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Relativistic configuration-interaction calculations for atoms with one valence electron
based on altering hydrogenlike or Dirac-Fock spin orbitals
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Relativistic configuration-interaction calculations using hydrogenlike or Dirac-Fock spin orbitals of the
transition from the ground state to some np1/2, np3/2 low-lying excited states for the alkali metals are presented.
In these calculations each virtual spin orbital corresponds to a unique noninteger atomic number determined
iteratively using the virtual-particle model. The virtual-particle model based on “condensed-space” idea is here
adopted to many electron systems consisting of a single valence electron and the core. The transition energy
and the oscillator strength values were computed for sodium, potassium, rubidium, cesium, and francium. Both
hydrogenlike and Dirac-Fock basis functions have been used in the computations for comparison.
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I. INTRODUCTION

One of the most important and widespread approaches to
the calculation of atomic properties remains the relativistic
configuration-interaction (RCI) scheme. The high-precision
RCI calculations use very large scale basis-set expansion and
can be run on powerful computers. The choice of basis func-
tions is very important as it can largely improve the efficiency
of RCI calculations. In addition the relativistic calculations use
the Dirac Hamiltonian, which is nonlimited from below; thus,
additional constraints must be imposed on basis functions. In
our recent study we proposed hydrogenlike basis functions
which proved to be very efficient in RCI calculations for
heliumlike or lithiumlike systems. The hydrogenlike wave
functions can be easily determined numerically or represented
analytically. We applied them to the Dirac-Coulomb and Dirac-
Coulomb-Breit Hamiltonians, where the projection onto the
no-pair Hamiltonian was done only through the choice of the
one-electron hydrogenlike energy states. None of the spurious
eigenstates have been observed so far. In the present work we
continue the study of hydrogenlike basis functions and their
possible application to the calculations of many-electron atoms
as well as of heavy atoms. It is our aim to set up virtual states
of the “condensed-space” formalism developed in our recent
work [1] for use in each atomic system.

In our last paper [1] we considered the space (denoted as
E) for charged particles in hydrogenlike states. Furthermore,
we have introduced the Ẑ operator and the eigenstates

Ẑ|q〉 = Zq |q〉, (1)

which belong to the E space. We can write the one-electron
Dirac-Coulomb eigenequations with the aid of the Ẑ operator,(

ĥD − Ẑ

r

)
φq = εφq, (2)

where ĥD is the Dirac kinetic-energy operator and φq is
the wave function of the particle in the |q〉 state of the E

space. Since the E space is spanned by spectroscopic states,
the eigenvalues Zq are the integer values. Moreover, all Zq
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eigenvalues of a given particle are degenerate. For example,
the electron in a hydrogen atom has Zq equal to 1 in all its
spectroscopic states. Following the concept of the condensed
space of energy levels discussed in [1], a condensed-space
transformation was defined which, applied to the E space,
generates the so-called condensed E(s) space. The possible Zq

eigenvalues depend on integer parameter s and are determined
by the relation

A(s + 1)

(s + 1)
√( |κ|+s

1+s

)2 − (αA)2 + n − |κ| + s(b − 1)

= Znκ√
κ2 − (αZnκ )2 + n − |κ|

, (3)

where A is the atomic number, α is the fine-structure constant,
and the integers n � b,|κ| � n are quantum numbers. The b

parameter refers to the quantum number of the lowest state
from the E(s) space. One can note that the degeneration of
the Zq eigenvalues is removed in the E(s) space. Since all Zq

values are not integers, all states in the E(s) space are virtual.
By definition both the E and E(s) spaces have a common
ground energy state. One could interpret these two spaces as
two different potentials. However, it is known from theory
that different potentials cannot have the same ground state.
We think that a possible interpretation is that the condense-
space transformation creates new virtual particles, where each
particle corresponds to a different Zq eigenvalue. Thus, we
might possibly interpret the E(s) space as representing the
interacting virtual-particle system in the Coulomb field. The
parameter s should refer to the number of created virtual
particles. The E space would refer here to a single charged
particle in the Coulomb potential, which would be the so-called
background potential for the interacting virtual particles.

The possible application of the condensed-space concept
to the atomic structure calculation was discussed in [1].
One chooses the E space as a set of spectroscopic states
of the studied atomic system. Next, the condensed-space
transformation is used to construct the E(s) space of virtual
states. The integer s parameter discussed in detail in [1]
should be chosen to be as large as possible. Each virtual
state is designated by two quantum numbers n, κ , and the
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corresponding Ẑ eigenvalues are evaluated from relation (3).
The wave functions φn,k are determined by solving Eq. (2).

The energy structure calculations of He-like and Li-like
systems were performed in our last paper [1] within the
framework of the E(s) space concept as a virtual-particle
model. In this paper we propose to extend this concept to
many-electron systems with a single electron outside the
closed-shell core. We present here calculations of the transition
energy and of oscillator strengths for the low exited states
ns1/2-np1/2 and ns1/2-np3/2 in the alkali atoms.

