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Information transmission over an amplitude damping channel with an arbitrary degree of memory
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We study the performance of a partially correlated amplitude damping channel acting on two qubits. We derive
lower bounds for the single-shot classical capacity by studying two kinds of quantum ensembles, one which
allows us to maximize the Holevo quantity for the memoryless channel and the other allowing the same task but
for the full-memory channel. In these two cases we also show the amount of entanglement which is involved in
achieving the maximum of the Holevo quantity. For the single-shot quantum capacity we discuss both a lower
and an upper bound, achieving a good estimate for high values of the channel transmissivity. We finally compute
the entanglement-assisted classical channel capacity.
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I. INTRODUCTION

One of the key issues of quantum information is the use of
quantum systems to convey information. Although quantum
systems are unavoidably affected by noise, reliable transmis-
sion is still possible by proper coding [1–4]. Coding involves
multiple channel uses. The relevant quantities for classical and
quantum information transmission are the classical capacity
[5–7] C and the quantum capacity [8–10] Q, defined as
the maximum number of, respectively, bits and and qubits
that can be reliably transmitted per channel use. Finally,
the entanglement-assisted classical capacity [11–13] CE is
the capacity of transmitting classical information, provided the
sender and the receiver share unlimited prior entanglement.
This latter quantity is important since it upper bounds the
previous ones. We have Q � C � CE . The computation of
capacities C and Q is in general a hard task, since a “regular-
ization” procedure is requested, namely an optimization over
all possible n-use input states, in the limit n → ∞.

In the simplest setting each channel use is independent
of the previous ones. It means that, if a quantum channel
use is described by the map E , n uses of the channel are
described by the map En = E⊗n. This assumption is not always
justified. For instance, with increasing the transmission rate,
the environment may retain memory of the previous channel
uses. In this case noise introduces memory (or correlation)
effects among consecutive channel uses, and En �= E⊗n (mem-
ory channels). Such effects can be investigated experimentally
in optical fibers [14] or in solid-state implementations of
quantum hardware, affected by low-frequency noise [15].
Quantum memory channels attracted growing interest in recent
years, and interesting new features emerged thanks to mod-
eling of relevant physical examples, including depolarizing
channels [16,17], Pauli channels [18–20], dephasing channels
[21–25], Gaussian channels [26], lossy bosonic channels
[27,28], spin chains [29], collision models [30], complex
network dynamics [31], and a micromaser model [32]. For a
recent review on quantum channels with memory effects, see
Ref. [33].

Here we study the behavior of a two-qubit memory
amplitude damping channel. We extend the model introduced
in Ref. [34] by addressing the cases of partial memory. We use
a memory parameter μ which spans from zero to one allowing
us to recover the memoryless case (μ = 0) as well as the
full memory case (μ = 1). We study the channel capability
to transmit both classical and quantum information as well
as the entanglement-assisted classical information. We derive
lower bounds for the classical capacity, lower and upper
bounds for the quantum capacity, and compute the channel
capacity for entanglement-assisted classical communication.
In all cases we analytically identify a general form of the
ensembles that optimize the channel capacities. Then we
perform numerical optimizations for single use of the channel,
thus deriving lower bounds for Q and C, as well as computing
CE , for which the regularization n → ∞ is not needed.
For such ensembles we also show the populations of the
density operators which solve the optimization problems.
Such information may provide useful indications for real (few
channel uses) coding strategies. In the case of the classical
capacity, we investigate two classes of ensembles; we find that
neither of them is useful to overcome—for the memoryless
setting—the limit of the product state classical capacity of
the (memoryless) amplitude damping channel [35,36]. Finally,
we find that any finite amount of memory increases the
amount of reliably transmitted information with respect to
the memoryless case, for all the scenarios considered.

The paper is organized as follows. In Sec. II we describe
the channel model and the channel covariance properties.
In Sec. III we study the classical capacity of the quantum
channel, addressing the ensembles classes which maximize
the Holevo quantity, showing two distinct lower bounds for
the classical capacity. In Sec. IV we compute both a lower and
an upper bound for the quantum capacity, which are very close
to each other for good quality (relatively high transmissivity)
channels. In Sec. V we determine the quantum capacity and
the entanglement-assisted channel capacity. We finish with
concluding remarks in Sec. VI.
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II. THE MODEL AND ITS COVARIANCE PROPERTIES

We will first briefly review the memoryless amplitude
damping channel (ad) [2,3], which acts on a generic single-
qubit state ρ as follows:

ρ → ρ ′ = E(ρ) =
∑

i∈{0,1}
Ei ρ E

†
i , (1)

where the Kraus operators Ei are given by

E0 =
(

1 0
0

√
η

)
, E1 =

(
0

√
1 − η

0 0

)
. (2)

Here we are using the orthonormal basis {|0〉,|1〉} (σz =
|0〉〈0| − |1〉〈1|). This channel describes relaxation processes,
such as spontaneous emission of an atom, in which the system
decays from the excited state |1〉 to the ground state |0〉. The
channel acts as follows on a generic single-qubit state:

ρ =
(

1 − p γ

γ ∗ p

)
→ ρ ′ = E(ρ) =

(
1 − η p

√
η γ√

η γ ∗ η p

)
.

(3)

Note that the noise parameter η (0 � η � 1) plays the role of
channel transmissivity. Indeed for η = 1 we have a noiseless
channel, whereas for η = 0 the channel cannot carry any
information since for any possible input we always obtain
the same output state |0〉.

