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Thermalization of a two-level atom in a planar dielectric system out of thermal equilibrium
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We study the thermalization of an elementary quantum system modeled by a two-level atom interacting with
stationary electromagnetic fields out of thermal equilibrium near a dielectric slab. The slab is held at a temperature
different from that of the region where the atom is located. We find that when the slab is nonabsorbing and
nondispersive, out-of-thermal-equilibrium effects exist only when its thickness is infinite. In other words, no
out-of-thermal-equilibrium effects appear for a real dielectric slab of a finite thickness d . Furthermore, a finite
thick dielectric slab with a tiny imaginary part in the relative permittivity Im ε behaves like a half-space dielectric
substrate if Im ε√

Re ε−1
d

λ0
> 1 is satisfied, where λ0 is the transition wavelength of the atom. This condition can serve

as a guide for an experimental verification, using a dielectric substrate of a finite thickness, of the effects that
arise from out-of-thermal-equilibrium fluctuations with a half-space (infinite thickness) dielectric.
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I. INTRODUCTION

Physical systems out of thermal equilibrium but in a
stationary configuration, such as that of a substrate and an
environment held respectively at different temperatures, may
exhibit remarkable and measurable quantum phenomena and
thus have recently attracted increasing interest both theoret-
ically and experimentally. In this respect, Antezza et al. [1]
investigated, in the large distance limit, the Casimir-Polder
(CP) force [2] in such an out-of-thermal-equilibrium situation.
They found that the CP force shows new qualitative and
quantitative behaviors. Specifically, the force decays as 1/z3

and is proportional to �T 2, where z is the distance between
an atom and the surface of the substrate and �T 2 ≡ T 2

s − T 2
e ,

with Te and Ts the temperatures of the thermal bath in the right
half space and the substrate in the left half space, respectively.
This behavior of the force differs clearly from that of an atom
both in vacuum, which has a 1/z5 dependence [2], and in a
thermal equilibrium environment, which behaves like T/z4

and is attractive [3]. Actually, the out-of-thermal-equilibrium
CP force can be either attractive or repulsive depending on the
difference of two temperatures. Later, Zhou and Yu analyzed in
detail the behaviors of the out-of-thermal-equilibrium CP force
of an atom near the surface of a half-space real dielectric sub-
strate in different distance regimes [4], where a real dielectric
refers to a nonabsorbing and nondispersive dielectric whose
permittivity is real and frequency independent. In addition, the
CP force of a diamagnetic atom out of thermal equilibrium has
also been investigated in [5]. Remarkably, the new behavior of
the CP force out of thermal equilibrium has been measured in
experiment by positioning a nearly pure 87Rb Bose-Einstein
condensate a few microns from a dielectric substrate, which
consists of uv-grade fused silica with a 2-mm thickness [6].

On the other hand, the dynamics of an elementary quantum
system in a stationary environment out of thermal equilibrium
has been studied by Bellomo et al. [7] and it has been
found that the quantum system modeled by a two-level
atom can be thermalized to a steady state with an effective
temperature between the temperature of the wall and that
of the environment. A similar result has also been obtained

for an atom placed outside a radiating Schwarzschild black
hole [8]. For two quantum emitters interacting with a common
stationary electromagnetic field out of thermal equilibrium,
Bellomo and Antezza found that the absence of equilibrium
allows the generation of steady entangled states between the
emitters, which is inaccessible at thermal equilibrium [9,10].
In addition, the photon heat tunneling was discussed in [11,12].
Other aspects about the out-of-thermal-equilibrium effects
have been discussed in [13–27].

To simplify the theoretical calculations, a half-space, even
real, dielectric substrate is usually assumed when analyzing
the nonequilibrium thermal system. However, in reality, such
a dielectric substrate never exists. In fact, in experiment,
a dielectric slab with a finite thickness and absorption and
dispersion is generally used. As a result, questions naturally
arise as to when a generic finite slab can be regarded as an
infinite substrate on which the theoretical calculations are
based and how the novel out-of-thermal-equilibrium effects
depend on the dielectric property. In this paper we try
to answer these questions in terms of the thermalization
of a polarizable two-level atom in a thermal bath near a
planar dielectric slab out of thermal equilibrium. We will
show that for a nonabsorbing and nondispersive dielectric
with a finite thickness no out-of-thermal-equilibrium effects
appear as far as the thermalization of the atom is concerned.
So, to have nonvanishing out-of-thermal-equilibrium effects,
one has to have a real dielectric substrate with an infinite
thickness or a complex dielectric substrate. Since the infinitely
thick substrate does not really exist, we give the condition
when a dielectric with a tiny nonzero imaginary part in the
relative permittivity with a finite thickness can be regarded
as a half-space dielectric. This puts on a solid foundation
the experimental test using a finite dielectric substrate of
theoretical predictions for novel effects from out of thermal
equilibrium based upon a half-space dielectric.

