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Classical treatment of the electron emission from collisions of uracil molecules with fast protons
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The electron emission from the uracil molecule induced by fast proton impact has been investigated using the
classical-trajectory Monte Carlo (CTMC) method. Applying the independent-particle model, the full three-body
dynamics of the projectile, an active electron, and the molecule core is considered. The interactions with the
molecule core are described by a multicenter potential built from screened atomic potentials. Double and single
differential, as well as total ionization cross sections are calculated and compared with the predictions of the
first Born approximation with correct boundary conditions (CB1), the continuum-distorted-wave–eikonal-initial-
state (CDW-EIS) approach, as well as the combined classical-trajectory Monte Carlo–classical over-the-barrier
(CTMC-COB) model. The effect of the molecular treatment of the ionization by the multicenter potential is
analyzed by simplified CTMC calculations in which the ionization cross section of the uracil is determined as a
linear combination of the contributions of the constituent atoms of the molecule.
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I. INTRODUCTION

An increasing number of studies have been devoted recently
to reveal the properties of the ionization processes induced
in molecules of biological importance by the impact of fast
particles. The great interest is mainly explained by the potential
applications of the results (radiation protection, medical
imaging, proton therapy, etc.). Besides the applications, the
understanding of the ionization of large molecules is itself a
problem of fundamental importance.

Besides water, the DNA–RNA nucleobases are the more
frequently used molecules as targets in the collisional inves-
tigations involving bio-molecules. This is explained by their
important role in the processes that lead to damages induced
by the ionizing radiation in the biological medium.

The present work deals with the ionization of the RNA base
molecule, uracil (C4H4N2O2), by impact of fast protons. In the
past 10–15 years the collisional interaction of this molecule
with ions has been the subject of a number of experimental and
theoretical investigations. In most of the experimental works
[1–5] total and partial cross sections have been measured for
ionization, fragmentation, and charge transfer by impact of
protons and heavier ions (C, O, and F) of different charge states
in a broad range of the collision energy, from a few keV/amu
up to a few MeV/amu. Differential investigations have been
reported only by two research groups. Moretto-Capelle and Le
Padellec [6] carried out an electron spectroscopic measurement
for the electron emission from gas-phase uracil molecules due
to collisions with protons in the 25- to 100-keV energy range.
They determined absolute double-differential cross sections
(DDCSs) at 35◦ emission angle. Recently, Itoh et al. [7] have
measured absolute DDCSs for the process at 0.5-, 1.0-, and
2.0-MeV proton energies. The range of the electron energy and
the emission angle covered by their experiment was 1–1000 eV
and 15◦−165◦, respectively.

On the theoretical side, classical, semiclassical, and fully
quantum mechanical models have been applied for the de-
scription of the ion-uracil collisions. Bacchus-Montabonel [8]
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et al. treated the charge transfer from uracil to low-velocity
(v < 1 a.u.) Cq+ ions (q = 2 − 4) by means of ab initio
quantum-chemical molecular methods. The authors employed
the impact parameter formalism for the description of the
collisional dynamics. Moretto-Capelle and Le Padellec [6]
used the classical-trajectory Monte Carlo (CTMC) method for
the interpretation of their experimental DDCS results obtained
for proton on uracil collisions. Lekadir et al. [9] calculated
single-electron ionization and single-electron capture cross
sections for the collisions of H+, He2+, and C6+ ions with
DNA–RNA nucleobasis (including uracil) at impact energies
ranging from 10 keV/amu to 10 MeV/amu in the framework
of another classical approach, namely the CTMC-COB model.
The latter model combines several features of CTMC and
the classical over-the-barrier (COB) description [10]. As far
as the quantum mechanical description is concerned, two
models have been proposed [11,12]. One is the first Born
approximation with correct boundary conditions (CB1), which
originally had been suggested by Belkić et al. [13] for the
treatment of the electron capture in ion-atom collisions. The
other is the continuum-distorted-wave–eikonal-initial-state
(CDW-EIS) approach [14].