II. CALCULATIONS

The application of our virtual-particle model is not limited
to only two- or three-electron systems. However, one can
remember that it treats a many-electron system as a number of
virtual particles in the Coulomb field which have to reproduce
the Coulomb repulse interaction between the electrons. For a
many-electron atom it would require a large number of virtual
particles and, consequently, a huge CI space. For example,
in the case of three -electron systems the basis-set expansion
sometimes included hundreds of thousands of configuration
state functions (CSFs) and over a hundred spin orbitals.

In many-electron systems some electrons can be treated as
the core, and others can be treated as the valence electrons,
which is a common approach. Among electron correlation ef-
fects, the most important are usually intravalence correlations
and core-valence correlations which represent polarization of
the core. The natural approach would be to treat the only
valence electrons within the framework of the virtual-particle
model with the Hartree-Fock (HF) or Dirac-Fock (DF) orbitals
describing the core electrons. The main problem concerns
the condensed-space transformation [1], which operates only
on hydrogenlike energy levels. It requires us to choose the
spectroscopic space E of the hydrogenlike states, which would
represent the background potential for interacting electrons.
For the few-electron atoms where all electrons are to be
treated within the framework of the virtual-particle model,
the nucleus potential should obviously be chosen as the
background potential. However, in the case of the existing core
electrons the valence electrons do not affect the pure Coulomb
attraction by the nucleus. The Coulomb approximation may
be valid only at a long distance from the core. Thus, if we
neglect the core electrons in the process of generation of
the virtual particles, as a consequence, they cannot properly
represent the core-valence as well as the intravalence-electron
interactions. In fact, we cannot introduce the influence of
the core electrons or another distribution of the electronic
charge into the process of generation of the E(s) condensed
energy-level space. However, it is possible to include the
screening effect of the core electrons in the Ẑ operator.

We start by choosing the background potential as the sum of
the nucleus potential and the HF potential of the core-electrons
at large r ,

−A − N

r
, (4)

where N is the number of core electrons and A is the
atomic number. The energy levels for the E(s) space may be

determined from the relations

εn,κ = c2√
1 + α2(A−N)2(s+1)2

γ+n−κ+s(b−1)

,

γ =
√

(κ + s)2 − α2(A − N )2(s + 1)2. (5)

It should be noted that εn,κ is the energy eigenvalue of Eq. (2)
for the corresponding Znκ parameter satisfying Eq. (3) in the
case where A is replaced by A − N . Thus, with the energy
levels of the E(s) space, one can use Eq. (2) to determine the
Ẑ eigenvalues.

Let us consider now the corresponding single-particle
Dirac equation with the screening-potential term in the DF
approximation,

(
ĥD − Ẑ

r
+ VDF (r)

)
φq = εφq. (6)

There are now two possible approaches to the virtual-particle
model. In the first one, we rewrite Eq. (6) for the particular
atomic system as(

ĥD − A

r
− Znκ

r
+ VDF (r)

)
φnκ = εφnκ, (7)

where A is the atomic number. This equation may be used to
generate the virtual wave functions. The Znκ parameters should
be determined from Eq. (3) within the ionic potential (4). In
this method the core electrons influence the wave function of
the virtual particles rather than the Ẑ operator. The proper CI
calculations with the Dirac-Fock spin orbitals were considered.

In the other approach one can use the hydrogenlike spin
orbitals, but it is necessary to find a new equation for Znκ

rather than using Eq. (3), where the screening by the core
electrons is included. We start with Eq. (6) in terms of radial
functions and integrate it from a certain point r0 to infinity,
which results in∫ ∞

r0

[
cPnκ

(
d

dr
− κ

r

)
Qnκ

− cQnκ

(
d

dr
+ κ

r

)
Pnκ + 2c2Q2

nκ

]
dr

=
∫ ∞

r0

(
εn,κ + Znκ

r
− Vs

)(
P 2

nκ + Q2
nκ

)
dr. (8)

This equation can be used to evaluate the Znk eigenvalues of
the Ẑ operator in the presence of the screening potential. The
screening potential Vs includes only the part of the Dirac-Fock
direct potential,

Vs = 1

r

∫ r

0
ρ(r ′)dr ′, (9)

where ρ(r) is the radial probability density of the core
electrons. The εn,κ parameters are the energies obtained from
Eq. (5). Pnκ,Qnκ are the radial parts of the hydrogenlike
wave functions determined by solving single-particle Dirac
equation (2). It should be noted that relation (3) provides the
Znκ parameters satisfy Eq. (8) unless the screening term Vs

does not vanish. In general, we solve Eq. (8) by splitting it
into two identities. We chose the r0 parameter as the classical
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turning point obtained from the identity∫ ∞

r0

[
cPnκ

(
d

dr
− κ

r

)
Qnκ

−cQnκ

(
d

dr
+ κ

r

)
Pnκ + 2c2Q2

nκ

]
dr = 0. (10)