For two memoryless uses we have that

ρ → ρ ′ = E0(ρ) =
∑

i∈{0,3}
Ai ρ A

†
i , (4)

where ρ is the density matrix related to a two-qubit system,
and E0 = E ⊗ E so that the Kraus operators Ai are given by

A0 = E0 ⊗ E0 =

⎛
⎜⎜⎝

1 0 0 0
0

√
η 0 0

0 0
√

η 0
0 0 0 η

⎞
⎟⎟⎠,

A1 = E0 ⊗ E1 =

⎛
⎜⎜⎝

0
√

1 − η 0 0
0 0 0 0
0 0 0

√
η(1 − η)

0 0 0 0

⎞
⎟⎟⎠,

A2 = E1 ⊗ E0 =

⎛
⎜⎜⎝

0 0
√

1 − η 0
0 0 0

√
η(1 − η)

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

A3 = E1 ⊗ E1 =

⎛
⎜⎜⎝

0 0 0 1 − η

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (5)

For two channel uses, a full-memory amplitude damping
channel was introduced in Ref. [37] and recently investigated
in Refs. [34,38],

ρ → ρ ′ = E1(ρ) =
∑

i

Bi ρ B
†
i , (6)

with the Kraus operators

B0 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

√
η

⎞
⎟⎠, B1 =

⎛
⎜⎝

0 0 0
√

1 − η

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠.

(7)

In E1 the relaxation phenomena are fully correlated. In other
words, when a qubit undergoes a relaxation process, the other
qubit does the same. In this way only the state |11〉 ≡ |1〉 ⊗ |1〉
can decay, while the other states |ij〉 ≡ |i〉 ⊗ |j 〉, i,j ∈ {0,1},
ij �= 11, are not affected.

In this paper we will focus on the partially correlated chan-
nel Eμ, defined as a convex combination of the memoryless
channel E0 and the full memory channel E1,

ρ → ρ ′ = Eμ(ρ) = (1 − μ)E0(ρ) + μ E1(ρ). (8)

Here μ ∈ [0,1] is the memory parameter: the memoryless
channel (E0) is recovered when μ = 0, whereas for μ = 1
we obtain the “full memory” amplitude damping channel
(E1). In the following we will derive lower bounds for the
single-shot classical capacity C1(Eμ), lower and upper bounds
for the quantum capacity Q(Eμ), and we will compute the
entanglement-assisted classical capacity CE(Eμ).

We will now investigate some covariance properties of the
above channel that will be subsequently exploited to derive
the above mentioned bounds. We define the following unitary
operators:

R1 = σz ⊗ 11, R2 = 11 ⊗ σz, R3 = σz ⊗ σz. (9)

It is straightforward to demonstrate that the operators Ai

(5) and Bi (7) either commute or anticommute with Ri (9),
namely

A0Ri = RiA0, B0Ri = RiB0, ∀ i ∈ {1,2,3}, (10)

R1A1 = A1R1, R2A1 = −A1R2, R3A1 = −A1R3, (11)

R1A2 = −A2R1, R2A2 = A2R2, R3A2 = −A2R3, (12)

R3A2 = −A3R1, R2A3 = −A3R2, R3A2 = A3R3, (13)

R1B1 = −B1R1, R2B1 = −B1R2, R3B1 = B1R3. (14)

From the above relations it follows that

E0(R1 ρ R1) =
3∑

i=0

AiR1 ρ R1A
†
i

= R1A0ρA0R1 + R1A1ρR1A
†
1

+ (−R1A2)ρ(−A
†
2R1)+(−R1A3)ρ(−A

†
3R1)

= R1

(∑
i

Ai ρ A
†
i

)
R1 = R1 E0(ρ)R1, (15)
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where we use

A
†
0 = A0,

R1A
†
1 = (A1R1)† = (R1A1)† = A

†
1R1,

R1A
†
2 = (A2R1)† = (−R1A2)† = −A

†
2R1,

R1A
†
3 = (A3R1)† = (−R1A3)† = −A

†
3R1.

In a similar way it can be shown that E0(R2 ρ R2) =
R2 E0(ρ)R2 and E0(R3 ρ R3) = R3 E0(ρ)R3: the channel E0

is covariant with respect to all the operators Ri . With a similar
argument it can be proved that also the full memory channel
E1 is covariant with respect to Ri [34]. Therefore, also the
channel with an arbitrary degree of memory is covariant with
respect to Ri , namely

Eμ(RiρRi) = (1 − μ)RiE0(ρ)Ri + μRiE1(ρ)Ri

= RiEμ(ρ)Ri . (16)

Now we consider the action of the Swap gate [2], defined
as

Sw ≡ |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|. (17)

We notice that

Sw A0 Sw = A0, Sw A1 Sw = A2, Sw A2 Sw = A1,

Sw A3 Sw = A3. (18)

By using S†
w = Sw, SwSw = 11 and the above relations, we

can easily prove that the channel E0 is covariant with respect
to Sw, namely

E0(Sw ρ Sw) = Sw E0(ρ)Sw. (19)

It is straightforward to demonstrate that Sw commutes with
the Kraus operators B0 and B1 (7). Therefore, the channel E1

is covariant with respect to Sw. Since both the channels E0

and E1 are covariant with respect to Sw, the channel Eμ is also
covariant under the action of Sw.

III. CLASSICAL CAPACITY

In this section we will study the performance of the channel
to transmit classical information, quantified by the classical
capacity C, that measures the maximum amount of classical
information that can be reliably transmitted down the channel
per channel use. More specifically, we address the problem
of computing the single shot capacity C1 [2] of the partially
correlated channel Eμ that is achieved by maximizing the so
called Holevo quantity χ [2,3,5–7,39] with respect to one use
of the channel Eμ as follows:

C1(Eμ) = max
{pα,ρα}

χ (Eμ,{pα,ρα}). (20)

In the above expression {pα,ρα} is a quantum source, described
by the density operator ρ = ∑

α pαρα and the Holevo quantity
is defined as

χ (Eμ,{pα,ρα}) ≡ S[Eμ(ρ)] −
∑

α

pαS[Eμ(ρα)], (21)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy.
Without loss of generality, in the following we will restrict
to ensembles of pure states {pk,|ψk〉}, since any ensemble of

mixed states can be described by an ensemble of pure states
with same density operator, and whose Holevo quantity (21)
is at least as large [6]. The above expressions then become

C1(Eμ) = max
{pk,|ψk〉}

χ (Eμ,{pk,|ψk〉}), (22)

χ (Eμ,{pk,|ψk〉}) = S(Eμ(ρ)) −
∑

k

pkS[Eμ(|ψk〉〈ψk|)],

(23)

where now ρ = ∑
k pk|ψk〉〈ψk|. The optimization of C1

was performed for the amplitude damping channel with full
memory (μ = 1) in Ref. [34]. The case of partial memory
is harder to treat, so in the following we will derive lower
bounds on C1 by exploiting the channel covariance properties
discussed above and employing specific ensembles.