The quantum mechanical models provided DDCS values
in a reasonable agreement with the DDCS data measured by
Itoh et al. [7] for uracil at 1-MeV proton impact, except for
electron energies below 10 eV. In this energy range both
models predict slightly increasing DDCS with decreasing
energy, while the measured data show a strongly decreasing
tendency. The disagreement with the measurements is smaller
at larger observation angles. As a possible explanation,
Champion et al. [12] attributed the observed discrepancy
between the theory and experiment to secondary collisions of
the primarily ejected low-energy electrons on the surrounding
atomic centers during their flight inside the molecule. Since
both quantum mechanical models consider the ionization of
the molecule as a linear combination of atomic ones, they
cannot give an account of multiple scattering effects.

One of the motivations of the present work was the
above-mentioned discrepancy. It was an interesting question
whether the application of a multicenter molecular potential in
the ionization models resolves the discrepancy and improves
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the agreement between the theory and experiment. As an
ionization model, we chose CTMC. While the inclusion of
multicenter potential into the quantum mechanical models
gives rise to serious difficulties in the solution, it is straightfor-
ward and relatively easy for CTMC. Another motivation was
the poor agreement between the CTMC results of Moretto-
Capelle and Le Padellec [6] and their DDCS data measured at
100-keV proton energy. Their calculations carried out with a
multicenter molecular potential overestimated the experimen-
tal DDCS values at an average by a factor of 1.75. Even larger
deviations, reaching two orders of magnitude at low electron
energies, were observed between their experimental data and
the calculations of Galassi et al. [11] made in the framework
of both quantum mechanical models, CB1 and CDW-EIS.

The organization of the paper is as follows. In Sec. II,
we outline the model with particular emphasis on the con-
struction of the multicenter atomic potential. Furthermore,
we present our procedure for the generation of the initial
position and momentum coordinates of the electron in the
case of the anisotropic molecular potential. In Sec. III, we
compare the calculated differential and total ionization cross
sections with existing experimental data and the predictions
of other theoretical models, including the results obtained by
a simplified CTMC procedure in which the ionization cross
section of the uracil is determined as a linear combination of
the contributions of the constituent atoms of the molecule.

Atomic units are used throughout the paper, unless other-
wise indicated.

II. THEORETICAL METHOD

Assuming the validity of the independent particle model
(IPM), we applied a three-body CTMC approach that considers
the interaction between the projectile, an active electron, and
the ion core of the molecule. The CTMC method is based on
the numerical solution of the classical equations of motion for
a large number of trajectories of the interacting particles under
randomly chosen initial conditions [15,16].

The present CTMC computer code worked out for the
description of the ion-molecule collisions is based on a
previous code used for ion-atom collisions (for details see
Ref. [17]). It solves Newton’s nonrelativistic equations of
motion for the three particles:

mi

d2ri

d t2
=

3∑
j (�=i)=1

Fij (ri − rj ), (i = 1,2,3). (1)

Here mi and ri are the masses and the position vectors of the
three particles, respectively. Introducing the notations e, P, and
T for the electron, projectile, and target, the Fij forces in (1) are
the e-P, e-T, and P-T interactions. The e-T force is determined
as −∇rij

Vmod(rij ), where rij = ri − rj is the relative position
vector of the two particles. Vmod(r) is a multicenter model
potential that describes the interaction of the active electron
in the mean field created by the nuclei and the rest electrons
of the molecule. For a bare ion projectile of charge ZP the
P-T force is derived similarly: −ZP∇rij

[−Vmod(rij )]. The e-P
interaction in this case is Coulombic.

Realistic multicenter molecular potential can be obtained
from quantum chemical calculations (see, e.g., Ref. [6]).

Instead, we apply a simple method introduced in our previous
work [18] in which we investigated the electron emission from
H2O and CH4 by impact of fast ions, both experimentally
and theoretically. One of the applied theoretical models
was CTMC. In the CTMC calculations for H2O target we
used Vmod(r) obtained by Illescas et al. [19] by means of
quantum chemical calculations. Such potential for CH4 was
not available in the literature, so we looked for a simple way
how to construct it. Analyzing the form of Vmod(r) proposed by
Illescas et al. for H2O, we arrived at the idea that Vmod(r) can be
well approximated by the sum of screened atomic potentials.

