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Degree of quantum correlation required to speed up a computation

Alastair Kay*

Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
(Received 1 October 2015; published 14 December 2015)

The one-clean-qubit model of quantum computation (DQC1) efficiently implements a computational task that is
not known to have a classical alternative. During the computation, there is never more than a small but finite amount
of entanglement present, and it is typically vanishingly small in the system size. In this paper, we demonstrate
that there is nothing unexpected hidden within the DQC1 model—Grover’s search, when acting on a mixed
state, provably exhibits a speedup over classical, with guarantees as to the presence of only vanishingly small
amounts of quantum correlations (entanglement and quantum discord)—while arguing that this is not an artifact
of the oracle-based construction. We also present some important refinements in the evaluation of how much
entanglement may be present in the DQC1 and how the typical entanglement of the system must be evaluated.
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I. INTRODUCTION

Any computation whose quantum algorithm has a superior
scaling of running time compared to its classical counterpart
ought to pass through an intermediate state with nontrivial
quantum properties, e.g., entanglement. Indeed, for pure-
state computations, it has been shown that entanglement is
necessary [1]. However, computation involving mixed states
is a far more subtle issue, with no firm resolution, although
it is looking increasingly likely that quantum discord must be
present in order for there to be an exponential speedup [2,3].

The one-clean-qubit model of quantum computation
(DQC1) [4] can provide important insights. Expressed as a
decision problem, this is defined as:

Problem 1. Given an efficient classical description of a
quantum computation U on n qubits, and a promise that either
Tr(U ) > 1/poly(n) or Tr(U ) < −1/poly(n), determine which
is the case with error probability ε < 1

3 .
There is no known classical algorithm which can efficiently

solve this problem, while there is a quantum circuit that
is remarkably simple (Fig. 1). In this circuit, there is one
special (“clean”) qubit, which is initially prepared in the state
|+〉 = (|0〉 + |1〉)/√2, and a set of n qubits is prepared in
the maximally mixed state 1/2n. After applying controlled U

between the clean qubit (control) and the mixed qubits (target),
we can estimate the probabilities that the clean qubit is in state
|+〉 [to find Re(Tr(U ))] or (|0〉 + i|1〉)/√2 [to find Im(Tr(U ))].
There is a very obvious division in the system between the
clean qubit and the mixed ones. As such, the authors of [4]
examined the entanglement between that bipartition of the sys-
tem and discovered that it was 0. Entanglement seemed not to
be necessary for mixed-state quantum computation, although
other measures of nonclassicality such as the quantum discord
and measurement-induced disturbance have since been shown
to be nonzero across that bipartition [5,6].

Detecting entanglement in a multipartite state using bipar-
tite divisions is, however, quite subtle. A clear demonstration
of this is the distribution of entanglement using separable
states [7,8]; just because two of the three possible bipartitions
of a three-qubit system have no entanglement does not
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mean that the third bipartition has no entanglement. So it
is with the DQC1 model in [9], it was demonstrated that by
considering different bipartitions, there is indeed entanglement
present. Two additional results are provided in [9]: upper
and lower bounds on the maximum amount of entanglement
present across any bipartition and a numerical investigation
of the entanglement produced by a typical unitary (in the
sense of selecting a U uniformly at random from the Haar
measure). This investigation suggests that the entanglement
is typically exponentially small in n. So, although there is
some entanglement present, it is a vanishingly small amount
on average.

Even the presence of almost no entanglement in the
computation might seem surprising. However, in this paper,
we draw parallels with a noisy version of Grover’s search [10]
in which we demonstrate the existence of a quantum speedup in
the presence of vanishingly small entanglement (such a result
could have been proven from [11] but does not appear to have
been) and other nonclassicality measures such as the quantum
discord [12,13]. Moreover, unlike the case of the DQC1 model,
where the speedup over classical is only believed, Grover’s
search is subject to an oracle-based complexity classification
with a proven gap over the classical case. Placed in this context,
the power of the DQC1 model seems much less surprising.
However, we demand only the existence of a quantum speedup
and do not address the important conceptual transition between
a polynomial and an exponential speedup. We also improve the
results of [9], giving a tight upper bound on the entanglement
present in the DQC1 model for any U .

A further criticism of the DQC1 model (or, similarly, the
Grover search that we describe here) is that it assumes an
implementation of the controlled-U gate. In practice, we have
no such implementation and need to decompose the action
in terms of elementary gates. Even if the net implementation
of controlled U yields little or no entanglement, there is no
a priori reason why all the intermediate steps should also
be almost entanglement-free across all bipartitions. On the
other hand, if the controlled U is treated as an oracle, then
we can consider other oracle-based problems that are even
more trivial in the entanglement sense: the Bernstein-Vazirani
problem transforms a product state into a product state [14,15].
The internal workings of the oracle are evidently important and
receive further discussion.
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FIG. 1. The DQC1 model. No entanglement is present in the
bipartite split between the top (special) qubit and the rest. Estimation
of the trace of U proceeds by performing measurements in the bases
(|0〉 ± |1〉)/√2 and (|0〉 ± i|1〉)/√2.

