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Distance dependence of two-atom dipole interactions with one atom in an excited state
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We present a Heisenberg-picture approach to the electric dipole interaction of two generally nonidentical atoms,
one of which is initially excited, and address the question of whether the dependence of the interaction energy
on the interatomic separation r is purely monotonic or is sinusoidally modulated as it falls off with r . We derive
energies of both types and associate them with different model assumptions and physical effects. The sinusoidally
modulated form is the interaction energy involved in reversible exchange of excitation (“pendulation”). The
monotonic form characterizes an energy shift associated with effectively irreversible (Förster) excitation
transfer.
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I. INTRODUCTION

The interaction of two atoms, one initially in its first
excited state and the other in its ground state, has been
considered in many papers [1]. Stephen [2] and McLachlan
[3], among others, showed for identical atoms a sinusoidal
modulation of the radiation rate and the interaction energy as
a function of the interatomic separation r , just as would be
expected from the interaction of two identical, classical dipole
oscillators. A similar dependence on r was later obtained
for nonidentical atoms [4–6]. Later work gave interaction
energies of nonidentical atoms that decrease monotonically
with r [7–12], but more recent work [13–16] again predicts a
sinusoidally modulated interaction.

The purpose of this paper is to revisit the problem in a way
that in our opinion helps to clarify the difference between the
two forms of the interaction and shows that they are obtained
under different assumptions and describe different physical
effects. The sinusoidally modulated interaction describes the
change in the transition frequency (and radiation rate) due
to excitation exchange; it can be understood in terms of
the coherent scattering by the unexcited atom of the field
from the excited atom [16]. The monotonic form, in contrast,
describes the energy shift of the initially unexcited “acceptor”
as excitation is transferred from the initially excited “donor”;
it is the shift in the ground-state energy of the acceptor
associated with an effectively irreversible Förster excitation
transfer [17,18]. A similar sort of distinction has been made
between temporally modulated and monotonic excitation
transfer rates corresponding, respectively, to “pendulation”
(back-and-forth exchange of excitation) and “golden-rule”
(irreversible excitation transfer) processes [19–21]. Here we
focus mainly on energies.

Our approach is based on Heisenberg-picture operators. As
in much of the cited work, we base the treatment on the model
in which each atom (or molecule) is a two-state system at zero
temperature. We do not explicitly address questions relating
to poles in expressions for interaction energies, which have
been a focus of recent work [13–16] that has been critical of
the Power-Thirunamachandran papers [7,8], nor do we take
issue with specific aspects of the calculations in any of the
more recent papers. Our main point is simply that the two

forms of interaction apply under different assumptions about
the two-particle system.

In the following section we present the Heisenberg equa-
tions of motion used in our calculations. In Sec. III we consider
the effect of the initially excited atom A on the initially
unexcited atom B. We first illustrate the Heisenberg-picture
approach by rederiving old results [1] for the excitation
probability of atom B and then consider the shift in the energy
levels and transition frequency of atom B associated with
absorption of energy from atom A. These shifts have the same
purely monotonic dependence on r obtained by Power and
Thirunamachandran [7,8], and we relate the ground-state shift
to the interaction energy accompanying Förster transfer that
was derived by Cohen and Mukamel [17,18]. In Sec. IV we
consider the level shift of atom A due to the scattering of its
field by atom B [16] and derive the sinusoidally modulated
dependence on r obtained by different methods in recent
analyses. In Sec. V we summarize our results and conclusions.

II. HEISENBERG OPERATOR EQUATIONS

The atom-field Hamiltonian for our purposes is

H = �ωAσ
†
AσA + �ωBσ

†
BσB +

∑
kλ

�ωka
†
kλakλ

− i
∑
kλ

∑
j=A,B

(
2π�ωk

V

)1/2

[akλe
ik·rj − a

†
kλe

−ik·rj ]

× [σj + σ
†
j ]dj · ekλ. (1)

Here σj and σ
†
j are the two-state lowering and raising

operators, respectively, and akλ (a†
kλ) is the photon annihilation

(creation) operator for the free-space field mode with wave
vector k (k = |k| = ωk/c) and polarization label λ (k · ek1 =
k · ek2 = ek1 · ek2 = 0). V is a quantization volume. We take
the transition electric dipole moments dj and the polarization
unit vectors ekλ to be real. ωj and rj are, respectively, the
transition angular frequency and the fixed position of atom j