The details of our procedure are given in Ref. [18]. Briefly,
for a screened atomic potential one may use the Green-Sellin-
Zachor potential [20]:

V GSZ(r) = −{Z − (N − 1)[1 − �(r,η,ξ )]}/r, (2)

where Z is the nuclear charge, N is the number of the electrons
in the ion, and

�(r,η,ξ ) = {(η/ξ )[exp(ξr) − 1] + 1}−1.

η and ξ are parameters that depend on N and Z.
V GSZ(r) can be written as a sum of long- and short-range

potential:

V GSZ(r) = −Z − (N − 1)

r
− (N − 1)

r
�(r,η,ξ ). (3)

In the molecule the potentials at the atomic centers differ from
those of the isolated atoms. In Ref. [18] we have shown that
the change of the atomic potential at a molecular center can be
well expressed by the change of the electron number from N

to N + �N . In this way, a constituent atom A of the molecule
contributes to Vmod(r) with the following potential,

V GSZ
A (rA) = −ZA − (NA − �NA − 1)

rA
− NA − �NA − 1

rA

×�(rA,ηA,ξA). (4)

Here rA is the distance of the electron from the nucleus of the
atom A.

For the water molecule we found that by suitable choice
of NA and �NA for the oxygen and hydrogen centers one
can obtain the same coefficients of the short-and long-range
parts of the above potential as those of the center potentials
in Vmod(r) given by Illescas et al. Furthermore, it turned
out that excellent agreement between the latter potential
and that constructed from the screened atomic potentials
can be obtained even in the “zeroth-order approximation,”
i.e., assuming �NA = 0 for both atoms. In Ref. [18] for
the CH4 molecule we used the zeroth-order approximation
for the construction of the five-center potential. Our CTMC
calculations carried out with this potential for the ionization of
CH4 by 1-MeV proton and He+ projectiles resulted in DDCS
values in very good agreement with the experimental data.

For the uracil molecule we constructed the multicenter
potential along the same line as for H2O and CH4. It has
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the form,

Vuracil(r) =
nH∑
i=1

VH(rHi) +
nC∑
i=1

VC(rCi) +
nN∑
i=1

VN(rNi)

+
nO∑
i=1

VO(rOi). (5)

Here rAi is the distance of the electron from the nucleus of
the ith A atom, and nA is the number of the A atom in the
molecule. VA(rA) is approximated by the modified Green-
Sellin-Zachor potential given by Eq. (4), VA(rA) ≈ V GSZ

A (rA).
In our calculations the parameters ηA and ξA were taken from
Garvey et al. [21].

V GSZ
A (rA) is parametrized as follows. For each atom NA =

ZA + 1. For the hydrogen atoms �NH = 0. The asymptotical
behavior of the multicenter potential,

Vuracil(r → ∞) = −1

r
, (6)

is ensured by the choice �NA = 1/(nC + nN + nO) for the
carbon, nitrogen, oxygen atoms. The choice �NH = 0 can be
justified by the small corresponding value found for water.
The equivalent treatment of the heavy atoms is based on the
picture that the ionization takes place mostly from loosely
bound molecular orbitals that are highly delocalized, therefore
one cannot expect large differences among the contributions
of the atoms to the asymptotical unit charge.

It is important to note that at each atomic center in the
limit rA → 0 Eq. (4) leads to the potential of the bare nuclear
charge:

VA(rA) = −ZA

rA
. (7)

The anisotropic molecular potential gives rise to a further
difficulty in CTMC, namely that the generation of the initial
values of the position and momentum coordinates of the
electron is more complicated than that for the isotropic
atomic potential. For the latter case Reinhold and Falcón
[22] suggested a general method. In Ref. [18] we extended
their method for the case of anisotropic potentials. Briefly,
the central quantity in the original procedure of Reinhold and
Falcón is the integral,

ω(r) =
∫ r

0
dr ′μ r ′ 2 {2μ[Ei − V (r ′)]}1/2. (8)

Here Ei = p2/2μ + V (r) is the binding energy of the electron,
μ = mT/(1 + mT). The range of the radial distance of the
electron is confined to the interval 0 < r < r0 because of the
condition that the kinetic energy is positive. The maximum
value r0 is obtained as the root of the equation,

Ei − V (r) = 0. (9)

The first step to determine the initial r value is the random
choice of ω in the interval [0,ω(r0)]. Once a value of ω is
chosen, r is obtained from the inverse of the ω(r) function.