This brings the right-hand side of Eq. (8) to another identity,

0 =
∫ ∞

r0

(
εn,κ + Znκ

r
− Vs

)(
P 2

nκ + Q2
nκ

)
dr. (11)

The Znκ quantities may be determined iteratively. In this
case we need to evaluate the Pnκ,Qnκ eigenfunctions of Eq.
(2) for an approximate value of Znκ at a particular step of
the iteration procedure. The iteration procedure is continued
until the identity (11) is fulfilled with accuracy better than
10−6, which requires a few or more iteration steps. In our
calculations we used identities (10) and (11) to generate the
hydrogenlike spin orbitals together with Znκ in the iteration
procedure. Once the Znκ parameters have been determined for
the system studied, the hydrogenlike spin orbitals are evaluated
from Eq. (2) and then are used in the CI scheme.

The virtual-particle model where the eigenvalues of op-
erator Ẑ are defined by the identities (10) and (11) is the
generalization of the virtual-particle model based on Eq. (3).
It provides a suitable framework for the calculations of a two-
or three-electron system, as shown in our previous study [1].
We think that the correlation between two or three valence
electrons may also be treated by this method. The second
important effect is the correlations between valence and core
electrons, especially in the alkali atoms which are the subject
of this study. The core-valence interactions can be treated
within the framework of the virtual-particle model, but this
requires extra information about the core-electron system. It
is known that core-valence correlations are responsible for the
polarization of the core. In many approaches the additional
term including the polarization of the core is considered in
the effective potential. For example, Migdalek and Baylis [2]
have introduced the polarization model potential based on the
static dipole polarizability in the relativistic calculations. The
configuration-interaction scheme accounts for the polarization
effects of the core through the inclusion of the |aq〉 states in the
basis set, where a designates the core electron and q designates
the valence electron allowing for single excitation from the
core. Within the framework of the virtual-particle model the
core electron and the valence electron are represented by
the number of virtual particles corresponding to the |ai〉 and
|qj 〉 one-electron states, respectively. On the other hand, if
we considered the |vw〉 states which represent two valence
electrons, they would be treated within the virtual-particle
model exactly in the same way as the pair of core and valence
electrons. Such equivalence seems to be incorrect. In fact, our
calculations yielded in such a case overestimated ionization
energies in alkali atoms. The problem disappears if we suppose
that core electrons can fill only a finite number of virtual states,
which means that the virtual particles which represent the core
electrons should not be excited beyond the upper bound of
the EI energy level unless they would behave as the valence
electrons in the virtual-particle model. This condition was
fulfilled through the construction of the basis set where the

|aiq〉 states were excluded from the basis unless the energies
of the |ai〉 states were lower than EI . The value of the EI

parameter was fitted to reproduce the best theoretical approx-
imation of the experimental ionization energy of the ground
state of the system studied. If the ionization energy is unknown,
then it must be determined from the calculations. However, the
basis-set expansion should be complete in view of single and
double excitations from the core. In this case the parameter
s appearing in formula (5) should refer to the number of
excited electrons, i.e., s = 1,2 when two and three electrons
are excited, respectively. The maximization of the value of s

results in faster convergence of the CI. But this may be used
only if all electrons can be excited (two- or three-electron
systems) or if one can control convergence of the CI scheme
with the aid of an extra parameter like ionization energy.

The virtual-particle model based on the identities (10)
and (11) has been applied in the relativistic CI calculations
for systems with one electron outside the closed-shell core,
such as sodium, potassium, rubidium, cesium, and francium.
In the case of a francium atom we encountered the drastic
problem of the appearance of spurious eigenstates. We suppose
that the Vs screening potential (9), which includes only the
monopole contribution of the Coulomb interaction, is not
valid here due to the strong polarization of the inner-shell
electrons in francium. The motion of the valence electron
inside the region of the inner shells, which is familiar from
quantum mechanics, results in the polarization of each core
electron. The configuration-interaction approach, in general,
properly treats the electron correlation effects rather than
polarization of the core, which arises as a dipole moment in
the core that is induced by the valence electron. Since most
configuration-interaction approaches include the electrons
from the outermost core shell in the core-valence correlations,
the polarization of the inner-shell electrons may be included as
an additional screening effect in the potential. This should be a
very small effect for light systems and would grow larger with
increasing the number of core electrons. It also depends on the
types of spin orbitals. For example, using the wave functions
in the frozen-core DF approximation, one would not observe
that effect at all. But the hydrogenlike spin orbitals, due to
their great penetration ability, would induce the polarization
of the inner-shell electrons.