(j = A, B).
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From the Pauli commutation relations satisfied by the two-
state operators we obtain the Heisenberg equations of motion
for the operators σA and σzA = σ

†
AσA − σAσ

†
A:

σ̇A(t) = −iωAσA(t) − i[σzA(t)E (+)
T A (t) + E (−)

T A (t)σzA(t)], (2)

σ̇zA(t) = −2i[σA(t)E (+)
T A (t) + E (−)

T A (t)σA(t)]

+ 2i[σ †
A(t)E (+)

T A (t) + E (−)
T A (t)σ †

A(t)], (3)

E (±)
T A (t) = (dA/�) · E(±)

T A(t). (4)

E(+)
T A(t) and E(−)

T A(t) are the parts of the total electric field
operator at the position of atom A that derive from operators
akλ and a

†
kλ, respectively. We have chosen to put the com-

muting (equal-time) atom and field operators in normal order.
Equations (2) and (3), and the corresponding equations with
A ↔ B, are the standard Heisenberg equations of motion for
two-state atoms in an electric field. The field acting on atom A
consists of a radiative reaction part, a source-free (“vacuum”)
part, and a part associated with any sources in addition to
atom A. In the Markovian approximation the effect of the
radiative reaction field is to replace −iωAσA(t) in Eq. (2)
by −i(ωA − iβA)σA(t) and to add −2βA[σzA(t) + 1] to the
right-hand side of Eq. (3), where 2βA is the rate in free space of
radiative decay of the excited state of atom A [22]. We denote
the source-free field acting on atom A by EA0(t) and define

E (±)
A0 = (dA/�) · E(±)

A0 (t). (5)

We denote the field from atom B acting on atom A by EAB(t)
and define

E (±)
AB (t) = (dA/�) · E(±)

AB(t). (6)

In the problem of interest there are no other “external” fields
acting on atom A. The corresponding operators for the field
experienced by atom B are defined in like manner.

In addition to the Markovian approximation we will make
a rotating-wave approximation (RWA) in which we ignore
“counterrotating” terms on the right-hand side of (2) and
rapidly oscillating terms on the right-hand side of (3). Thus
we replace (2) and (3) by

σ̇A(t) ∼= −i(ωA − iβA)σA(t) − iσzA(t)E (+)
A (t) (7)

and

σ̇zA(t) ∼= −2βA[σzA(t) + 1]

+ 2iσ
†
A(t)E (+)

A (t) − 2iE (−)
A (t)σA(t), (8)

where

E (±)
A (t) = E (±)

A0 (t) + E (±)
AB (t). (9)

From the Hamiltonian and the commutation relations for the
operators akλ and a

†
kλ we obtain, in the free-space, mode

continuum limit (V → ∞),

E (+)
AB (t) ∼= dAdB

�

{
− A

c2r
σ̈B(t − r/c)

+ B
[

1

cr2
σ̇B(t − r/c) + 1

r3
σB(t−r/c)

]}
θ (t−r/c),

(10)

where θ (t) is the unit step function and

A = [d̂A · d̂B − (d̂A · r̂)(d̂B · r̂)], (11)

B = 3(d̂A · r̂)(d̂B · r̂) − d̂A · d̂B. (12)

Here d̂A and d̂B are unit vectors in the directions of dA and dB ,
respectively. In writing (10) we have made the approximation
of dropping counterrotating terms involving σ

†
B(t − r/c) [23].

Similarly,

σ̇B(t) ∼= −i(ωB − iβB)σB(t) − iσzB(t)E (+)
B (t) (13)

and

σ̇zB (t) ∼= −2βB [σzB(t) + 1]

+ 2iσ
†
B (t)E (+)

B (t) − 2iE (−)
B (t)σB(t), (14)

E (±)
B (t) = E (±)

B0 (t) + E (±)
BA (t), (15)

E (+)
BA (t) ∼= dAdB

�

{
− A

c2r
σ̈A(t − r/c)

+ B
[

1

cr2
σ̇A(t − r/c) + 1

r3
σA(t−r/c)

]}
θ (t−r/c).