For anisotropic potential we modified the integral (8) in the
following way:

ω(r,θr ,φr ) =
∫ r

0
dr ′μ r ′ 2 {2μ[Ei − V (r ′,θr ,φr )]}1/2, (10)

where θr and φr are the polar angles of the position vector r. In
this case the procedure starts with the selection of the direction
of r by random choice of νr = cos θr in the interval [−1,1],
and φr in the interval [0,2π ]. Then the equation,

Ei − V (r,θr ,φr ) = 0, (11)

has to be solved at the selected (θr ,φr ) direction. Now the root
r0 = r0(θr ,φr ). Again, after the random choice of an ω value
with the condition 0 < ω < ω[r0(θr ,φr )], r is obtained from
the inverse of the ω(r,θr ,φr ) function given by Eq. (10).

Once r is known, the components of the momentum vector
are calculated as

px = {2μ[Ei − V (r,θr ,φr )]}1/2
(
1 − ν2

p

)1/2
cos φp,

py = {2μ[Ei − V (r,θr ,φr )]}1/2
(
1 − ν2

p

)1/2
sin φp,

pz = {2μ[Ei − V (r,θr ,φr )]}1/2νp. (12)

Here νp and φp are randomly selected in the interval [−1,1]
and [0,2π ], respectively.

While the procedure outlined above was applied success-
fully for H2O and CH4, it failed for uracil. It turned out that
it can be used only for potentials characterized by a small
degree of anisotropy (“quasi-isotropic” potentials). Since for
both H2O and CH4 the molecular potential is dominantly
determined by that of the heavy atom, its spatial distribution is
almost spherically symmetric. At the same time, the potential
of uracil is highly anisotropic because of the planar ring struc-
ture of the molecule. The failure of the presented procedure
for uracil is explained by the lack of weighting of the different
directions along which the integration in (10) is carried out.
The latter integral provides normalized distributions at all
selected directions. As a weighting procedure, it is plausible
to assume that the probability of finding an electron at a
given (θr ,φr ) direction is proportional to the volume of the
integration at the maximum radial distance, �V ∝ r3

0 (θr ,φr ).
By denoting the global r0 value (i.e., the maximum among
the r0 values considering all directions in the molecule at
a fixed value of the binding energy) by R0, the weighting
factor is r3

0 (θr ,φr )/R3
0. This so-called “volume” correction

was implemented in the CTMC code by introducing a random
variable χ with uniform distribution in the interval [0,1]. For
the random generation of r at a given (θr ,φr ) direction the
criterion of the acceptance of a trial event: χ � r3

0 (θr ,φr )/R3
0.

For the uracil molecule one is faced with a further
complication, namely that below a certain binding energy
Eq. (11) can have more than one root. For the potential given by
Eq. (5) this energy is −1.155 a.u. In our CTMC calculations we
considered 29 molecular orbitals (MOs), with binding energies
ranging from −0.349 a.u. to −19.71 a.u. [11]. For the first
17 MOs Eq. (11) has one root, for the rest MOs the number of
the roots can be one, two, or three. In calculation of the initial
electron coordinates only those domains of the molecule were
considered, where the kinetic energy of the electron is positive.

In Figs. 1 and 2 the contour map of the initial electron
position obtained by the above procedure is shown for a loosely
and a strongly bounded electron, respectively. With increasing
binding energy the electron is more and more localized at the
atomic centers, as it is expected. The delocalized motion of
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FIG. 1. (Color online) Contour map of the initial electron posi-
tion in uracil. The binding energy of the electron is −0.581 a.u. x

and y are coordinates of the projection of the position vectors into
the molecule plane. From light to dark the intensity level increases
linearly.

the electron in case of small binding energy is demonstrated
by the plot of a typical electron trajectory in Fig. 3.

We emphasize that our method to generate the initial values
of the position and momentum coordinates of the electron
is based on some physical considerations, it is not an exact
procedure. In this context the question arises how far the
results of the CTMC calculations depend on the applied
procedure. Intuitively one feels that in the ideal case the initial
position and momentum distribution remains constant in time
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FIG. 2. (Color online) The same as Fig. 1, but the binding energy
of the electron is −1.385 a.u.
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FIG. 3. An example of the electron trajectory in the uracil
molecule (projection into the plane of the molecule). Binding energy,
−0.581 a.u.

