO and CO; see (58).

We also make comparison with the absolute experimental data
from [18,19]. Figure 6(a) shows the case of 5-eV electron
ejection and, as expected from Fig. 1, we see that T dominates
P at all of the angles shown [43]. The result is that INCO lies
close to T and that there is little difference between INCO
and CO.

Figure 6(b) corresponds to 10-eV ejection energy. Again
T dominates P at all angles but P approaches T towards the
forward direction. Again this is consistent with Fig. 2, where
we saw that P rapidly becomes smaller than T with increasing
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momentum transfer q and that, although comparable to T at
small q, the narrowness of the binary peak as compared to
that of T should integrate out to give a smaller DDCS. Except
near the forward direction, INCO and CO remain close. In the
forward region CO is larger than INCO, as we might expect
from Fig. 2.

At 16.395 eV, Fig. 6(c), P now dominates T near
the forward direction but, consistent with Fig. 3, becomes
smaller than T beyond 0.24 mrad [43]. In this case we
now have experimental data from [18,19]. The measurements
tend to prefer INCO at small angles although there is
not that much difference between CO and INCO. At the
larger angles experiment tends to lie above both INCO
and CO.

As the ejection energy is increased to 26.395 eV, Fig. 6(d),
P becomes ever more dominant over T in the forward region
and even exceeds T at the largest angles shown [43]. Note
that both INCO and CO lie above the experimental data in the
forward angular region while the measurements are generally
in agreement with CO, but not INCO, at large angles.

At the ejection energies of 36.395 and 39.395 eV, Figs. 6(e)
and 6(f), unsurprisingly (see Figs. 4 and 5), P dominates T

at all the angles shown. In the forward angular region the
experimental data lie below both INCO and CO at 36.395 eV
and above at 39.395 eV; at larger angles the reverse tends to
be true.

It is clear from Fig. 6 that the experimental data do not
show a systematic behavior relative to INCO or CO and, even
if they did, the error bars would probably be too large to
discriminate between INCO and CO. Schulz et al. [18,19]
describe carefully how their measured DDCS is normalized.
They remark that, because of uncertainty in the normalization
procedure, differences in overall normalization between theory
and experiment are not necessarily significant. However, it is
clear from Fig. 6 that renormalization of the experimental
data to either the INCO or CO curves would still not bring
overall agreement with experiment. Since the publication of
[18,19] it has emerged that there can be problems with the
coherence of ion beams [44–46]. This depends on the width
of the collimating slit and the distance of the source from
the target region. To what extent the measurements of [18,19]
may be affected by this has not been made clear. A further
experimental check would be in order.

It is interesting to integrate the DDCS (59) over the ejected
energy, dE, and the scattering solid angle d�P to get the
integrated ionization cross section at 75 keV. This is not
guaranteed to be equal to the integrated ionization cross section
as calculated from (41) (see Table I), but for INCO should be
very close; see [25]. Our results are shown in Table II where
they are also compared with the experimental measurement
from [47]. It is seen that INCO gives good agreement, within

TABLE II. Ionization cross section (in units of 10−17 cm2) for
proton impact on atomic hydrogen at 75 keV.

From Table I
CO INCO Present Winter Experiment [47]

18.3 16.2 15.99 16.1 12.91 ± 0.41

numerical rounding error, with our result from Table I but CO
gives a value some 14% higher. While INCO is in disagreement
with experiment at this energy, being too large, as is the work
of Winter [34] over a wider energy range around 75 keV, CO
increases this discrepancy. That is not to say that experiment
is correct.