A. Core-polarization operator

In order to include polarization effects we expand the
screening potential in terms of multipole potentials as

Vs = 1

r

∫ r

0
ρ(r ′)dr ′ +

∑
k>0

C(k)

rk+1

∫ r

0
r ′kρa(r ′)dr ′. (12)

We assume that the magnetic interaction between the orbital
or total angular momenta of the core electron and the virtual
particle results in nonvanishing terms in the multipole expan-
sion. Under this assumption we have introduced polarization
operator P̂ , which is defined as

P̂j (nalaja) ≡ r ′ ja + 1
2

4

(
ĵ + 1

2

)
, (13a)

P̂l(nala) ≡ r ′ la l̂
4

, (13b)
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where the P̂j and P̂l operators correspond to average magnetic
interactions mja

mj and mlaml , respectively. We use the
notation P̂j (nalaja), which designates that such an operator
is associated with the core spin orbital denoted by the nalaja

quantum numbers. The operator is acting in the space of the
angular momentum. We found that P̂l is valid for the light
systems like sodium or potassium, whereas P̂j is valid for
rubidium, cesium, and francium systems. With the aid of
definition (13a) we can write a first-order correction to the
screening potential due to the particular core spin orbital as

V (1)
a = −

(
ja + 1

2

)(
j + 1

2

)
2r2

Na

∫ r

0
r ′ρa(r ′)dr ′, (14)

where we use a to designate the core spin orbital and Na to
designate its occupation. The above expression represents the
dipole interaction in the expansion (12).

Let us consider now the screened potential with respect to
the infinitesimal change in the charge density. For this purpose
we write

Vs = 1

r

∫ r

0
ρ(r ′)dr ′ − 1

r

∫ r

0
δρ(r ′)dr ′, (15)

where δρ is the change of the core charge density induced
by virtual particles. The second term of the above expression
corresponds to the dipole part of Eq. (12). Combining these
equations, we obtain the equation for the change of the charge
density as

δρ = −α̂
δr ′

r
ρ. (16)

The quantity α̂δr ′ is the infinitesimal polarization operator.
Making use of the solution to Eq. (16), we write the expression
for the screened potential with the aid of the polarization
operator,

Vs = 1

r

∫ r

0

(
μe− P̂

r − μ + 1
)
ρ(r ′)dr ′, (17)

with μ = 1,2 for P̂l and P̂j , respectively. Expanding the
exponential part of the screening potential, one can obtain
the relations for the higher-order polarization operators. The
zero-order operator is here defined as

P̂
(0)
j ≡ 1, (18)

and the corresponding higher-order polarization operators
have to satisfy the following relations:

P̂
(2)
j (nl) = P̂

(1)
j (nlja)P̂ (1)

j (nljb), (19a)

P̂
(3)
j (nlblaja) = P̂

(2)
j (nlb)P̂ (1)

j (nlaja), (19b)

P̂
(2)
l (nlalb) = P̂

(1)
l (nla)P̂ (1)

l (nlb), (19c)

P̂
(k1+k2)
j (n) = P̂

(k1)
j (n)P̂ (k2)

j (n). (19d)

These relations, together with expressions (13), may be
regarded as the definition of the first-, second-, and the
higher-order polarization operators. Note that the second-order
operator is associated with all orbitals in the nl subshell,
but the third-order one is associated with the orbitals in the
coupled subshells. The second-order operators involve a pair
of spin orbitals from the common subshell which satisfy

|ja − jb| = 1. For example, (p1/2,p3/2),(d3/2,d5/2), etc. The
third-order operator must involve the pair of the subshells, i.e.,
(sp). Using the above definitions, one can obtain the following
expression for the second-order operator:

P̂
(2)
j (nala) = r ′2 la(la + 1)

16

(
ĵ + 1

2

)2

. (20)

In general, we may write

P̂
(k)
j = r ′kC(k)

a

(
ĵ + 1

2

)k

, (21)

where the coefficients C(k)
a may be evaluated from relations

(19). Finally, we may write the expression for the first- and
second-order core-polarization corrections to the screening
potential as

δVs =
∑

a

2Na

∫ r

0
ρa(r ′)dr ′

(
− P̂

(1)
j

r2
+ P̂

(2)
j

2! · r3

)
, (22)

where the sum extends over all inner (i.e., fully occupied) core
spin orbitals. We have made an assumption that the only closed
subshells may be polarized by the virtual particles.

The potential term Vs in Eq. (11) must be supplemented
by the polarization correction. This allowed us to achieve the
proper screening effect for the virtual particles. As mentioned
earlier, the polarization correction for light systems like
potassium included only the first-order operator P̂

(1)
l . In the

case of sodium, since the core consists only of 1s and 2s

subshells, the core-polarization correction vanishes. We found
that expression (22) for polarization correction is valid for
systems where the jj -coupling scheme becomes important,
such as rubidium, cesium, and francium.

In our study we present the relativistic calculation of the
energy levels and oscillator strengths for some low-lying states
in atoms with one electron outside the closed shells, such as
alkali metals. We performed CI calculations employing both
Dirac-Fock spin orbitals and hydrogenlike spin orbitals for
comparison. Here, we use a modified version of Desclaux’s
[3] code for the solving one-electron Dirac equations. The
numerical wave functions were determined with a value of
0.0105 for the exponential mesh step. The values of the
oscillator strength were obtained using the adopted Desclaux
program.