(in the absence of outer forces), i.e., it is identical to the
equilibrium (relaxed) distribution. Figure 4 shows the electron
radial distance distribution in uracil initially and after a time
of 103 a.u. calculated with neglect of the interactions with
the projectile. According to the figure, the initial distribution
is almost the same as the relaxed one. This result proves the
correctness of the procedure applied in the present work.

For a noncoincidence experiment the measured cross sec-
tion is an average of the contributions from randomly oriented
molecules. To make a comparison with the experiment, the
theory has to consider also the random orientation of the
molecules. This was achieved in the present work by the
random rotation of the molecule using the three Euler angles at
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FIG. 4. The probability density function of the electron radial
distance in uracil initially (open circles) and after a time of 103 a.u.
(solid circles). The interactions with the projectile are switched off.
The binding energy of the electron is −0.581 a.u.
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each collision event. By a suitable transformation of the Euler
angles to uniformly distributed random variables we ensured
the isotropic distribution of the molecule orientation.

The double differential cross section (DDCS) for the elec-
tron production describing the energy and angular distribution
of the electron following the ionization of the molecule is
calculated as the sum of DDCSs for the electron emission
from the individual MOs:

d2σ

dε d�
=

NMO∑
i=1

d2σi

dε d�
, (13)

where NMO is the number of the MOs. For a given MO,
classically the DDCS can be expressed as (omitting the
subscript i)

d2σ

dε d�
= n 2π

∫ ∞

0
b

d2p

dε d�
(b) db, (14)

where d2p/dε d� is the one-electron double-differential
ionization probability for the regarded MO, n is the number of
the electrons in the MO, and b is the impact parameter. We note
here that the above expression can be applied only for electron
emission having azimuthal symmetry. Although this is not the
case for a molecule of a fixed orientation, for the averaged
emission of randomly oriented molecules the condition of the
azimuthal symmetry is fulfilled.

For a large number of collision events characterized by
uniformly distributed b values in the range (0,bmax) the integral
in (14) can be approximated by the following sum:∫ ∞

0
b

d2p

dε d�
(b) db ≈ bmax �jbj

Ntot�ε ��
. (15)

Here bj is the actual impact parameter at which the electron is
emitted with energy and angle that falls in the energy window
�ε and solid angle window ��, and Ntot is the total number
of the collision events. �� is determined by the polar angular
window ranging from θmin to θmax:

�� =
∫ 2π

0

∫ θmax

θmin

sin θ dθ dφ = 2π (cos θmin − cos θmax).

(16)
From Eqs. (15) and (16) we obtain for a given MO,

d2σ

dε d�
≈ n

bmax �jbj

Ntot(cos θmin − cos θmax) �ε
. (17)

Besides DDCSs, in the present work we determined also
single differential cross sections (differential with respect to
the electron energy, SDCS) and total cross sections (TCS)
for the electron emission. The contribution of a given MO to
SDCS and TCS is expressed as

dσ

dε
≈ n 2π

bmax �jbj

Ntot�ε
, (18)

and

σ ≈ n 2π
bmax �jbj

Ntot
, (19)

respectively.
Further details of the calculations are as follows. Assuming

the validity of the Franck-Condon approximation, the calcu-
lations are carried out at fixed, equilibrium geometry of the

uracil molecule. The Cartesian coordinates of the gas phase
molecule were taken from Ref. [23]. As a check, using the
coordinates we calculated the bond lengths and bond angles
of the molecule. The obtained values were found in good
agreement with the experimental and theoretically calculated
bond lengths and bond angles (see, e.g., Ref. [24]). We
considered 29 MOs of the uracil. As binding energies and
electron population numbers we used the data obtained by
Galassi et al. [11] by ab initio quantum chemical calculations.

The integration of the equations of motion was started
at such a large distance R0 between the incoming proton
and the uracil molecule at which the relative change of the
binding energy of the electron due to the perturbation by the
projectile in the considered MO was less than 10−4. After
the collision the calculations were made in two steps. In
the first step the integration was continued until the proton
receded to the same distance as that of the initial approach R0.
This distance was large enough to identify the main reaction
channels (excitation, ionization, and charge transfer). In the
second step only collision events leading to ionization were
regarded, and the trajectories of the particles were calculated
up to R = 103 a.u.