(16)

III. EFFECT OF ATOM A ON ATOM B

A. Excitation probability of atom B

We consider first the effect of the initially excited atom
A on the initially unexcited atom B. With |ψ(t)〉, the state
of the atom-field system at time t , and U (t), the time evo-
lution operator, the probability that B is excited at time t

is the expectation value over the initial state |ψ(0)〉 of the
Heisenberg-picture operator σ

†
B(t)σB(t):

PB(t) = 〈ψ(t)|σ †
B(0)σB(0)|ψ(t)〉

= 〈ψ(0)|U †(t)σ †
B(0)σB(0)U (t)|ψ(0)〉

= 〈ψ(0)|σ †
B(t)σB(t)|ψ(0)〉 = 〈σ †

B(t)σB(t)〉. (17)

From (13),

σ̇B(t) ∼= −i(ωB − iβB)σB(t) − iσzB((0)E (+)
B (t) (18)

to lowest order in the atom-field coupling. Then, since atom
B is initially unexcited and the field is initially in its vac-
uum state, 〈σ †

B(0)σB(0)〉 = 0, 〈σ †
B(0)σzB(0)〉 = −〈σ †

B(0)〉 = 0,
E (+)

B0 (t)|ψ(0)〉 = 0, and

PB (t) ∼=
∫ t

0
dt ′

∫ t

0
dt ′′〈E (−)

BA (t ′′)E (+)
BA (t ′)〉eiωB (t ′−t ′′)eβB (t ′+t ′′−2t).

(19)

We have used the identity σ 2
zB(0) = 1.

Now from (7) and (16) with

σA(t − r/c) ∼= σA(0)e−i(ωA−iβA)(t−r/c), (20)

E (+)
BA (t) ∼= Fθ (t − r/c)σA(0)e−i(ωA−iβA)(t−r/c), (21)
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where we have defined

F = dAdB

�
k3
A

[ A
kAr

− iB
k2
Ar2

+ B
k3
Ar3

]
. (22)

(kA = ωA/c.) From the assumption that atom A is initially
excited [〈σ †

A(0)σA(0)〉 = 1] it follows that, to lowest order in
|F |,

PB(t) ∼= |F |2
	2 + γ 2

θ (t − r/c)[e−2βA(t−r/c) + e−2βB (t−r/c)

− 2e−(βA+βB )(t−r/c) cos 	(t − r/c)], (23)

	 = ωA − ωB, γ = βA − βB. (24)

For 	2 	 γ 2 and times 	 r/c but much shorter than the
radiative lifetimes,

PB(t) ∼= 4|F |2
	2

sin2 1

2
	t. (25)

The result (23) with kAr 	 1 was obtained many years ago by
Breit [1]. For βA 	 βB , βA(t − r/c) 	 1, and βB(t − r/c) 

1, for example,

PB(t) ∼= |F |2
	2 + β2

A

θ (t − r/c), (26)

which is essentially the result obtained by Fermi [1]. In the case
of identical atoms (kA = kB = k0, dA = dB = d, and βA =
βB = β), (23) reduces to

PB(t) ∼= |Fe−β(t−r/c)(t − r/c)|2θ (t − r/c), (27)

which is the first in a series of terms involving t − nr/c, with
n being odd, obtained in Ref. [24] for the initially unexcited
atom; for the initially excited atom there is likewise a series of
such terms with n being even. All terms in the excitation-
exchange series must be retained. Successive excitation-
exchange probabilities for nonidentical atoms, however, fall
off with increasingly higher powers of F/	.

We note for later reference that

|F |2 → 2d2
Ad2

B

9�2
k6
A

[
1

k2
Ar2

+ 1

k4
Ar4

+ 3

k6
Ar6

]
(28)

when we average over random, independent orientations of
d̂A and d̂B , thus replacing A2 by 2/9, B2 by 2/3, and 2AB by
−2/9.

B. Energy shift of atom B

We now turn our attention to the shift in energy of atom
B in the field of atom A. For this purpose we return to the
approximate equation (13) and take expectation values on both
sides after inserting the formal solution of Eq. (14):

〈σ̇B(t)〉 ∼= −i(ωB − iβB)〈σB(t)〉 + (· · · )

− 2
∫ t

0
dt ′〈E (−)

BA (t ′)σB(t ′)E (+)
BA (t)〉e2βB (t ′−t).