II. OPEN QUANTUM SYSTEM

We examine in the framework of open quantum systems the
thermalization of a two-level atom near a dielectric substrate
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FIG. 1. (Color online) Scheme of the system considered.

in a stationary configuration out of thermal equilibrium. We
assume that two stationary states of the atom are represented
by |1〉 and |2〉, respectively, and the energy spacing is �ω0. A
planar dielectric slab with thickness d is placed in a thermal
bath at temperature T0 and its right surface coincides with
the z = 0 plane. The slab is assumed to be in local thermal
equilibrium at a different temperature T1 (see Fig. 1). The
atom is at the position zA > 0 in the empty space. So the
whole system is out of thermal equilibrium but in a stationary
regime and the total Hamiltonian that governs the evolution of
the system takes the form

H = HA + HB + HI , (1)

where HA = ∑2
m=1 �ωm|m〉〈m| is the Hamiltonian of the

atom, HB is the Hamiltonian describing the environment the
atom is coupled to, and HI denotes the interaction between
the atom and the environment, which takes the form HI =
−D(t) · E(r,t) in the multipolar coupling scheme. Here D(t)
is the electric dipole moment of the atom and E(r,t) is the
electric-field strength. In fact, HI can also be rewritten as

HI = −
∑
i,ω

e−iωtAi(ω)Ei(r,t), (2)

where i ∈ {x,y,z} and Ai(ω) = ∑
ε′−ε=ω �(ε)Di�(ε′), with

�(ε) denoting the projection onto the eigenspace belonging
to the eigenvalue ε of HA, which means that Ai(ω) are the
eigenoperators of HA. For a two-level atom, D(t) can be
expressed as

D(t) = d21|2〉〈1|e−iω0t + d∗
21|1〉〈2|eiω0t , (3)

which implies that A(ω) = ∑
ω d21|2〉〈1| = A†(−ω).

In the interaction picture, the total density matrix ρtot(t) of
the system satisfies the von Neumann equation

d

dt
ρtot(t) = − i

�
[HI ,ρtot(t)], (4)

with the initial state being described by ρtot(0) = ρ(0) ⊗ ρB ,
where ρ(0) is the initial density matrix of the atom and ρB

is that of the environment. Tracing ρtot(t) over the degrees of
freedom associated with the environment, one can obtain the
reduced density matrix ρ(t) for the two-level atom, namely,
ρ(t) = TrB[ρtot(t)], which, in the limit of weak coupling, obeys

the master equation [7,8,28,29]

d

dt
ρ(t) = − i

�
[HA + HLS,ρ(t)] + 	(ω0)[ρ22|1〉〈1|

− 1

2
{|2〉〈2|,ρ(t)}]

+	(−ω0)[ρ11|2〉〈2| − 1

2
{|1〉〈1|,ρ(t)}], (5)

where HLS is the so-called Lamb-shift Hamiltonian since it
produces shifts of the atomic energy levels and 	(−ω0) and
	(ω0) are, respectively, the downward and upward transition
rates, which are defined as

	(ω0) ≡
∑
i,j

γij (ω0)[d21]∗i [d21]j ,

	(−ω0) ≡
∑
i,j

γij (−ω0)[d21]i[d21]∗j . (6)

Here γij (ω) is given by [7]

γij (ω) = 2π

�2

∫ ∞

0
dω′ ×

{
〈Ei(r,ω)E†

j (r,ω′)〉, ω > 0

〈E†
i (r, − ω)Ej (r,ω′)〉, ω < 0.

(7)

For a nonmagnetic medium, the electric-field operator can
be expressed as

E(r,ω) = i
ω2

c2

√
�

πε0

∫
d3r ′√Im ε(r ′,ω)

× G(r,r ′,ω) · f (r ′,ω). (8)

Here ε0 and ε are the vacuum and relative permittivity,
respectively, G is the classical Green’s tensor, which satisfies
a useful integral relation∫

d3s Im ε(s,ω)G(r,s,ω) · G∗T(r ′,s,ω)

= c2

ω2
Im G(r,r ′,ω), (9)

and f (r,ω) and f †(r,ω) are the annihilation and
creation operators of the elementary electric excita-
tions, respectively. They obey the bosonic commuta-
tion relations [ f (r,ω), f †(r ′,ω′)] = δ(r − r ′)δ(ω − ω′) and
[ f (r,ω), f (r ′,ω′)] = [ f †(r,ω), f †(r ′,ω′)] = 0, where 0 rep-
resents a zero matrix. For the thermal state describing the
system in a stationary configuration out of thermal equilibrium
we are considering, one has

〈{βi}| f (r,ω) f †(r ′,ω′)|{βi}〉
= [1 + N (ω,βi)]δ(r − r ′)δ(ω − ω′), (10)

〈{βi}| f †(r,ω) f (r ′,ω′)|{βi}〉 = N (ω,βi)δ(r − r ′)δ(ω − ω′),

(11)
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where βi = �c/kTi , with i = 0 or 1, and N (ω,βi) = 1
eβiω/c−1 .