In the present investigations we followed the history of
altogether 8.61 × 108 collision events.

III. RESULTS AND DISCUSSION

In Fig. 5 the DDCS values obtained by our CTMC method
for the ionization of uracil by impact of 1-MeV protons
are compared with the experimental data [7] and the results
of CDW-EIS and CB1 calculations [12]. According to the
figure, CTMC provides a reasonable description of the process.
However, CTMC could not resolve the discrepancy between
the theory and experiment observed below 10-eV electron
energy. As it was mentioned in the Introduction, Champion
et al. [12] attributed the discrepancy to secondary collisions of
the primarily ejected low-energy electrons on the surrounding
atomic centers during their flight inside the molecule. Unlike
CDW-EIS and CB1, our CTMC applies a multicenter molecule
potential, therefore, in principle, it gives an account of such
secondary scattering effects. The fact that CTMC is in almost
perfect agreement with the other two models for electron
energies of a few eV indicates that the contribution of the
secondary scatterings to the electron emission is very small,
and thereby it rules out the explanation by the above authors.

A further conclusion that can be drawn from Fig. 5 is that
the CTMC results give strong support to the CB1 model.
The fact that both CTMC and CB1, these two completely
different theoretical approaches, describe the experimental
data equally well (above 10 eV) support the correctness of
the measurement and indicates that the increasing deviations
seen between CDW-EIS and the experiment with increasing
emission angle and energy at backward direction are due to
the bad performance of the applied CDW-EIS model.

The worst agreement between CTMC and the experiment
occurs at 15◦ at electron energies covering the range of the
C, N, and O K-LL Auger peaks. CTMC predicts a bumplike
structure in this energy range. Since the theory does not include
the Auger electron emission, it is expected to describe only the
“background” under the peaks. One may attribute the bump
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FIG. 5. (Color online) Double-differential cross section for the
electron emission from the uracil molecule following ionization by
1-MeV proton impact. Open circles, measured data [7]; dashed line,
CDW-EIS [12]; thin solid line, CB1 [12]; thick solid line with error
bars, present CTMC.

to the ionization of the inner MOs of the molecule (the K
shells of the heavy atom constituents) whose contribution to the
total DDCS increases with increasing electron energy. Indeed,
the DDCS for the ionization of inner MOs shows a broad
maximum at about 300 eV, as is seen in Fig. 6. We note
that CDW-EIS also predicts a bump, but at somewhat higher
energy, about 500 eV (see Fig. 5). Moreover, the concave shape
of the CB1 curve above 100 eV indicates the presence of a
structure at even higher electron energy. However, the latter
one is most likely the binary encounter peak whose expected
energy is 4 (me/mp) Ep cos2(θ ) = 2032 eV.

Larger deviations between CTMC and experiment are ob-
served also at 165◦ above 300 eV, where CTMC underestimates
the measured DDCS data. According to Fig. 6, the contribution
of the inner MOs is small here. We note, however, that in this
case the comparison between the theory and experiment is
uncertain because of the large statistical error of the CTMC
results. From the experimental side, the long Lorentz tails of
the Auger peaks do not allow an accurate determination of
the DDCS. More reliable cross sections could be obtained by
extending the energy range of the measurements well above
the Auger peaks.
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FIG. 6. The contribution of the ionization of inner MOs of the
uracil molecule (dashed lines) to the total DDCS (solid lines). The
impact energy is 1 MeV; the experimental data are the same as in
Fig. 5.

In Fig. 7 the present SDCS results for 1-MeV impact energy
are compared with the experimental data and the predictions
of the two quantum mechanical models as a function of the
electron energy. Above 100 eV CTMC is in perfect agreement
with the experiment and CB1. At lower energies CTMC
predicts SDCS values that lie between those obtained by CB1
and CDW-EIS.