A. Form of optimal ensembles

We derive here a general form of the ensemble that
optimizes the Holevo quantity, by exploiting the covariance
properties discussed in the previous section. First we take
advantage of the covariance property of the channel Eμ with
respect to Ri (9). Given a generic ensemble {pk,|ψk〉}, we
consider a new ensemble by replacing each state |ψk〉 in
{pk,|ψk〉} by the set

{|ψk〉,R1|ψk〉,R2|ψk〉,R3|ψk〉},
each state occurring with probability p̃k = pk/4. We refer to
this new ensemble as {p̃k,|ψ̃k〉}, and call ρ̃ = ∑

k p̃k|ψ̃k〉〈ψ̃k|
the associated density operator

ρ̃ =
∑

k

pk

4

(
|ψk〉〈ψk| +

3∑
i=1

Ri |ψk〉〈ψk|Ri

)

= 1

4

(
ρ +

3∑
i=1

RiρRi

)
. (24)

It can be verified that ρ̃ has the same diagonal elements of ρ,
while the off-diagonal entries are all vanishing. We now show
that

χ (Eμ,{p̃k,|ψ̃k〉}) � χ (Eμ,{pk,|ψk〉}). (25)

To this end we first notice that

S[Eμ(Ri |ψk〉〈ψk|Ri)] = S[Ri Eμ(|ψk〉〈ψk|)Ri]

= S[Eμ(|ψk〉〈ψk|)], (26)

where we used Eq. (16) and the fact that a unitary operation
does not change the von Neumann entropy. Therefore, by
replacing the old ensemble with the new one, the second term
in the Holevo quantity (23) does not change, namely

∑
k

p̃kS[Eμ(|ψ̃k〉〈ψ̃k|)] = 4
∑

k

pk

4
S[Eμ(|ψk〉〈ψk|)]

=
∑

k

pkS[Eμ(|ψk〉〈ψk|)]. (27)
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For the output entropy related to ρ̃ we have

S[Eμ(ρ̃)] = S

[
Eμ

(
1

4
ρ + 1

4

3∑
i=1

RiρRi

)]

= S

[
1

4
Eμ(ρ) + 1

4

3∑
i=1

Eμ(RiρRi)

]

� 1

4
S[Eμ(ρ

)
] + 1

4

3∑
i=1

S[Eμ(RiρRi)]

= S[Eμ(ρ)], (28)

where we used the linearity of Eμ, the concavity of the von
Neumann entropy [2], and Eq. (26). Relations (27) and (28)
then prove the inequality (25). In other words, for an arbitrary
ensemble of pure states we can always find another ensemble,
whose density matrix has the same diagonal elements as the
initial ensemble and vanishing off-diagonal entries, and whose
Holevo quantity is at least as large.

We will now take advantage of the covariance of the
channel Eμ with respect to the swap gate Sw (17). Given
a quantum ensemble {p̃k,|ψ̃k〉}, with ρ̃ = ∑

k p̃k|ψ̃k〉〈ψ̃k| =
diag{α,β,γ,δ}, we construct a new ensemble {p̄k,|ψ̄k〉} by
replacing each state |ψ̃k〉 in {p̃k,|ψ̃k〉} with the following
couple of states:

{|ψ̃k〉,Sw|ψ̃k〉},

each state occurring with probability p̄k = p̃k/2. We refer to
this new ensemble as {p̄k,|ψ̄k〉}, and call ρ̄ = ∑

k p̄k|ψ̄k〉〈ψ̄k|
the density operator which describes it. We now show that

χ (Eμ,{p̄k,|ψ̄k〉}) � χ (Eμ,{p̃k,|ψ̃k〉}). (29)

In order to do this, we first exploit the covariance property of
the channel with respect to Sw (19), which leads to

S[Eμ(Sw|ψ̃k〉〈ψ̃k|Sw)] = S[Sw Eμ(|ψ̃k〉〈ψ̃k|)Sw]

= S[Eμ(|ψ̃k〉〈ψ̃k|)]. (30)

Therefore, by replacing the old ensemble by the new one,
the second term in the Holevo quantity (23) does not change,
namely

∑
k

p̄kS[Eμ(|ψ̄k〉〈ψ̄k|)] = 2
∑

k

p̃k

2
S[Eμ(|ψ̃k〉〈ψ̃k|)]

=
∑

k

p̃kS[Eμ(|ψ̃k〉〈ψ̃k|)]. (31)

Let us now consider the changes in the first term of the Holevo
quantity (23). First we consider the relation between ρ̄ and ρ̃,

namely

ρ̃ =
∑

k

p̃k|ψ̃k〉〈ψ̃k| →

ρ̄ =
∑

k

p̃k

2
(|ψ̃k〉〈ψ̃k| + Sw|ψ̃k〉〈ψ̃k|Sw) = 1

2
(ρ̃ + Swρ̃Sw)

=

⎛
⎜⎜⎜⎝

α 0 0 0

0 β+γ

2 0 0

0 0 β+γ

2 0
0 0 0 δ

⎞
⎟⎟⎟⎠. (32)

We have that

S[Eμ(ρ̄)] = S
[
Eμ

(
1
2 ρ̃ + 1

2Swρ̃Sw
)]

= S
[

1
2Eμ(ρ̃) + 1

2Eμ(Swρ̃Sw)
]