Substituting Eq. (8) into Eq. (7) and considering the relations
given in Eqs. (10) and (11), we have

γij (ω) = 2μ0ω
4

�c2

∫
d3r ′[1 + N (ω,β)] Im ε(r ′,ω)

×Gik(r,r ′,ω)G∗
jk(r,r ′,ω) (12)

and

γij (−ω) = 2μ0ω
4

�c2

∫
d3r ′N (ω,β) Im ε(r ′,ω)

×Gik(r,r ′,ω)G∗
jk(r,r ′,ω). (13)

Here μ0 is the vacuum permeability and μ0ε0 = 1/c2 is used.
For an atom near a dielectric slab described in Fig. 1,

Eqs. (12) and (13) become

γij (ω) = 2μ0ω
2

�
[1 + N (ω,β0)] Im Gij (rA,rA,ω)

+2π

�
[N (ω,β1) − N (ω,β0)]gij (rA,rA,ω) (14)

and

γij (−ω) = 2μ0ω
2

�
N (ω,β0) Im Gij (rA,rA,ω)

+2π

�
[N (ω,β1) − N (ω,β0)]gij (rA,rA,ω), (15)

where Eq. (9) has been used and

gij (r,r,ω) ≡ μ0ω
4

πc2

∫
d2r ′

‖

∫ 0

−d

dz′ Im ε Gik(r,r ′,ω)

×G∗
jk(r,r ′,ω), (16)

with r ′
‖ = {x ′,y ′}. The first term on the right-hand side

of Eqs. (14) and (15) gives the contributions of the zero-
point fluctuations and the thermal fluctuations in thermal
equilibrium at a temperature T0, while the second term arises
from the out-of-thermal-equilibrium nature of the system. For
the system we are considering, only the diagonal elements of
Im Gij (r,r,ω) and gij (r,r,ω) are nonvanishing.

III. THERMALIZATION

Using Eqs. (14) and (15), we can show that the transition
rates 	(ω0) and 	(−ω0) can be reexpressed as [7](

	(ω0)

	(−ω0)

)
= α(ω0)	0(ω0)

(
1 + Neff(ω0)

Neff(ω0)

)
, (17)

where 	0(ω0) = ω3
0 |d12|2

3πε0�c3 is the vacuum spontaneous-emission
rate related to the transition between the ground and excited
states,

α(ω0) = 6πc

ω0

∑
i,j

[d21]i[d21]∗j
|d21|2 ImGij (r,r,ω0), (18)

and

Neff(ω0) = N (ω0,β0) + 6π2c

μ0ω
3
0α(ω0)

[N (ω0,β1) − N (ω0,β0)]

×
∑
i,j

[d21]i[d21]∗j
|d21|2 gij (rA,rA,ω0)

= N (ω0,β0) + 2π2c

μ0ω
3
0α(ω0)

× [N (ω0,β1) − N (ω0,β0)] g(rA,rA,ω0). (19)

Here the last line holds for an isotropically polarizable
atom and g = gxx + gyy + gzz. So Neff(ω0) depends on the
temperature Ti (i = 0,1) and the dielectric property of a slab
encoded in the function g(r,r,ω). As discussed in [7,8], after
evolving for a sufficiently long period of time, the atom will
be thermalized to a steady state with an effective temperature

Teff = �ω0

k
{ln[1 + N−1

eff (ω0)]}−1. (20)

It is easy to see that if the substrate is in thermal equilibrium
with the thermal radiation in the empty space where the atom
is located, then Teff reduces to T0 as expected.