B. RCI calculations of transitions and oscillator strengths based
on Dirac-Fock spin orbitals

In order to calculate the virtual basis functions we employed
Eq. (7) with a frozen-core DF potential as the VDF screened
potential. The spin orbitals for the closed shells have been
determined from the SC-DF (single configuration Dirac-Fock)
calculation for the ground state of the atom. Next, the virtual
basis function was determined from Eq. (7) in the frozen-core
approximation with the corrected term Znκ/r to the nuclear
potential. However, solving the eigenequation (7), one can
encounter the problem of convergence while calculating some
of the excited states. This problem may be omitted if the term
Znκ/r is substituted by the corresponding correction to the
effective electron occupations of the outermost core shells.
The value of Znκ should be subtracted from the total electronic
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TABLE I. Results of the ionization energies (in eV) for the ground
states of atoms in alkali metals obtained by the RCI calculations based
on hydrogenlike (SH) and Dirac-Fock (DF) basis functions.

SH DF Expt.a

Na 5.13947 5.13942 5.1391
K 4.34097 4.34083 4.34066
Rb 4.17747 4.17759 4.17713
Cs 3.89092 3.89452 3.89391
Fr 4.06577 4.07310 4.07274

aReference [4].

charge of the closed core shells proportionally to their electron
occupation numbers.

The construction of the basis-set expansion was performed
in a way that allowed us to obtain the best theoretical
approximation of the ground ionization energy of the system
studied. Trial CI calculations of the ground-state ionization
energy allowed us to determine the range of excitations for the
correlated orbitals and build the proper CSF space.

Basically, the configuration state functions corresponded to
the single excitation from the outermost core shell. The CSF
space included the doubly excited states |nclcjcnlj 〉, where
the range of excitations for the orbitals {nclc,nl} were given
by {11p,38s} in sodium, {8p,40s} in potassium, {12p,45s} in
rubidium, {15p,50s} in cesium, and {21p,57s} in the francium
atom, respectively. In order to account for the relaxation of
the core we also included some configuration state functions
with doubly excited states from the core. They were the
|3s2; nlj 〉, |4s2; nlj 〉, |5s2; nlj 〉, |6s2; nlj 〉, and |7s2; nlj 〉 states
for sodium, potassium, rubidium, cesium, and francium,
respectively. The number of configurations used in the CI
calculation varied from 16 000 to 70 000 CSFs depending
on the system. The obtained results for the ground-state
ionization energies for alkali metals are presented in Table I.

TABLE II. Energies (in cm−1) for the 3s1/2-np1/2 and 3s1/2-np3/2

transitions in neutral sodium as calculated with hydrogenlike (SH)
and Dirac-Fock (DF) basis functions.

Level SH DF 	Enlj (SH)a

3p 2P1/2 16954.4 16961.2 1.8
2P3/2 16971.8 16979.2 1.6
4p 2P1/2 30262.6 30270.2 4.4
2P3/2 30268.3 30276.1 4.3
5p 2P1/2 35039.1 35042.7 1.3
2P3/2 35041.7 35045.3 1.2
6p 2P1/2 37296.6 37298.2 −0.3
2P3/2 37297.9 37299.6 −0.3
7p 2P1/2 38541.2 38542.1 −1.0
2P3/2 38542.0 38542.9 −1.1
8p 2P1/2 39299.7 39300.2 −1.4
2P3/2 39300.3 39300.7 −1.4
9p 2P1/2 39795.9 39796.3 −1.4
2P3/2 39796.2 39796.6 −1.4
10p 2P1/2 40136.9 40138.8 −0.1
2P3/2 40137.2 40139.1 −0.2

aDifference between the experimental [4] and SH values.

TABLE III. Comparison of oscillator strengths (f value) in
sodium calculated in length gauge.

Transition SH DF Other

3s1/2-3p1/2 3.210−1 3.220−1 3.201−1a

3s1/2-3p3/2 6.426−1 6.445−1 6.407−1a

3s1/2-4p1/2 4.278−3 4.211−3 4.035−3b

3s1/2-4p3/2 8.701−3 8.570−3 8.208−3b

3s1/2-5p1/2 6.081−4 5.953−4 5.562−4b

3s1/2-5p3/2 1.250−3 1.225−3 1.144−3b

3s1/2-6p1/2 1.775−4 1.742−4

3s1/2-6p3/2 3.678−4 3.614−4

3s1/2-7p1/2 7.423−5 6.950−5

3s1/2-7p3/2 1.547−4 1.451−4

3s1/2-8p1/2 3.780−5 3.662−5

3s1/2-8p3/2 7.909−5 7.676−5

3s1/2-9p1/2 2.179−5 2.154−5

3s1/2-9p3/2 4.574−5 4.528−5

3s1/2-10p1/2 1.393−5 1.422−5

3s1/2-10p3/2 2.932−5 2.995−5

aReference [5].
bReference [6].