� 1
2S[Eμ(ρ̃)] + 1

2S[Eμ(Swρ̃Sw)] = S[Eμ(ρ̃)]. (33)

Relations (31) and (33) then prove inequality (29). We can
summarize the above argument as follows: for any quantum
ensemble of pure states we can find another ensemble, whose
density matrix has the same diagonal as the original one, with
zero off-diagonal entries, with equal populations for the states
|01〉 and |10〉, and whose Holevo quantity is at least as large. In
the following we will consider such kind of ensembles, which
we will indicate by {pk,|ψk〉}. A generic input state |ψk〉 in
these ensembles has the form

|ψk〉 = ak|00〉 + bk|01〉 + ck|10〉 + dk|11〉, (34)

where the coefficients ak, bk, ck, dk ∈ C and satisfy the
normalization condition |ak|2 + |bk|2 + |ck|2 + |dk|2 = 1. The
corresponding density matrix is given by

ρ =

⎛
⎜⎝

α 0 0 0
0 β 0 0
0 0 β 0
0 0 0 δ

⎞
⎟⎠, (35)

where

α =
∑

k

pk|ak|2, β =
∑

k

pk|bk|2 =
∑

k

pk|ck|2,

δ =
∑

k

pk|dk|2 = 1 − α − 2β. (36)

B. Lower bounds for C1(Eμ)

Computing the C1 capacity for the channel Eμ is a very hard
task since one should perform the following maximization:

C1(Eμ) = max
{pk,|ψk〉}

χ (Eμ,{pk,|ψk〉}) (37)

over all quantum ensembles {pk,|ψk〉} of the forms (34) and
(35). We will derive here some lower bounds for C1(Eμ) by
optimizing the Holevo quantity of Eμ with respect to some
specific ensembles of the above-mentioned form. We will
consider two types of such ensembles.

The first ensemble, which we call G1, is given by the
following eight states:

|ψ〉, Ri |ψ〉, Sw|ψ〉, RiSw|ψ〉, i ∈ {1,2,3}, (38)
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where

|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, (39)

each state occurring with the same probability p = 1/8. Here
a,b,c,d are complex numbers. It is straightforward to show
that the resulting density matrix ρ has the form (35) where

α = |a|2, β = |b|2 + |c|2
2

, δ = |d|2. (40)

The Holevo quantity relative to the ensemble G1 is

χ (Eμ,G1) = S[Eμ(ρ)] − S[Eμ(|ψ〉〈ψ |)], (41)

since by construction all the states in the ensemble (39) have
the same output entropy, due to the covariance properties of Eμ

with respect toRi (16) andSw (19) exploited above. Therefore,
a lower bound for the classical capacity of the channel Eμ can
be derived from

χlwbG1
(η,μ) = max

a,b,c,d
χ (Eμ,G1). (42)

Without loss of generality we set

a = a, b = beiϕ1 , c = ceiϕ2 ,

d =
√

1 − a2 − b
2 − c2 eiϕ3 , (43)

× a, b, c, ϕ1, ϕ2, ϕ3 ∈ R.

The maximization (42) can be recast as

χlwbG1
(η,μ) = max

a, b, c, ϕ1, ϕ2, ϕ3

χ (Eμ,G1), (44)

with the following constraints:

a, b, c ∈ [0,1], a2 + b
2 + c2 � 1, ϕi ∈ [0,2π [.

(45)

The reason for investigating such a lower bound is that the
set G1 contains the ensemble which allows us to achieve
the product state capacity 2 Cmadc,1 [2] for two uses of the
memoryless amplitude damping channel [35]. In the case of
memoryless channel (μ = 0) the lower bound (42) will be at
least equal to 2 Cmadc,1.

The second quantum ensemble we consider is of the kind

{pk,|ψk〉} = {pϕk,|ϕk〉} ∪ {pφ,k,|φk〉}, (46)

where

pϕ± = β, |ϕ+〉 = cos θ1|01〉 + eiϕ1 sin θ1|10〉,
|ϕ−〉 = − sin θ1|01〉 + eiϕ1 cos θ1|10〉,

pφ± = 1−2β

2 , |φ±〉 = cos θ2|00〉 ± eiϕ2 sin θ2|11〉.
(47)

We call this ensemble G2. The corresponding density operator
is

ρ =

⎛
⎜⎝

(1 − 2β) cos2 θ2 0 0 0
0 β 0 0
0 0 β 0
0 0 0 (1 − 2β) sin2 θ2

⎞
⎟⎠, (48)

which is of the form (35). The Holevo quantity relative to the
ensemble G2 is given by

χ (Eμ,G2) = S[Eμ(ρ)] − 2βS[Eμ(|ϕ±〉〈ϕ±|)]
− (1 − 2β)S[Eμ(|φ±〉〈φ±|)], (49)

since the states |ϕ±〉 have the same output entropy, and
the same for |φ±〉. It is possible to show that any state in
the subspace spanned by {|01〉,|10〉} has the same output
entropy, which only depends on the channel transmissivity
η and the channel degree of memory μ. In other words, the
entropy S[Eμ(|ϕ±〉〈ϕ±|)] does not depend on θ1, ϕ1. Moreover,
the output entropy S[Eμ(|φ±〉〈φ±|)] does not depend on ϕ2.
Therefore, the lower bound (44) for the classical capacity of
the channel Eμ can be computed as

χlwbG2
(η,μ) = max

β, θ2

χ (Eμ,G2). (50)

The reason to investigate this lower bound is that the ensemble
G2 contains the ensemble which allows us to achieve the C1

classical capacity of the full memory channel E1 [34], since
χlwbG2

(η,1) coincides with C1(E1).
The two lower bounds (44) and (50) were computed numer-

ically. In the following subsection we report the corresponding
results.