IV. CONCLUSIONS

We have developed an approximation for differential
ionization within a two-center pseudostate formalism. The
approximation is fully quantal and includes the interaction
between the projectile and target nuclei (the “PT” interaction
of [19]) as well as post-collisional interactions between the
ionized electron and the nuclei. We have shown calculations
of the triple (fully) differential cross section for proton impact
ionization of atomic hydrogen at 75 keV. These calculations
illustrate how the post-collisional interaction switches from the
situation where it is dominated by that between the electron and
the target nucleus to one where the ionized electron interacts
most strongly with the projectile nucleus: the so-called charge
exchange to the continuum [29,30]. The extraction of the
differential ionization follows the plan outlined for the earlier
one-center pseudostate approximation of [21]. Whereas this
plan was unambiguous for the one-center approximation, for
two centers an ambiguity arises. Two options for dealing with
the ambiguity have been considered, the first described as a
“coherent” approach, the second as “incoherent.” We have
illustrated the differences between these two approaches. The
most attractive feature of the incoherent approximation is that
it is consistent with the basic unitarity of the approximation; it
is our prejudice that this is the way to go. One might ask if there
is a better approach. In principle, yes, but that would require
a choice of HI in (43) in which the electron interacts with
both nuclei simultaneously (i.e., solving an electron-molecule
scattering problem at all distances between the nuclei) and
would lead to a very complicated computational scheme. It is
best, first, to try the present approach.

What therefore is needed is a good experimental test.
Unfortunately, for proton impact ionization of atomic hy-
drogen fully differential measurements are not available, but
there are double differential measurements from [18,19]. We
have made comparison with these data and, while the overall
comparison is encouraging, detailed agreement is lacking.
However, the aforementioned measurements were made before
the discovery of coherence problems with ion beams [44–46].
It is therefore essential that their sensitivity to beam coherence
be investigated.
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APPENDIX

Here we show how the matrix elements required in (11),
(14), and (15) are evaluated. In these cases we also make
explicit the relations (21), (22), and (26) for S12, F12, and F21.
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With quantization axis along the direction of v0 we separate ψα(rT ) and φβ(rP ) into radial and angular components according
to

ψα(rT ) = Rnαlα (rT )Ylαmα
(r̂T ), (A1)

φβ(rP ) = Snβ lβ (rP )Ylβmβ
(r̂P ), (A2)

where ˆ denotes a unit vector and Ylm is a spherical harmonic as defined by Rose [48]. We also need

eiv0·rT =
∞∑
l=0

√
4π (2l + 1)iljl(v0rT )Yl0(r̂T ) (A3)

and the result [49] (note that rP = rT − R)

|rT − R|lβ Ylβmβ
(r̂T − R) =

lβ∑
l=0

l∑
m=−l

(−1)l+lβ f (lβ,l)C(l,lβ − l,lβ ; m,mβ − m,mβ)rl
T Rlβ−lYlm(r̂T )Y(lβ−l),(mβ−m)(R̂), (A4)

where

f (lβ,l) ≡
[

4π (2lβ + 1)!

(2l + 1)!(2lβ − 2l + 1)!

]1/2

(A5)

and C(l1,l2,l3; m1,m2,m3) is a Clebsch-Gordan coefficient as defined by Rose [48]. Also, defining

Sλ
nβ lβ

(rT ,R) ≡
∫ +1

−1
d(cos θ )Pλ(cos θ )

Snβ lβ (|rT − R|)
|rT − R|lβ , (A6)

where

θ = cos−1(r̂T · R̂), (A7)

we can write

Snβ lβ (rP )

r
lβ
P

= 2π

∞∑
λ=0

+λ∑
μ=−λ

Sλ
nβ lβ

(rT ,R)Yλμ(r̂T )Y ∗
λμ(R̂). (A8)

Now all the elements of 〈
ψα(rT )|φβ(rP )eiv0·rT

〉
(A9)

may be expressed in terms of rT , R and spherical harmonics in r̂T , and R̂. By applying the result [48]

Yl1m1 (r̂)Yl2m2 (r̂) =
|l1+l2|∑

l3=|l1−l2|
g(l1,l2; l3)C(l1,l2,l3; 0,0,0)C((l1,l2,l3; m1,m2,m3)Yl3m3 (r̂), (A10)

where

g(l1,l2; l3) ≡
[

(2l1 + 1)(2l2 + 1)

4π (2l3 + 1)