Further, we carried out the calculations in Dirac-Coulomb
approximation for the transitions ns1/2-np1/2 and ns1/2-np3/2

for some low-lying excited states. The obtained results for all
alkali metals of the transition energies as well as oscillator
strengths are presented in Tables II–XI.

C. RCI calculations of transitions and oscillator strengths
based on hydrogenlike spin orbitals

In the second approach we chose hydrogenlike basis
functions as the virtual one-electron states. The core spin
orbitals were still determined in the single-configuration
Dirac-Fock calculations for the ground state of the system

TABLE IV. Energies (in cm−1) for the 4s1/2-np1/2 and 4s1/2-np3/2

transitions in neutral potassium as calculated with hydrogenlike (SH)
and Dirac-Fock (DF) basis functions.

Level SH DF 	Enlj (SH)a

4p 2P1/2 12985.5 12995.6 −0.3
2P3/2 13042.6 13053.5 0.3
5p 2P1/2 24699.3 24709.7 2.1
2P3/2 24718.0 24728.5 2.1
6p 2P1/2 28999.1 29000.0 0.2
2P3/2 29007.5 29008.4 0.2
7p 2P1/2 31070.6 31069.0 −0.7
2P3/2 31075.1 31073.6 −0.7
8p 2P1/2 32228.6 32229.8 −1.1
2P3/2 32231.3 32232.5 −1.1
9p 2P1/2 32941.1 32942.5 −0.9
2P3/2 32942.8 32944.2 −0.9
10p 2P1/2 33409.8 33412.2 0.4
2P3/2 33411.0 33413.4 0.4
11p 2P1/2 33745.1 33738.2 8.6
2P3/2 33746.0 33739.0 8.7

aDifference between the experimental [4] and SH values.
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TABLE V. Comparison of oscillator strengths (f value) in
potassium calculated in length gauge.

Transition SH DF Othera Expt.b

4s1/2-4p1/2 3.33−1 3.32−1 3.33−1 3.24−1

4s1/2-4p3/2 6.69−1 6.67−1 6.69−1 6.52−1

4s1/2-5p1/2 2.68−3 2.46−3 2.59−3 2.58−3

4s1/2-5p3/2 5.82−3 5.36−3 5.63−3 5.54−3

4s1/2-6p1/2 2.67−4 2.17−4 2.45−4 2.53−4

4s1/2-6p3/2 6.24−4 5.16−4 5.75−4 5.76−4

4s1/2-7p1/2 5.59−5 5.96−5 4.92−5 6.08−5

4s1/2-7p3/2 1.41−4 1.50−4 1.26−4 1.52−4

4s1/2-8p1/2 1.80−5 1.41−5 1.46−5 1.72−5

4s1/2-8p3/2 4.87−5 3.97−5 4.05−5 4.56−5

4s1/2-9p1/2 7.19−6 4.43−6 5.56−6 6.45−6

4s1/2-9p3/2 2.08−5 1.41−5 1.67−5 1.82−5

4s1/2-10p1/2 3.46−6 1.72−6 2.51−6

4s1/2-10p3/2 1.06−5 6.18−6 8.14−6

4s1/2-11p1/2 1.38−6 7.40−7 1.28−6

4s1/2-11p3/2 4.93−6 3.04−6 4.47−6

aReference [7].
bReference [8].

under consideration. The wave functions of the core spin
orbitals were later used to evaluate the radial density of the
electronic charge in expression (12) for the screened potential.
Further, we used relations (10) and (11) and the single-particle
Dirac equation (2) iteratively to determine the parameters Znk

and the corresponding hydrogenlike spin orbitals, which were
later used as basis functions in the relativistic configuration-
interaction scheme.

The construction of the basis set was performed in a way
analogous to the case where the Dirac-Fock basis functions
were used. Here, the range of the excitations for the correlated
orbitals was given by {4p,52s} in sodium, {5d,49s} in
potassium, {8p,70s} in rubidium, {10f,70s} in cesium, and
{14p,70s} in francium, respectively. The basis-set expansions
were given by 52s50p49d49f for sodium, 49s48p47d48f

for potassium, 70s68p66d65f for rubidium, 70s68p66d64f

TABLE VI. Energies (in cm−1) for the 5s1/2-np1/2 and 5s1/2-np3/2

transitions in neutral rubidium as calculated with hydrogenlike (SH)
and Dirac-Fock (DF) basis functions.

Level SH DF 	Enlj (SH)a

5p 2P1/2 12581.7 12566.4 −2.7
2P3/2 12819.9 12800.5 −3.4
6p 2P1/2 23714.4 23721.7 0.6
2P3/2 23792.7 23797.8 −0.1
7p 2P1/2 27835.8 27838.3 −0.8
2P3/2 27871.5 27872.8 −1.4
8p 2P1/2 29835.3 29835.8 −0.4
2P3/2 29854.4 29854.3 −0.6
9p 2P1/2 30954.9 30958.6 4.0
2P3/2 30966.5 30969.7 3.7
10p 2P1/2 31630.0 31656.6 23.8
2P3/2 31639.1 31663.8 22.1

aDifference between the experimental [4] and SH values.