C. Numerical results

In Fig. 1 we plot the numerical results for the maximization
in Eqs. (44) and (50). As we can see, for not too high values
of the memory degree (μ < 0.8) we have that χlwbG1

> χlwbG2
:

the ensemble G1 allows us to achieve better performance with
respect to the ensembleG2 in transmitting classical information
across the channel Eμ. Instead, as expected, the ensemble G2

is better than G1 for higher values of the memory degree
because it is the ensemble that maximizes the performance
of the full memory channel. Moreover, since both χlwbG1

and
χlwbG2

are increasing functions of μ, our results show that
memory increases the channel aptitude to transmit classical
information. It is worth discussing the particular case η = 0. In
the memoryless case for η = 0 there is no classical information
transmission, since the output state is always |00〉 for any input.
On the other hand, we can see from Fig. 1 that any finite degree
of memory allows for information transmission also in this
limiting case.

In Fig. 2(top) we plot the populations (40) of the ensemble
G1 (38) and (39) which solves the optimization problem (44).
The populations are plotted as functions of the memory degree

FIG. 1. (Color online) Lower bounds χlwbG1
(η,μ) (44) (red sur-

face) and χlwbG2
(η,μ) (50) (blue surface). For small μ, χlwbG1

> χlwbG2
.
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FIG. 2. (Color online) Populations which maximize the Holevo quantity for the ensemble G1 (top plots) and for G2 (bottom plots), at
channel transmissivity η = 0.3 (left) and η = 0.8 (right), as functions of the memory degree μ. For the ensemble G1: α (red long-dashed curve),
β = γ (black full curve), and δ (blue dashed curve). For the ensemble G2: α = (1 − 2β) cos2 θ2 (red long-dashed curve), β (black full curve),
and δ = (1 − 2β) sin2 θ2 (blue dashed curve).

μ, for two values of the channel transmissivity: η = 0.3 (left
plot) and η = 0.8 (right plot). From the numerical optimization
it turns out that states of the optimal ensemble (38) and (39)
exhibit the same weights for the components |01〉 and |10〉
(|b|2 = |c|2). Note also that for low values of the channel
transmissivity (η = 0.3 in the left plot) and for μ ≈ 1, the
states (39) have vanishing components along |11〉; indeed for
small values of the transmissivity, when μ approaches 1, the
subspace spanned by {|00〉,|01〉,|10〉} becomes noiseless, and
it is not convenient to use the state |11〉 to encode information.
In this last case the bound χlwbG1

is close to log2 3. It is
worth noting that from numerical analysis it turns out that the
maximum (44) is also reached for ϕ1 = ϕ2 = ϕ3 = 0 (which
means that the maximum of the Holevo quantity is reached for
real coefficients a = ā,b = b̄,c = c̄).

In Fig. 2 (bottom panels) we plot the populations of the
ensemble G2 (46) and (47) which solve the optimization (50).
It is interesting to notice that for low values of the channel
transmissivity (η = 0.3 in the figure), the state |11〉 is not
populated for low values of the memory degree, and it is
“activated” for a large enough degree of memory. In other
words, for η � 0.6, we can identify a threshold value μth(η)
below which |11〉 is not populated; it turns out that the smaller
is η, the greater is μth.

We investigate the amount of entanglement required for
the transmission of classical information by considering the
average entanglement of the quantum ensemble {pk,|ψk〉}
employed, defined as

E{pk,|ψk〉} =
∑

k

pkE(|ψk〉), (51)

where E(|ψk〉) is the entropy of entanglement [40] of the
bipartite pure state |ψk〉. The entanglement related to the

ensemble G1 is simply the entanglement of the state |ψ〉 in
(39)

EG1 = E(|ψ〉), (52)

since all the states (38) have the same entanglement (Ri are
local unitary operations, and it is simple to verify that Sw does
not change the entanglement of the pure state |ψ〉). Instead,
the average entanglement of the ensemble G2 (46) and (47) is
given by

EG2 = (1 − 2β)E(|φ±〉), (53)

since one can always choose separable states inside the
subspace spanned by {|01〉,|10〉} and therefore the states
{|ϕ±〉} in the ensemble (47) do not contribute to the average
entanglement, and the probability of using a state |φ±〉 (47) is
1 − 2β (the states |φ±〉 have the same entanglement).

In Fig. 3 we plot both the average entanglement in the
ensembles G1 (black full curve) and G2 (red dashed curve), for
those parameters that solve the optimization problems (44)
and (50), respectively. As we can see, in the case of G1,
entanglement is more useful for poor channels (low values
of η). For a given value of the transmissivity, the greater is
the memory degree μ of the channel, the higher is the amount
of entanglement associated with the optimal ensemble G1. In
the case of G2 we find that the presence of entanglement
in the ensemble obeys a threshold behavior. Actually the
average entanglement (53) vanishes if the population of the
state |11〉 vanishes. For “good” quality channels (η � 0.7),
the entanglement associated with the optimal ensembles be-
haves differently: G1 exhibits negligible average entanglement
for all values of the degree of memory, whereas G2 requires
highly entangled states.
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FIG. 3. (Color online) Average entanglement of the ensembles G1 (black full curve) and G2 (red dashed curve), for those parameters which
maximize the Holevo quantity, for channel transmittivity η = 0.3 (left) and η = 0.8 (right).

Finally, we want to comment on the C2 capacity of a
memoryless amplitude damping channel (μ = 0). Since the
Holevo quantity in general is not additive [36] (and it has not
been demonstrated to be additive for the amplitude damping
channel), it is worth investigating whether entangled states
may be useful to overcome the product state capacity 2 Cmadc,1

(relative to two uses of a memoryless amplitude damping
channel), namely whether

max
{pi ,|ψi 〉}

χ (E ⊗ E,{pi,|ψi〉}) >︸︷︷︸
?

2 Cmadc,1, (54)

where {pi,|ψi〉} is a generic quantum ensemble in the Hilbert
space of two qubits, and E is the single-qubit amplitude
damping channel. The answer to this question requires the
optimization in the left member of (54) for any possible
ensemble of the forms (34) and (35), which is a very difficult
task. We can nevertheless investigate the behavior of the
ensembles G1 and G2. By numerical analysis it turns out that
the maximization of the Holevo quantity over the ensemble G2

(50) always returns a value smaller than 2 Cmadc,1, while the
maximization on the class G1 (44) returns the value 2 Cmadc,1.