In order to analyze in detail the thermalization temperature
of the atom, we first need to examine the behavior of g(r,r,ω),
which depends on the Green’s function G(ω,r,r ′), where r
indicates the position of the atom and thus it is restricted to the
empty right half space, while r ′ is in the slab. For the system
considered, the Green’s function can be expanded as

G(ω,r,r ′) =
∫

d2k eik·(r‖−r ′
‖)G(k,ω,z,z′), (21)

where k = (kx,ky). Since z and z′ are in different regions, from
Refs. [30,31] we have that

G(k,ω,z,z′) = i

8π2b0(k)

∑
σ=s,p

ξσ tσ (k)eib0(k)z

Dσ (k)

× ê+
σ0

(k)[ê−
σ1

(−k)e−ib1(k)z′

+ rσ
−(k)ê+

σ1
(−k)eib1(k)(z′+2d)], (22)

where ξp = 1, ξ s = −1, b0(k) =
√

k2
0 − k2, b1(k) =√

k2
1 − k2, k = |k|, k0 = ω

c
, k1 = √

ε ω
c

, and

Dσ (k) = 1 − rσ
−rσ

+(k)e2ib1(k)d,

with rσ
+(k) and rσ

−(k) being the reflection coefficients at the
right and left boundaries of the slab, which have the forms

rs
±(k) = b1(k) − b0(k)

b1(k) + b0(k)
, r

p
±(k) = b1(k) − εb0(k)

b1(k) + εb0(k)
. (23)

Here tσ (k) =
√

1
ε
[1 − rσ

+(k)] is the transmission coefficient
between the empty space and the slab. In addition, we define

ê±
pi

(k) = 1

ki

(∓bi k̂ + k ẑ), ê±
si

(k) = k̂ × ẑ. (24)

Substituting Eqs. (21) and (22) into Eq. (16), for a system
described in Fig. 1 and an isotropically polarizable atom, one
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has g(r,r,ω) = g(z,z,ω) with

g(z,z,ω) = μ0ω
2

8π2

∫ ∞

0

kdk

|b0(k)|2 e−2 Im b0(k)z[ Re b1(k)[A+(k) + A(k)](1 − e−2 Im b1(k)d )

+ e−2 Im b1(k)d ( Re b1(k)[A+(k)|rp
−(k)|2 + A(k)|rs

−(k)|2](1 − e−2 Im b1(k)d )

+ 2 Im b1(k)[A−(k) Re r
p
−(k) + A(k) Re rs

−(k)] sin[2 Re b1(k)d]

+ 2 Im b1(k)[A−(k) Im r
p
−(k) + A(k) Im rs

−(k)]{cos[2 Re b1(k)d] − 1})], (25)

where

A±(k) =
∣∣∣∣ tp(k)

Dp(k)

∣∣∣∣
2 [k2 ± |b1(k)|2][k2 + |b0(k)|2]

|k0k1|2 , A(k) =
∣∣∣∣ t s(k)

Ds(k)

∣∣∣∣
2

. (26)

This expression shows that Im b0(k) must be nonzero, otherwise g(z,z,ω) will become a constant independent of z. From the
definition of b0(k) and b1(k) we obtain that

2 Im2 b0(k) = −
(

ω2

c2
− k2

)
+

∣∣∣∣ω2

c2
− k2

∣∣∣∣ (27)

and

Im2 b1(k) = 1

2

[
−

(
ω2

c2
Re ε − k2

)
+

√
ω4

c4
Im2 ε +

(
ω2

c2
Re ε − k2

)2]
, (28)

Re2 b1(k) = 1

2

[(
ω2

c2
Re ε − k2

)
+

√
ω4

c4
Im2 ε +

(
ω2

c2
Re ε − k2

)2]
. (29)

A nonzero Im b0(k) means that k2 > ω2

c2 and thus only the
k > ω

c
interval in k integration from 0 to ∞ contributes. Let

us note that Im2 b1(k) is an increasing function of k2, while
Re2 b1(k) is a decreasing one, as shown graphically in Fig. 2.

If the slab consists of real dielectrics, i.e., Im ε = 0,
Eqs. (28) and (29) tell us that Im b1(k) = 0 if Re b1(k) 
= 0
and vice versa. As a result, it is easy to see that g(z,z,ω) = 0.
Only when the slab thickness is infinite, that is, d → ∞ and
rσ
− = 0, is g(z,z,ω) nonzero and it then becomes

g(z,z,ω) = μ0ω
2

8π2

∫ ∞

0

kdk

|b0(k)|2 e−2 Im b0(k)z

× Re b1(k)[Ā+(k) + Ā(k)], (30)

where

Ā+(k) = |tp(k)|2 [k2 + |b1(k)|2][k2 + |b0(k)|2]

|k0k1|2 ,

Ā(k) = |t s(k)|2. (31)

This demonstrates that there is no out-of-thermal-equilibrium
effect for any real dielectric substrate of finite thickness even
when the substrate is held at a different local temperature. In
other words, an infinite thickness is the only way to have an out-
of-thermal-equilibrium effect for a real dielectric substrate.