TABLE VII. Comparison of oscillator strengths (f value) in
rubidium calculated in length gauge.

Transition SH DF Othera Expt.b

5s1/2-5p1/2 3.42−1 3.40−1 3.43−1 3.24−1

5s1/2-5p3/2 6.94−1 6.90−1 6.96−1 6.68−1

5s1/2-6p1/2 3.67−3 3.28−3 3.65−3 3.73−3

5s1/2-6p3/2 9.76−2 8.83−3 9.68−3 9.54−3

5s1/2-7p1/2 4.60−4 3.80−4 4.59−4 4.87−4

5s1/2-7p3/2 1.48−3 1.26−3 1.46−3 1.48−3

5s1/2-8p1/2 1.18−4 9.22−5 1.21−4 1.38−4

5s1/2-8p3/2 4.45−4 3.66−4 4.43−4 4.68−4

5s1/2-9p1/2 4.60−5 4.00−5 4.59−5 5.22−5

5s1/2-9p3/2 1.92−4 1.73−4 1.88−4 1.97−4

5s1/2-10p1/2 2.13−5 9.83−6 2.18−5 2.61−5

5s1/2-10p3/2 9.58−5 6.01−5 9.74−5 1.08−4

aReference [7].
bReference [9].

for cesium, and 70s68p66d64f for francium. The resulting
total number of configurations varies from 3800 to 40 000
depending on the system. The obtained results for all alkali
metals of the transition energies and of oscillator strengths are
presented in Tables II–XI.

III. DISCUSSION OF RESULTS

The present calculations were carried out with the aid of the
ground-state ionization energies of the systems studied. In fully
ab initio calculations the ionization energy of the ground state
should be determined first. This is the most tedious calculation
because the large basis-set expansion which includes double
excitations from the core has to be used. The results of the
calculated ionization energies of the ground state in sodium
obtained with the RCI calculations based on hydrogenlike (SH)
basis functions are presented in Table XII, which also shows
the convergence of the CI calculations.

Table I contains the values of ionization energies of
the ground state of atoms which were achieved during the
establishing of the CSF basis-set expansions by two (SH
and DF) methods. The ground-state ionization energies were
regarded here as the parameters which helped us to set the
upper bound on the excitations of spin orbitals.

Our results for light alkali metals such as sodium and potas-
sium are presented in Tables II–V. Tables II and IV present the

TABLE VIII. Energies (in cm−1) for the 6s1/2-np1/2 and
6s1/2-np3/2 transitions in neutral cesium as calculated with hydro-
genlike (SH) and Dirac-Fock (DF) basis functions.

Level SH DF 	Enlj (SH)a

6p 2P1/2 11161.7 11157.1 16.6
2P3/2 11712.7 11700.1 19.6
7p 2P1/2 21741.1 21773.4 24.2
2P3/2 21920.3 21950.2 26.1
8p 2P1/2 25682.7 25714.6 26.1
2P3/2 25764.0 25795.3 27.5

aDifference between the experimental [4] and SH values.
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TABLE IX. Comparison of oscillator strengths (f value) in
cesium calculated in length gauge.

Transition SH DF Othera Expt.b

6s1/2-6p1/2 3.43−1 3.40−1 3.47−1 3.47 ± 0.02−1

6s1/2-6p3/2 7.13−1 7.07−1 7.20−1 7.21 ± 0.02−1

6s1/2-7p1/2 2.43−3 2.01−3 2.55−3 2.67 ± 0.04−3

6s1/2-7p3/2 1.06−2 9.28−3 1.08−2 1.13 ± 0.04−2

6s1/2-8p1/2 2.07−4 1.37−4 2.33−4 2.54 ± 0.1−4

6s1/2-8p3/2 1.66−3 1.35−3 1.73−3 1.85 ± 0.09−3

aReference [7].
bReference [10].

energy levels np1/2, np3/2 of the low excited states, which
were calculated using both hydrogenlike (SH) and Dirac-
Fock (DF) basis functions. Note that good agreement of the
ionization energies corresponds to the excellent results of the
transition energies, where, in most cases, the agreement with
experimental data is better than 0.01%. As can be seen from
Tables II and IV, both methods (SH and DF) yielded energy-
level values that were comparable in accuracy, although the
method employing Dirac-Fock spin orbitals required the use
of longer basis-set expansions (see Secs. IIB and IIC). This
probably follows from the fact that DF basis functions have
a small overlap with the core orbitals, and as a consequence,
they poorly account for the core-valence correlations.

The corresponding results for rubidium, cesium, and fran-
cium are presented in Tables VI, VIII, and X. As can be seen,
the number of excited states determined with high accuracy
successively decreased with the increasing number of core
electrons. One can note the advantage of the Dirac-Fock over
the hydrogenlike basis functions where the most excited states
are concern. In cesium and francium the DF results of the
transition energies agree much better with experimental data
than the corresponding results obtained by the SH calculations.
The method employing Dirac-Fock spin orbitals allowed us to
obtain even more higher excited states for cesium and francium
systems (not presented in this study) with high accuracy.