IV. QUANTUM CAPACITY

In this section we consider the quantum capacity for the
amplitude damping channel with memory and derive bounds
for it. We recall that the quantum capacity Q is defined as
[8–10]

Q = lim
n→∞

Qn

n
, Qn = max

ρ(n)
Ic

(
E⊗n

μ ,ρ(n)
)
, (55)

where ρ(n) is an input state for n channel uses and

Ic

(
E⊗n

μ ,ρ(n)) = S
[
E⊗n

μ

(
ρ(n))] − Se

(
E⊗n

μ ,ρ(n)) (56)

is the coherent information [41]. In Eq. (55) Se(E⊗n
μ ,ρ(n)) is

the entropy exchange [42], defined as

Se

(
E⊗n

μ ,ρ(n)
) = S

[(
I ⊗ E⊗n

μ

)
(|�〉〈�)

]
, (57)

where |�〉 is any purification of ρ(n), namely ρ(n) =
TrR|�〉〈�| with R denoting a reference system that evolves
trivially, according to the identity superoperator I.

In order to calculate the quantum capacity of the memory
channel Eμ, we need to deal with a unitary representation of
this channel. This can be conveniently achieved by considering
two external systems E and M , the latter taking into account
the degree of memory of the channel, as follows:

|00〉S ⊗ |00〉E ⊗ |0〉M −→ |00〉S ⊗ |00〉E ⊗ (
√

1 − μ|0〉M + √
μ|1〉M),

|01〉S ⊗ |00〉E ⊗ |0〉M −→
√

1 − μ (
√

η|01〉S ⊗ |00〉E +
√

1 − η|00〉S ⊗ |01〉E) ⊗ |0〉M + √
μ|01〉S ⊗ |00〉E ⊗ |1〉M,

|10〉S ⊗ |00〉E ⊗ |0〉M −→
√

1 − μ (
√

η|10〉S ⊗ |00〉E +
√

1 − η|00〉S ⊗ |10〉E) ⊗ |0〉M + √
μ|10〉S ⊗ |00〉E ⊗ |1〉M,

|11〉S ⊗ |00〉E ⊗ |0〉M −→
√

1 − μ[η|11〉S ⊗ |00〉E +
√

η(1 − η)(|01〉S ⊗ |10〉E

+|10〉S ⊗ |01〉E) + (1 − η)|00〉S ⊗ |11〉E] ⊗ |0〉M + √
μ(

√
η|11〉S ⊗ |00〉E +

√
1 − η|00〉S ⊗ |11〉E) ⊗ |1〉M. (58)

When the system S is prepared in the generic pure state |ψ〉 the system SEM state undergoes the transformation

|ψSEM〉 = |ψ〉S ⊗ |000〉EM = a|00〉S ⊗ |000〉EM + b|01〉S ⊗ |000〉EM + c|10〉S ⊗ |000〉EM + d|11〉S ⊗ |000〉EM −→

|ψSEM′ 〉 = a
√

1 − μ|00〉S ⊗ |000〉EM + a
√

μ|00〉S ⊗ |001〉EM

+ b
√

(1 − μ)η|01〉S ⊗ |000〉EM + b
√

(1 − μ)(1 − η)|00〉S ⊗ |010〉EM + b
√

μ|01〉S ⊗ |001〉EM

+ c
√

(1 − μ)η|10〉S ⊗ |000〉EM + c
√

(1 − μ)(1 − η)|00〉S ⊗ |100〉EM + c
√

μ|10〉S ⊗ |001〉EM

+ d
√

(1 − μ)η|11〉S ⊗ |000〉EM + d
√

(1 − μ)η(1 − η)(|01〉S ⊗ |100〉EM + |10〉S ⊗ |010〉EM)

+ d
√

1 − μ(1 − η)|00〉S ⊗ |110〉EM + d
√

μη|11〉S ⊗ |001〉EM + d
√

μ(1 − η)|00〉S ⊗ |111〉EM. (59)
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From Eq. (59) it is possible to obtain the expressions
for the final state of the system, ρ ′ = Eμ(ρ) ≡ ρS′ =
TrEM[|ψSEM′ 〉〈ψSEM′ |], and of the environment, ρEM′ =
TrS[|ψSEM′ 〉〈ψSEM′ |]. We report their explicit form in
Appendix A 1, see Eqs. (A2) and (A3).

The two extreme cases of memoryless (μ = 0) and full
memory (μ = 1) amplitude damping channels have been
shown to be degradable [34,35], so that the regularization n →
∞ in Eq. (55) is not necessary [43] and the quantum capacity is
given by the single-shot formula Q = Q1. On the other hand,
there is no evidence that degradability holds for the general
case of partial memory. To hand the regularization formula in
Eq. (55) is a hard task, therefore we restrict to the computation
of upper and lower bounds for the quantum capacity.

A. An upper bound for Q(Eμ)

Since the channel Eμ is a convex combination of the
degradable channels E0 and Em, according to Eq. (8), its
quantum capacity is upper bounded by [44]

Qupb = (1 − μ)Q(E0) + μQ(Em). (60)

This expression is easy to evaluate, since Q(E0) is known from
Ref. [35], and Q(Em) is known from Ref. [34].