(29)

Here (· · · ) denotes terms that do not directly involve σB . To
lowest (fourth) order in the atom-field coupling we obtain,

using σ
†
A(0)σA(0)|ψ(0)〉 = 1, the approximation (21), and

σB(t ′) ∼= σB(t)e−i(ωB−iβB )(t ′−t), (30)

〈σ̇B(t)〉 ∼= −i(ωB − iβB)〈σB(t)〉 + (· · · )

− 2|F |2θ (t − r/c)e−2βA(t−r/c)〈σB(t)〉

×
∫ t

r/c

dt ′ei(	+iγ )(t ′−t)

= −i(ωB − iβB)〈σB(t)〉 + (· · · )

+ 2i|F |2
	 + iγ

θ (t − r/c)〈σB(t)〉

×{e−2βA(t−r/c) − e−i	(t−r/c)e−(βA+βB )(t−r/c)}.
(31)

The factor proportional to |F |2 and multiplying 〈σB(t)〉 can
be related to a modification of the resonance frequency and
homogeneous linewidth of atom B. The modification of the
resonance frequency can be related to an interaction energy,
but of course we can define an interaction energy only in a
quasistationary regime in which radiative decay is negligible
[2]. To most easily relate such an interaction energy to the
energy calculated by Power and Thirunamachandran [7,8], we
assume βA 
 βB , βA(t − r/c) 
 1, and βB(t − r/c) 	 1, so
that deexcitation of atom A is negligible but atom B is rapidly
deexcited; then, averaging over the temporal oscillations at
frequency 	, we obtain, for t > r/c,

〈σ̇B(t)〉 ∼= −i(ωB + 	ωB − i[βB + 	βB])〈σB(t)〉 + (· · · ),

(32)

where

	ωB = − 2	|F |2
	2 + β2

B

, (33)

	βB = 2βB |F |2
	2 + β2

B

. (34)

	ωB is the shift in the transition frequency of atom B: the
difference between the upper- and lower-state energy shifts.
It vanishes in the case of identical atoms (	 = 0). Since the
real parts of the upper- and lower-state polarizabilities of a
two-state atom have opposite signs [25] and the level shifts are
proportional to the real parts of the polarizabilities, the level
shift of the upper state is −	EB , where 	EB is the level shift
of the lower state of atom B. In other words,

	EB = −1

2
�	ωB = �	

	2 + β2
B

|F |2 ∼= �

	
|F |2. (35)

We are assuming |	| 	 βB as part of the condition that the
two atoms are nonidentical. Now recall that we have made a
rotating-wave approximation. Without this approximation we
pick up additional terms involving 1/(ωA + ωB) in addition to
1/	 = 1/(ωA − ωB), with the result that 1/	 is replaced by

1

	
+ 1

ωA + ωB

= 2ωA

ω2
A − ω2

B

(36)
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and (35) is replaced by

	EB
∼= 4

9

d2
Ad2

B

�c

kBk6
A

k2
A − k2

B

[
1

k2
Ar2

+ 1

k4
Ar4

+ 3

k6
Ar6

]
(37)

when we average over dipole orientations as in (28). This is
exactly the result of Power and Thirunamachandran [7,8] for
the energy shift of the initial state with atom A excited, atom
B unexcited, and the field in the vacuum state in the model
in which the two atoms are modeled as two-state systems. It
involves the real part of the polarizability of atom B,

αB(ωA) = 2ωBd2
B/�

ω2
B − ω2

A

, (38)

and has the form of a quadratic Stark shift of the lower
state of atom B caused by the electric field from atom A.
This was the physical basis of the calculations of Power and
Thirunamachandran in Ref. [7].

A crucial assumption made in our derivation of (37) is that
atom A is not affected by the presence of atom B. Atom A
simply produces an electric field that causes a quadratic Stark
shift 	EB in atom B. This model is clearly the one adopted
by Power and Thirunamachandran [7] in their calculation of
“intermolecular energy shifts from energy densities.” They
subsequently [8] calculated these shifts in time-independent
perturbation theory, evidently choosing the prescription for
dealing with energy denominators that results in the same
(monotonic) interaction energy they derived earlier. This is
discussed further in Sec. V.