Another way to have a nonzero out-of-thermal-equilibrium
effect is that the slab consists of the dispersive and absorbing
dielectric (Im ε 
= 0). This is similar to what happens to the
decay rate of the excited state of an atom in front of a
dielectric plate, which is proportional to the imaginary part
of the permittivity and also equals zero when Im ε = 0 [32].

From Eq. (25) one can see that if 2 Im b1(k)d > 1, the terms
depending on d can be neglected since they are exponentially
suppressed as compared to the other term, which then gives the
dominant contribution. In this case, the result of the integral
becomes effectively independent of d and approximates to
that in the case of a half-space dielectric substrate, which has
the same form as that given in Eq. (30). Since Im2 b1(k) is an
increasing function of k2 and k2 > ω2

c2 is required, the minimum

value of Im b1(k) is achieved at k2 = ω2

c2 ,

min{Im b1(k)} = 1√
2

ω

c
[−(Re ε − 1)

+
√

Im2 ε + (Re ε − 1)2]1/2. (32)

So the condition for the thermalization of a two-level atom with
a typical transition ω0 near a dielectric slab of finite thickness d

out of thermal equilibrium to behave like that near an infinitely
thick half-space dielectric substrate is

√
2d

λ0
[−(Re ε − 1) +

√
Im2 ε + (Re ε − 1)2]1/2 > 1, (33)

where λ0 = c
ω0

is the transition wavelength of the atom. Since
the dielectrics with a very small but nonzero Im ε, such as fused
silica and sapphire, are used in the experiment to observe the
novel feature for the CP force out of thermal equilibrium [6],
we expand the condition in the limit of Im ε ∼ 0 and
obtain

Im ε√
Re ε − 1

d

λ0
> 1. (34)
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FIG. 2. (Color online) Evolutionary curves of c2

w2 Im2 b1 (left) and c2

w2 Re2 b1 (right) with respect to c2

w2 k2 with Re ε = 10. The red solid,
blue dashed, and green dotted lines correspond to Im ε = 1, 5, and 10, respectively.

Obviously, for a given atom we can always find a finite d so
that the condition is satisfied as long as Im ε is not vanishing
no matter how small it is. Since mathematically an infinitely
thick slab does not exist, the above relation can serve as a guide
for an experimental verification of the effects that arise from
out-of-thermal-equilibrium fluctuations and justifies testing
experimentally the novel property theoretically found from
a half-space dielectric out of thermal equilibrium using a
dielectric substrate of finite thickness with a tiny imaginary
part in the relative permittivity.

A few comments are in order. First, our results can
be generalized to a system of a multilayer dielectric body
with each layer of a different permittivity in local thermal
equilibrium at a different temperature. For the multilayered
substrate consisting of only real dielectric, if the outermost
left layer is a perfect mirror or empty space, the system has
no out-of-thermal-equilibrium effect, at least as far as the
thermalization of the atom is concerned. If the outermost left
layer is a half-space substrate at a certain temperature, only
this temperature and that of the thermal bath in the right half
empty space affect the thermalization of the atom. Second,
although our calculations are performed under the assumption
of an isotropically polarizable atom, our conclusions also
hold for an anisotropically polarizable atom since the only
difference for such a case is that the definitions of A±(k)
and A(k) in Eq. (25) are different. Finally, here we only
investigate the thermalization of an atom in front of a slab. The
out-of-thermal-equilibrium CP force, especially its explicit
dependence on the thickness d, the distance zA, and the
temperatures Ti in different limits like what was discussed
in [32] for the thermal CP force, is an interesting topic that is
currently under investigation.

IV. CONCLUSION

We have studied the thermalization of a two-level atom near
a planar dielectric substrate in a stationary environment out of
thermal equilibrium in which the atom is located in an empty
space filled with a thermal bath at a temperature different from
the local thermal equilibrium temperature of the substrate. We
demonstrate that when the planar dielectric substrate is a real
dielectric of finite thickness, no out-of-thermal-equilibrium
effects appear as far as the thermalization of the atom is
concerned. That is to say, the atom thermalizes as if the
substrate is in thermal equilibrium with the thermal bath in
the empty space where the atom is located. We also show
that a planar dispersive and absorbing dielectric substrate with
a finite thickness and a tiny imaginary part in the relative
permittivity, in its influence on the thermalization of the atom,
behaves like a half-space dielectric under certain conditions
and we concretely derived this condition in our paper, which
can serve as a guide for an experimental verification, using a
dielectric substrate of a finite thickness, of the effects that arise
from out-of-thermal-equilibrium fluctuations with a half-space
(infinite thickness) dielectric.
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