B. A lower bound for Q(Eμ)

Here we use the “single-letter” formula Q1, namely

Q1(Eμ) = max
ρ

Ic(Eμ,ρ), (61)

where ρ belongs to the Hilbert space corresponding to a single
use of channel Eμ. The coherent information is then given by

Ic(Eμ,ρ) = S[Eμ(ρ)] − Se(Eμ,ρ) = S(ρ ′) − S(ρEM′
), (62)

where Se(Eμ,ρ) = S(ρEM′
) is the entropy exchange related to

Eμ [41].
Since we do not know whether the coherent information

of Eμ is concave, we cannot simplify the form of the optimal
input state by the argument followed in the previous section
for the Holevo quantity. As far as we know, the concavity
holds for Ic(Eμ,ρ) only in the cases μ = 0,1. For the generic
case of μ �= 0,1 one should then try to maximize the coherent
information (62) with respect to all possible input states ρS.
This task is a hard task since it involves a maximization with
respect to 15 real parameters. We will then focus on a simpler
task, by optimizing the coherent information (62) with respect
to a diagonal input state

ρ =

⎛
⎜⎝

α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 δ

⎞
⎟⎠. (63)

This choice ensures that for μ = 0 and μ = 1, the correspond-
ing bound gives the quantum capacity of the memoryless and of
the full-memory channel, respectively, since the optimal input
is a diagonal one for both channels, as shown in Refs. [34,35].
The corresponding output density operators for the system S
and the environment ME can be derived from Eqs. (A2) and
(A3), and are shown below:

ρ ′ =

⎛
⎜⎜⎝

ρS′
00,00 0 0 0
0 ρS′

01,01 0 0
0 0 ρS′

10,10 0
0 0 0 ρS′

11,11

⎞
⎟⎟⎠, (64)

ρEM′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρEM′
000,000 ρEM′

000,001 0 0 0 0 0 0
ρEM′

001,000 ρEM′
001,001 0 0 0 0 0 0

0 0 ρEM′
010,010 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 ρEM′

100,100 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 ρEM′

110,110 ρEM′
110,111

0 0 0 0 0 0 ρEM′
111,110 ρEM′

111,111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (65)

where the matrix elements are reported in Appendix A 1 in
Eqs. (A2) and (A3). Our lower bound for the quantum capacity
of the channel Eμ is given by

Qlwb = max
α,β,γ,δ

{Ic(Eμ,ρ),0} = max
α,β,γ,δ

{[S(ρ ′) − S(ρEM′
)],0},

(66)

where α,β,γ,δ ∈ [0,1], α + β + γ + δ = 1, ρ ′, and ρEM′

are given by (64) and (65), respectively. We solved the
optimization problem (66) numerically. The obtained results
are reported in the following subsection.

C. Numerical results

In Fig. 4 we plot the bounds (60) and (66) as functions of
the memory degree μ, for different values of the transmissivity
parameter η. We first notice that the lower bound (66) exhibits
a threshold value μ̄th. Indeed for μ � μ̄th we have that Qlwb =
0. This threshold depends on the channel transmissivity η, and
it is only present for η � 0.5. This is not too surprising, since
Eμ is a convex combination of two channels and one of them,
i.e., the memoryless channel, has a vanishing quantum capacity
for η � 0.5. We would like to point out that for η > 0.5 the
chosen upper (60) and lower bounds (66) give good estimations
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FIG. 4. (Color online) Upper bound Qupb (60) (red dashed curve) and lower bound Qlwb (66) (black full curve) for the quantum capacity of
the channel Eμ. Different plots refer to different channel transmissivities: from left to right, η = 0,0.1,0.2 (top row), 0.3,0.4,0.6 (middle row),
and 0.7,0.8,0.9. The dashed gray line signals the presence of a threshold μ̄th: for values of the channel degree of memory μ � μ̄th, the lower
bound (66) vanishes.

of the quantum capacity for Eμ, since the corresponding values
are close to each other, as one can see from Fig. 4.

In Fig. 5 we plot the values of the populations α, β, γ, δ

(63), which solve the maximization problem (66). We notice
that the maximization problem (66) returns equal populations
for the states |01〉 and |10〉, β = γ . For low values of
transmissivity (η � 0.5) the state |11〉 is not populated. This
can be explained by some considerations. First, we notice that
the state |11〉 is the one which experiences the strongest noise
(greatest damping rates), see the Kraus operators A0 in Eqs. (5)
and B0 in Eqs. (7). Moreover, we remind that the channel Eμ

is a convex combination of the memoryless channel E0 and
the full memory channel E1. For η � 0.5, only the channel
E1 has a nonvanishing quantum capacity [34] and the optimal
ensemble which maximizes the coherent information of E1 is a

diagonal one (63), with vanishing populations δ (for η � 0.5),
as reported in Ref. [34].

V. CLASSICAL ENTANGLEMENT-ASSISTED CAPACITY

In this section we compute the entanglement-assisted
classical capacity CE , which gives the maximum amount of
classical information that can be reliably transmitted down the
channel per channel use, provided the sender and the receiver
share an infinite amount of prior entanglement. It is given by
[12,13]

CE = max
ρ

I (Eμ,ρ), (67)

FIG. 5. (Color online) Populations α (long-dashed red curve), β = γ (black curve), and δ (dashed blue curve) which solve the maximization
problem (66), for η = 0.3 (left) and η = 0.8 (right). The dashed gray curve signals the presence of a threshold μ̄th: for values of the channel
degree of memory μ � μ̄th, the maximum of the coherent information (62) with respect to the input (63) is smaller than or equal to 0.
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FIG. 6. (Color online) Entanglement-assisted classical capacity
of the channel Eμ, as a function of the transmittivity η and of the
degree of memory μ.

where the maximization is performed over the input state ρ

for a single use of the channel Eμ and

I (Eμ,ρ) = S(ρ) + Ic(Eμ,ρ). (68)

The subadditivity of I [11] guarantees that no regularization
as in (55) is required to obtain CE .

By exploiting the concavity of I [11] and the covariance
properties of the channel, following similar arguments as the
ones reported in Sec. III A, we can prove that the state ρ

maximizing I is diagonal with the same populations for the
states |01〉 and |10〉, as in Eq. (35). Therefore,

CE = max
α,β,δ

I (Eμ,ρ) = max
α,β,δ

[S(ρS) + S(ρS′
) − S(ρEM′

)].