C. Relation to Förster resonance excitation transfer

As we now show, the rate R = 	βB/2π can be related to
the Förster excitation transfer rate from a donor molecule to
an acceptor, while the energy 	EB is the energy shift in the
acceptor that accompanies this transfer.

Consider first

R = 	βB = 2πSB(ωA)|F |2, (39)

where SB(ω) is the (normalized) absorption line-shape func-
tion of atom B that effectively defines a “density of final
states”; in the particular model considered here, this is just
a homogeneously broadened Lorentzian. The absorption cross
section of atom B is

σb(ω) = λ2γB

8πn2(ω)
2πSB(ω), (40)

where λ = 2πc/ω and γB = n(ω)AB is the radiative decay
rate of the excited state of atom B in a host medium of (real)
refractive index n(ω) and AB = 4d2

Bω3
B/3�c3 is the radiative

decay rate in vacuum. (We ignore possible local field correc-
tions.) Then, with the expression Aa = 4ω3

Ad2
An(ωA)/3�c3 for

the radiative decay rate of the excited state of atom A in the
medium and the approximation ωA ≈ ωB ,

R = 3n(ωA)�c

2πωAd2
B

σb(ωA)|F |2 = 9B2c4Aa

8πr6

σb(ωA)

n4(ωA)ω4
A

. (41)

We have used (22) with kAr 
 1 and introduced a factor
1/n4(ω) to account for the dependence of the electric field
on the refractive index of the medium (E2 ∝ 1/n4). Finally,

we allow for all emission frequencies of atom A by integrating
over its (normalized) emission line shape SA(ω) and replacing
(41) by

R = 9B2c4Aa

8πr6

∫ ∞

0
dω

σb(ω)SA(ω)

n4(ω)ω4
, (42)

which is a well-known expression for the Förster excitation
transfer rate [26].

	EB can be similarly generalized. For kAr 
 1 and
without dipole orientational averaging,

	EB = −αB(ωA)
d2

AB2

r6n4(ωA)
, (43)

where we have once again introduced the factor 1/n4(ωA).
Relating d2

A to Aa and integrating over the normalized emission
spectrum SA(ω) of the donor A,

	EB = −3B2
�c3Aa

4r6

∫ ∞

0
dω

αB(ω)SA(ω)

ω3n5(ω)
. (44)

This is exactly the interaction energy accompanying the
Förster transfer that was obtained by Cohen and Mukamel
[17,18,27]. The interaction energy obtained by Power and
Thirunamachandran has exactly the same physical origin.
As Cohen and Mukamel note, this energy and the transfer
rate involve the real and imaginary parts, respectively, of the
acceptor polarizability.

IV. EFFECT OF ATOM B ON ATOM A

The dipole moment induced in atom B by the field from
atom A results in a field of frequency ωA scattered by B and
acting back on A. This effect of B on A obviously occurs only
after a time 2r/c.

The field from atom B on atom A is given in the RWA by
Eq. (10). σB(t) in that expression satisfies (13), or

σB(t) ∼= −i

∫ t

0
dt ′σzB(t ′)E (+)

BA (t ′)eiωB (t ′−t) + (· · · ) (45)

for times t short compared to the radiative lifetime of B. Here
(· · · ) denotes terms independent of A. From (16) we have, for
times short compared to the radiative lifetime of A,

E (+)
BA (t ′) ∼= Fθ (t ′ − r/c)σA(t ′ − r/c) + (· · · ), (46)

where we have made the approximation σ̇A(t) ∼= −iωAσA(t).
Then

σB(t) ∼= −iF θ (t − r/c)σzB(0)σA(t − r/c)

×
∫ t

r/c

dt ′e−i	(t ′−t) + (· · · )

∼= F

	
σzB(0)σA(t − r/c) + (· · · ) (47)

to lowest order in |F/	|. We have again averaged over the
oscillations of ei	t . From (10), therefore,

E (+)
AB (t) ∼= F 2

	
θ (t − 2r/c)σzB (0)σA(t − 2r/c) + (· · · ), (48)
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and, from (7),

〈σ̇A(t)〉 ∼= −i(ωA − iβA)〈σA(t)〉 + i
F 2

	
θ (t − 2r/c)

×〈σzA(0)σzB(0)σA(t − 2r/c)〉

= −i(ωA − iβA)〈σA(t)〉 − i
F 2

	
θ (t − 2r/c)