The reason is that the DF calculations better account
for the relaxation of the core than the corresponding SH
calculations. Our calculations were performed in the frozen-
core approximation, which guarantees the orthogonality of the
spin orbitals. The core orbitals were optimized during SCF
calculations of the ground state of the system. However, such
an approach neglects the relaxation of the core. The relaxation

TABLE X. Energies (in cm−1) for the 7s1/2-np1/2 and 7s1/2-np3/2

transitions in neutral francium as calculated with hydrogenlike (SH)
and Dirac-Fock (DF) basis functions.

Level SH DF MBPTa 	Enlj (SH)b

7p 2P1/2 12266.2 12205.2 12167.0 − 28.8
2P3/2 13896.4 13878.6 13896.7 27.4
8p 2P1/2 23056.1 23116.9 56.9
2P3/2 23602.2 23656.0 56.1

aMany-body perturbation theory (Refs. [11,12]).
bDifference between the experimental [4] and SH values.

TABLE XI. Comparison of oscillator strengths (f value) in
francium calculated in length gauge.

Transition SH DF MBPTa Expt.b

7s1/2-7p1/2 3.40−1 3.37−1 3.40−1 3.40−1

7s1/2-7p3/2 7.31−1 7.32−1 7.35−1 7.36−1

7s1/2-8p1/2 3.97−3 2.42−3

7s1/2-8p3/2 3.24−2 2.61−2

aReference [11].
bFor references to experimental works see [12].

increases as the number of core electron increases. Thus, it
is considerably more important if the heavy alkali metals
are computed. Obviously, Dirac-Fock spin orbitals account
better for the relaxation than hydrogenlike spin orbitals. The
effect of the relaxation may be treated simultaneously with
the correlation effects in the configuration-interaction scheme.
However, when heavy systems like cesium or francium
are considered, the basis-set expansion should probably be
considerably extended to include the triple excitations.

The results of the oscillator strength for the ns1/2-np1/2

and ns1/2-np3/2 transitions are presented in Tables III, V, VII,
IX, and XI. By comparing SH and DF results one can see
deviations obtained in f values, particularly for the transitions
to the high excited states. These deviations increase with
an increasing nuclear number of alkali metals and with an
increasing principle quantum number of the upper states. The
results obtained using Dirac-Fock basis functions (DF) are
too low in comparison with other [7] calculations presented
here, whereas SH results are in reasonable agreement. We
may conclude that Dirac-Fock basis functions generated in the
frozen-core approximation probably do not properly account
for polarization of the core. Since the polarization of the
core diminishes the values of the oscillator strengths, the
method based on Dirac-Fock basis functions has a tendency to
overestimate the core-polarization effects. It is worth noticing
that the electron correlation effects, relaxation as well as
the electron-electron interaction, are treated uniformly within
the virtual-particle model where the virtual particles are
represented by the hydrogenlike wave functions. If the virtual
particles are represented by the Dirac-Fock basis functions,
correlation and relaxation should be included separately
since the wave functions are generated in the self-consistent
electronic field. However, this would lead us to use the unique
basis functions for the individual atomic state.

TABLE XII. Computed ionization energy (in eV) for the ground
state of sodium as a function of the size of CI basis set.

CSF Excitations from the core RCI (SH)

709 S 5.13133
1372 S 5.13742
7874 S 5.13812
18442 S 5.13825
120813 SD 5.13895
216178 SD 5.139085
Expt. 5.1391a

aReference [4].
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IV. SUMMARY

This study demonstrates two approaches to the generation
of the basis functions used in the relativistic configuration-
interaction calculations. Dirac-Fock basis functions and hy-
drogenlike basis functions were considered. The method based
on the virtual-particle model which was developed in our
previous study [1] has been generalized to the heavier systems
consisting of the valence electron and the core. The virtual
particles are represented by the parametric wave functions.
Each of the wave functions in this model corresponds to the
Znk parameter, which is the noninteger nucleus number. We
found the general equation for these quantities which is valid
in the presence of the screened potential. Such potentials must
appear when the core electrons are considered.

In order to obtain accurate values of noninteger nuclear
numbers the wave function should have the correct asymptotic
behavior. It is essential for hydrogenlike wave functions
evaluated numerically. In our calculations the hydrogenlike

wave functions were determined numerically with a very dense
computational mesh. The method also uses very high excited
spin orbitals that may be difficult to determine with the desired
accuracy. This inconvenience may be easily overcome by using
an analytical representation of hydrogenlike spin orbitals.

Our calculations took advantage of extra parameters,
which were the ground-state ionization energies taken from
the experimental data. These parameters were helpful in
establishing the basis sets. Therefore, we might be able
to obtain highly accurate results by using not very large
CI expansions. However, the ionization energies could be
determined theoretically from the large-scale RCI calculations.
Thus, this method can still be considered an ab initio approach.
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