As it was mentioned in the Introduction, the present
study was also motivated by the poor agreement between
the CTMC results of Moretto-Capelle and Le Padellec [6]
and their DDCS data measured at 100-keV proton energy, as
well as the discrepancy of two orders of magnitude observed
between their experimental data and the CB1 and CDW-EIS
calculations of Galassi et al. [11]. According to Fig. 8 our
CTMC results support the latter calculations. Although the
present CTMC predicts slightly smaller DDCS values than
CB1 and CDW-EIS, the difference between the two CTMC
results is still very large. Furthermore, our calculations do not
show the peak appearing at 20 eV in case of the calculations
of Moretto-Capelle and Le Padellec.

In Fig. 9 the total (integrated) electron emission cross
sections obtained in the present work are compared with the
results of other theories (CDW-EIS and CB1 [12], CTMC-
COB [9]) and with the available experimental data [3,7] as
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FIG. 7. Single-differential cross section for the electron emission
from the uracil molecule following ionization by 1-MeV proton
impact. Open circles, measured data [7]; dashed line, CDW-EIS [12];
thin solid line, CB1 [12]; thick solid line, present CTMC.

a function of the incident proton energy. Above 100 keV
the theories behave similarly; they predict almost the same
slope of the decrease of TCS with increasing energy. Our
CTMC results are in good agreement with the experimental
data of Itoh et al. [7]. Below 100 keV the theories strongly
diverge with decreasing energy. Unfortunately, there exist no
experimental data in this energy range except the value at
80 keV measured by Tabet et al. [3] which, however, seems
to be too large regarding the tendency of the high-energy
data. We note that the low-energy range is very interesting
theoretically for the following reasons. With decreasing energy
the applicability of the perturbation theories (CDW-EIS, CB1)
becomes questionable. A better description is hoped from
CTMC and CTMC-COB, as nonperturbative models. As far as
CTMC-COB is concerned, it can be considered as a simplified
CTMC method, and the validity of the approximations applied
in the model is uncertain at low impact energies.

In the following we investigate the effect of the use of
multicenter molecular potential. To analyze the effect, we
repeated our DDCS calculations at 1 MeV using a simplified
CTMC procedure in which the ionization cross section of
the uracil is determined as a linear combination of the
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FIG. 8. Double-differential cross section for the electron emis-
sion from the uracil molecule following ionization by 100-keV proton
impact. Closed circles with error bar, measured data [6]; dashed line,
CDW-EIS [12]; thin solid line, CB1 [12]; open circles, CTMC results
of Moretto-Capelle and Le Padellec [6]; thick solid line, present
CTMC.

contributions of the constituent atoms of the molecule:

d2σ

dε d�
=

NMO∑
i=1

Ni∑
k=1

ζik

d2σ at
ik

dε d�
. (20)

Here Ni is the number of atomic states contributing to the
ith MO, d2σ at

ik/dεd� is the DDCS for the electron emission
from the kth atomic state in the ith MO, and ζik’s are the
electron population numbers at the atomic centers. We note
that Galassi et al. [11] applied the same single-center (atomic)
approximation in their quantum mechanical calculations.

Information about the effect of the multicenter molecular
potential can be obtained by comparing DDCS based on the
use of atomic potentials according to Eq. (20) with that based
on the use of molecular potential. (In the following we refer
to the two CTMC models as “atomic” and “molecular.”) For a
correct comparison, however, one has to take into account the
large sensitivity of the cross section on the binding energies of
the electrons in the MOs. This means that the atomic CTMC
leads to comparable results with the molecular one only if the
average value of the binding energies of the atomic states in a
given MO is approximately equal to the binding energy of the
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FIG. 9. Total cross section for the electron emission from the
uracil molecule induced by protons as a function of the impact energy.
(Experimental data) Open circles, Itoh et al. [7]; triangle, Tabet et al.
[3]. (Theories) Dashed line, CDW-EIS [12]; thin solid line, CB1 [12];
dashed-dotted line, CTMC-COB [9]; thick solid line, present CTMC.