×〈σA(t − 2r/c)〉
∼= −i(ωA−iβA)〈σA(t)〉−i

F 2

	
θ (t−2r/c)〈σA(t)〉e2ikAr

= [−i(ωA + 	ωA) − β ′
A]〈σA(t)〉 (49)

for t > 2r/c. We have used 〈(· · · )〉 = 0 and
〈σzA(0)σzB(0)σA(t − 2r/c)〉 = −〈σA(t − 2r/c)〉 for the
initial condition in which A is excited and B is unexcited and
have defined

	ωA = R
[
F 2

	
e2ikAr

]
(50)

and

β ′
A = βA − R

[
iF 2

	
e2ikAr

]
. (51)

For kAr 	 1,

	ωA
∼= d2

Ad2
BA2k6

A

�2	(kAr)2
cos(2kAr) (52)

and

β ′
A

∼= βA + d2
Ad2

BA2k6
A

�2	(kAr)2
sin(2kAr). (53)

Since in lowest order A only experiences a field scattered from
B when A is excited, only the excited state of A is affected by B
[28]. �	ωA is therefore the energy shift of the initial (excited)
state of A. This energy exhibits sinusoidal modulation [29]
with the separation r as in Refs. [13–16]. Here 2β ′

A is the
radiative lifetime of atom A in the presence of atom B and
has just the (spatially modulated) form previously obtained by
Craig and Thirunamachandran [30] and Berman and Milonni
[31] in connection with spontaneous emission in a dielectric
medium.

V. SUMMARY AND CONCLUSIONS

We conclude from these calculations that the spatially
monotonic [7–12] and the sinusoidally modulated [4–6,13–16]
interaction energies derived previously are both valid but that
they describe distinctly different physical settings.

The sinusoidally modulated energy is associated with
reversible, back-and-forth excitation exchange between A and
B. In the case |	| 	 |F | we have considered, the reexcitation

of B is negligible, and the interaction energy can be interpreted
as the level shift of A due to the field scattered back to A by
B when B has a dipole moment induced by the field from A
[16]. In the near-field case of most interest, the probability
amplitude for the initial state in which A is excited and B is
unexcited is, for times short compared to any relaxation times,

cA(t) = e−i(EA+EB )t/�

[
cos

1

2
�t − i	

�
sin

1

2
�t

]
, (54)

where � = (	2 + 4F 2)1/2, EA,EB are the excited-state ener-
gies of A,B, and F is real. For |	| 	 |F |,

cA(t) ∼= e−i(EA+F 2/	)t/�, (55)

implying the interaction energy �F 2/	, consistent with
Eq. (50) for kAr 
 1.

The spatially monotonic energy is associated with an
irreversible rate of excitation transfer from the initially excited
atom A to the initially unexcited atom B. This excitation
rate is the absorption rate of B in the field of A and can
be obtained simply from Fermi’s golden rule [see Eq. (34)],
treating atom A as an “external” source of a single-photon field
of frequency ωA. The spatially monotonic energy obtained
by Power and Thirunamachandran [7,8], who considered the
energy shift of atom B but not excitation transfer, is just the
quadratic Stark shift accompanying this absorption process.
Atom B was assumed to be bathed in the field of atom A and
to have no effect on A [7]. In their subsequent calculation
[8] based on time-independent perturbation theory, Power
and Thirunamachandran introduced iε terms (ε → 0+) to
avoid vanishing energy denominators and evidently chose the
signs of these terms such that the spatially monotonic energy
obtained in their first calculation was reproduced.

From the perspective of the calculations we have presented,
the validity of the monotonic form of the energy requires an
assumption not explicitly made by Power and Thirunamachan-
dran: excitation acquired by B must relax so quickly to other
states or degrees of freedom that the excitation cannot be
transferred back to A. To model Förster excitation transfer
with our simple model, we must allow for a dense distribution
ρ(	) of final states and replace (25), for example, by

PB(t) ∼= 4|F |2
∫

d	
sin2 1

2	t

	2
ρ(	) (56)

to obtain an irreversible golden-rule rate of excitation of B. In
other words, we would describe the effect on B of the field from
A in the rate-equation approximation, as in the calculations of
Sec. III.
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