(69)

The numerical results achieved by maximization of the
above expression are reported in Fig. 6. As we can see, for
any fixed value of η the entanglement assisted capacity is
an increasing function of the degree of memory. Therefore,
memory effects are beneficial to improve the performance of
the channel. In particular, for η = 0 we have a qualitative
similar behavior as the classical capacity. Actually, we can see
that CE is vanishing in the memoryless case, but it is always
nonzero as soon as the channel has some memory, achieving
the maximum value 3 for the full memory case.

In Fig. 7 we plot the populations of the state (35) which
solve the maximization problem (69).

VI. CONCLUSIONS

In this work we have studied the performance of an
amplitude damping channel with memory acting on a two
qubits system. We considered a general noise model with
arbitrary degree of memory, that includes the memoryless
amplitude damping channel and the full memory amplitude
damping channel as particular cases. We have analyzed three
types of scenarios for information transmission. We have first
considered the transmission of classical information and have
derived lower bounds on the classical channel capacity for a
single use of the channel by numerical optimization of the
Holevo quantity for two significant types of input ensembles.
We have then considered the case of quantum information
and computed upper and lower bounds for the quantum
capacity. We emphasized that for high values of the channel
transmissivity it turns out that the upper and lower bounds
are quite close to each other, thus providing a good estimate
of the quantum channel capacity. Finally, we computed the
entanglement assisted classical channel capacity numerically
for any value of the channel transmissivity η and degree of
memory μ.
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APPENDIX: COHERENT INFORMATION FOR AN
AMPLITUDE DAMPING CHANNEL WITH ARBITRARY

DEGREE OF MEMORY

1. Expressions for ρS′
and ρEM′

We describe a generic initial state of the system by the
density operator

ρS =

⎛
⎜⎝

α κ λ ξ

κ∗ β ν o

λ∗ ν∗ γ π

ξ ∗ o∗ π∗ δ

⎞
⎟⎠. (A1)

FIG. 7. (Color online) Coefficients α (red long-dashed curve), β = γ (black full curve), δ (blue dashed curve) which solve the maximization
problem (69), for η = 0.3 (left) and η = 0.8 (right).
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The output state of the system S and of the environment
EM can be derived from Eq. (59). We report only the upper
triangular part of ρS′

and ρEM′
, since any density operator

matrix is an Hermitian matrix.

a. Matrix ρS′

In the basis {|ij〉S}, i,j ∈ {0,1}, the ρS′
matrix elements

are given by (we set ρS′
ij,i ′j ′ ≡ S〈ij |ρS′ |i ′j ′〉S)

ρS′
00,00 = (1 − μ)[α + (1 − η)(β + γ ) + (1 − η)2δ]

+μ[α + (1 − η)δ],

ρS′
00,01 = (1 − μ)[

√
ηκ + √

η(1 − η)π ] + μκ,

ρS′
00,10 = (1 − μ)[

√
ηλ + √

η(1 − η)o] + μλ,

ρS′
00,11 = [(1 − μ) η + μ

√
η] ξ,

ρS′
01,01 = (1 − μ)[ηβ + η(1 − η)δ] + μβ,

ρS′
01,10 = [(1 − μ) η + μ] ν,

ρS′
01,11 = [

(1 − μ) η
3
2 + μ

√
η
]
o,

ρS′
10,10 = (1 − μ)[ηγ + η(1 − η)δ] + μγ,

ρS′
10,11 = [

(1 − μ) η
3
2 + μ

√
η
]
π,

ρS ′
11,11 = (1 − μ)η2δ + μηδ. (A2)

b. Matrix ρEM′

The elements of the output environment density matrix
ρEM′

in the basis {|ijk〉EM}, i,j,k ∈ {0,1}, are given by (we
set ρS ′

ijk,i ′j ′k′ ≡ EM〈ijk|ρS ′ |i ′j ′k′〉EM)

ρEM′
000,000 = (1 − μ) [α + η(β + γ ) + η2δ],

ρEM′
000,001 =

√
μ(1 − μ) [α + √

η(β + γ ) + η3/2δ],

ρEM′
000,010 = (1 − μ)

√
1 − η (κ + η π ),

ρEM′
000,011 = 0,

ρEM′
000,100 = (1 − μ)

√
1 − η (λ + η o),

ρEM′
000,101 = 0,

ρEM′
000,110 = (1 − μ)(1 − η) ξ,

ρEM′
000,111 =

√
μ(1 − μ)(1 − η) ξ,

ρEM′
001,001 = μ[1 − (1 − η)δ],

ρEM′
001,010 =

√
μ(1 − μ)(1 − η) (κ + η π ),

ρEM′
001,011 = 0,

ρEM′
001,100 =

√
μ(1 − μ)(1 − η) (λ + η o),

ρEM′
001,101 = 0,

ρEM′
001,110 =

√
μ(1 − μ)(1 − η) π,

ρEM′
001,111 = μ

√
1 − η π,

ρEM′
010,010 = (1 − μ)(1 − η) (β + η δ),

ρEM′
010,011 = 0,

ρEM′
010,100 = (1 − μ)(1 − η) ν,

ρEM′
010,101 = 0,

ρEM′
010,110 = (1 − μ)(1 − η)3/2 o,

ρEM′
010,111 =

√
μ(1 − μ)(1 − η) o,

ρEM′
011,ijk = 0 ∀i,j,k ∈ {0,1},

ρEM′
100,100 = (1 − μ)(1 − η) (γ + η δ),

ρEM′
100,101 = 0,

ρEM′
100,110 = (1 − μ)(1 − η)3/2 π,

ρEM′
100,111 =

√
μ(1 − μ)(1 − η) π,

ρEM′
101,ijk = 0 ∀i,j,k ∈ {0,1},

ρEM′
110,110 = (1 − μ)(1 − η)2δ,

ρEM′
110,111 =

√
μ(1 − μ)(1 − η)3/2 δ,

ρEM′
111,111 = μ(1 − η)δ. (A3)
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