]1/2

, (A11)

the product of spherical harmonics in r̂T can be reduced and integrated while the spherical harmonics in R̂ can be written as a
single spherical harmonic. Finally, the sum over μ coming from (A8) can be done yielding a Racah coefficient and the finished
result,

〈
ψα(rT )|φβ(rP )eiv0·rT

〉 = 4π3/2
∞∑

l1=0

(−1)lβ+l1

|l1+lβ |∑
l2=|l1−lβ |

C(l1,l2,lβ ; mα,mβ − mα,mβ)Yl2(mβ−mα )(R̂)

×
|l1+lα |∑

l3=|l1−lα |
il3C(lα,l3,l1; mα,0,mα)C(lα,l3,l1; 0,0,0)g(lα,l3; l1)

lβ∑
l4=0

Rlβ−l4f (lβ,l4)
|l2+lβ−l4|∑

λ=|l2−lβ+l4|

×
[∫ ∞

0
Rnαlα (rT )Sλ

nβ lβ
(rT ,R)jl3 (v0rT )rl4+2

T drT

]
[(2l1 + 1)(2l2 + 1)(2l3 + 1)]1/2g(l4,λ; l1)

× g(λ,lβ − l4; l2)C(l4,λ,l1 : 0,0,0)C(λ,lβ − l4,l2; 0,0,0)W (l1,λ,lβ,lβ − l4; l4,l2), (A12)

where W (l1,l2,l3,l4; l5,l6) is a Racah coefficient as defined by Rose [48]. In practice the sum over l1 is truncated to a finite range
adequate for convergence.

062712-11



H. R. J. WALTERS AND COLM T. WHELAN PHYSICAL REVIEW A 92, 062712 (2015)

The matrix elements

〈ψα(rT )|eiv0·rT (H − Eβ)φβ(rP )〉 (A13)

and

〈(H − εα)ψα(rT )|eiv0·rT φβ(rP )〉 (A14)

required in (14) and (15) may be obtained by replacing Rnαlα (rT )Sλ
nβ lβ

(rT ,R) in (A12) by

Rnαlα (rT )

(
T λ

nβ lβ
(rT ,R) +

(
ZP ZT

R
− ZT

rT

)
Sλ

nβ lβ
(rT ,R)

)
(A15)

and

Unαlα (rT )Sλ
nβ lβ

(rT ,R) + Rnαlα (rT )

(
ZP ZT

R
Sλ

nβ lβ
(rT ,R) − ZP Wλ

nβlβ
(rT ,R)

)
, (A16)

respectively. Here T λ
nβ lβ

and Wλ
nβlβ

are the analogs of (A6) but with Snβ lβ (rP ) replaced by Tnβlβ (rP ) and Snβ lβ (rP )/rP , respectively.
Tnβlβ (rP ) and Unαlα (rT ) are defined by

(HP − Eβ)φβ(rP ) ≡ Tnβlβ (rP )Ylβmβ
(r̂P ), (A17)

(HT − εα)ψα(rT ) ≡ Unαlα (rT )Ylαmα
(r̂T ). (A18)

For eigenstates Tnβ lβ and Unαlα are identically zero, but not so for pseudostates.
The symmetries (21) and (22) follow from (A12) on realizing that the azimuthal angle of R is the same as that of b. Then [48]

Yl2(mβ−mα )(R̂) = ei(mβ−mα )φbPl2(mβ−mα )(θR),

cos θR = v0t/

√
b2 + v2

0 t
2 [see (1)], (A19)

where Plm(θ ) is an associated Legendre function. The symmetry (26) follows from [48]

Pl2(−mβ+mα )(θR) = (−1)mβ−mαPl2(mβ−mα )(θR) (A20)

and

C(l1,l2,l3; m1,m2,m3) = (−1)l1+l2−l3C(l1,l2,l3; −m1, − m2, − m3). (A21)

Note that if m1 = m2 = m3 = 0, (A21) implies that l1 + l2 + l3 is even; this is also needed to establish (26).
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