MO, i.e.,

Ei ≈
Ni∑

k=1

wik εik. (21)

Here εik’s are the binding energies of the atomic states.
As weighting factors we may use the normalized electron
population numbers, wik = ζik/

∑Ni

k=1 ζik .
The condition Eq. (21), however, is not fulfilled in the

case of unperturbed atomic states. In the molecule the states
of an atom are strongly perturbed by the surrounding atoms
leading to substantially reduced binding energies. We obtained
approximate perturbed atomic binding energies by considering
εik in Eq. (21) as variables, and fitting the

∑Ni

k=1 wik εik values
to Ei for the 21 valence shells of uracil. As MO binding
energies and electron population numbers we used the data
tabulated by Galassi et al. [11]. The best fit was achieved
with the following perturbed binding energies (in eV): H(1s),
13.84; C(2s), 32.22; N(2s), 34.12; O(2s), 42.76; O(2p), 10.03.
For C(2p) and N(2p) a good fit was obtained by assuming
two perturbed values: C(2p), 8.00 and 16.26; N(2p), 12.25
and 22.33.

We emphasize that the above procedure is very approx-
imate; it ensures only the consistency of our analysis from
energetical point of view.

For calculation of d2σ at
ik/dεd� in Eq. (20) we used our

standard atomic CTMC code applying the Green-Sellin-
Zachor screened potential [17]. The DDCS values obtained
by the atomic and molecular CTMC model are compared in
Fig. 10 at emission angles 15◦ and 165◦. At 15◦ the two models
resulted in almost the same DDCS values; the atomic model
predicts slightly larger DDCS than the molecular model. At
165◦ the effect is large, the DDCS obtained by the atomic
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FIG. 10. DDCS for electron emission from the 1-MeV proton on
uracil collisions. Solid lines, the present CTMC model; dashed lines,
a simplified CTMC model based on the calculation of the individual
contributions of the constituent atoms of the molecule according to
Eq. (20). Experimental data, Itoh et al. [7].

model is greatly reduced as compared to the molecular model,
and differences up to a factor of 3 can be observed between
the two approaches.

A possible explanation for the enhancement of the back-
ward electron emission in the case of the multicenter molecular
potential is as follows. The backward emission can be viewed
as a two-step process. In the first step the electron is ejected
from the atom in the forward direction in the incoming phase
of the collision. In the case of a free atom, in the second step the
electron is scattered back by the target nucleus. In a molecule
the probability of backscattering increases due to the more
than one number of the scattering centers.

We note here an important consequence of the above
finding. We may assume that the use of a multicenter molecular
potential in the quantum mechanical calculations would lead
also enhanced DDCS values at backward angles, i.e., it would
shift up the CDW-EIS and CB1 curves seen in Fig. 5 for 120◦
and 165◦ emission angles. This means that the agreement
between the experiment and theory would be improved for
CDW-EIS; at the same time, it would be worsened for CB1. In
other words, the good performance of CB1 in the description of
the experimental data may be considered as accidental. This is
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in accordance with the expectation, since CDW-EIS is a more
justified ionization theory than CB1.

IV. CONCLUSIONS

We investigated the electron emission from the uracil
molecule induced by fast proton impact using the CTMC
method. We have shown that for 1-MeV impact energy CTMC
provides integrated and differential cross section data that
are comparable with those obtained by quantum mechanical
calculations. Our CTMC results are in reasonable agreement
with the experimental data. However, in spite of applying
a multicenter molecular potential, CTMC could not resolve
the large discrepancy found between the quantum mechanical
models and the experiment for DDCS below 10 eV. In the same
way, at 100-keV impact energy CTMC supports CDW-EIS and
CB1, but it is in strong disagreement with the experiment and
a previous CTMC model.

The comparison of the present CTMC results obtained
for TCS with the predictions of other theories (CDW-EIS,
CB1, CTMC-COB) shows a strong divergence of the models
with decreasing impact energy. This calls the attention for the
necessity of experiments at energies below 100 keV by which
the performance of the theoretical models would be checked
more efficiently than at higher impact energies.

Our simplified CTMC calculations made with atomic po-
tentials showed the importance of using multicenter molecular
potential in the description of the ionization process of the
molecule, particularly regarding the electron emission at
backward directions.
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[13] Dž. Belkić, R. Gayet, J. Hanssen, and A. Salin, J. Phys. B 19,
2945 (1986).

[14] D. S. F. Crothers and J. F. McCann, J. Phys. B 16, 3229 (1983).
[15] R. Abrines and I. C. Percival, Proc. Phys. Soc. London 88, 861

(1966).
[16] R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).
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