Notation

Consider a density matrix of n + 1 qubits, ρ. Whenever we
write ρ in the context of the DQC1 model, we refer specifically
to the output of the circuit for estimating the trace of U (Fig. 1),
which is a block matrix of the form

ρ = 1

2n+1

(
1 U †

U 1

)
. (1)

We denote by ρy , where y ∈ {0,1}n, the partial transpose of
ρ taken over the nonclean qubits i, yi = 1, and never the
clean qubit, without losing generality. Similarly, Uy denotes
the partial transpose of U , such that

ρy = 1

2n+1

(
1 U

†
y

Uy 1

)
. (2)

The Hamming weight of the string y is denoted wy .
Throughout this paper, the multiplicative negativity [16,17]

is chosen as the entanglement measure in order to maintain
consistency with [9]. If �y = spec(ρy) is the spectrum of
ρy , then the multiplicative negativity of ρ with respect to
bipartition y is

My =
∑
λ∈�y

|λ|. (3)

If no entanglement is present, My = 1 for all y ∈ {0,1}n, while
My > 1 implies the presence of entanglement.

II. MAXIMUM ENTANGLEMENT IN THE DQC1

We start by examining the entanglement properties of the
DQC1 model, strengthening the assertions in [9].

Theorem 1. For any unitary U , the output ρ of the DQC1
computation always satisfies

My � 5

4

for all possible bipartitions y ∈ {0,1}n.
Proof. Since it is not immediately clear that Uy is normal,

we use the singular value decomposition of Uy ,

Uy = RDV †,

where R and V are unitary matrices and D is the diagonal,
with non-negative diagonal elements di . We need to find the
eigenvalues of ρy , but note that the eigenvalues are invariant
under the application of any unitary. We apply the unitary
transformation of controlled R† (controlled off the clean qubit),
followed by a Pauli X on the clean qubit, controlled V †, and

finished by another Pauli X on the clean qubit. This yields

ρy �→ 1

2n+1

(
1 D

D 1

)
.

The eigenvalues of ρy are therefore readily calculated to be
(1 ± di)/2n+1 for i = 1 . . . 2n.

How, then, are we to pick {di} such that the value of

My = 1 + 2
∑

i:di>1

di − 1

2n+1
(4)

is maximized? We perform a constrained optimization by
noting from [9] that

2n = Tr(UU †) = Tr(UyU
†
y ) =

∑
i

d2
i . (5)

Assume that t of the values di > 1 (i = 1 . . . t). Hence,

My = 1 − t

2n
+ 1

2n

t∑
i=1

di,

subject to
∑2n

i=1 d2
i = 2n. This is true for all values di and t , so

we can find the largest possible value by maximizing over all
possible values (subject to the constraint):

My � max
t,{di }

1 − t

2n
+ 1

2n

t∑
i=1

di. (6)

The optimal choice of the di is clear: di = 0 for i = t + 1 . . . 2n

and

di =
√

2n

t

otherwise, which gives

My � max
t

1 − t

2n
+

√
t

2n
.

This is maximized by t = 2n/4 (requiring n � 2 such that t is
an integer), yielding

My � 5
4 ,

compared to the maximum possible value of ≈ 2n/2.
The limit My = 5

4 is readily saturated. For example, when
n = 2 we can use

U =

⎛
⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎠

since U01 has eigenvalues 2, 0, 0, and 0 as required for the
optimal construction. For larger n, a construction such as
U ⊗ 1⊗(n−2) would provide the requisite eigenvalues. There
are then many ways of dressing this operator with unitaries
that do not affect the partial transpose to disguise its structure
slightly. For example, [9] uses a series of controlled-not
gates. Incidentally, this trivial example shows that there are
many bipartitions for which My = 5

4 : of the 2n − 1 possible
choices, all 2n−1 choices that have y1 ⊕ y2 = 1 exhibit this
value.

This section reiterates the conclusion of [9]: there are
bipartitions of the DQC1 model in which there is some
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entanglement present, and it can be present up to a finite
amount. Indeed, there can be many such bipartitions. What
we investigate in the rest of this paper is how surprising this
result is: Should the fact that we are guaranteed that no more
than a small but finite amount of entanglement is present in
a bipartition suggest to us that a quantum speedup should be
more difficult to realize? What about the fact that for most
unitaries it seems that the entanglement is vanishingly small
(exponentially small in the system size, N )? To that end, we
now make comparisons with a depolarized version of Grover’s
search, for which we show that even in situations where there
is a provable (oracle-based) quantum speedup, this can occur
when we are guaranteed that there is never more than an
exponentially small amount of entanglement in any bipartition.
This is a much stronger statement than has been made for
the DQC1 model. As such, using the DQC1 model to make
conclusions about the existence of a computational speedup in
the presence of little or no entanglement seems obsolete.

III. COMPARISON WITH GROVER’S SEARCH

A standard formulation of Grover’s search algorithm [10]
starts with an initial state |+〉⊗n, trying to evolve to some
(unknown) target state |x0〉. The evolution is restricted to a
subspace spanned by |x0〉 and

|ψ⊥〉 = 1√
2n − 1

∑
x �=x0

|x〉, (7)

such that the populated states are of the form

|�〉 = cos θ |x0〉 + sin θ |ψ⊥〉, (8)

where θ ∈ [0,π/2]. For finite n, only integer multiples of
sin−1(2−n) are allowed. If we select a particular bipartition,
then |x0〉 = |xy〉|xȳ〉, where, here, the subscript y merely refers
to the set of qubits on which the state is defined, and ȳ is the
complement of y. Similarly, we can define

|ψ⊥
y 〉 = 1√

2wy − 1

∑
x∈{0,1}wy :x �=xy

|x〉,

allowing |ψ⊥〉 to be expressed as

|ψ⊥〉 =
√

(2wy − 1)(2n−wy − 1)

2n − 1
|ψ⊥

y 〉|ψ⊥
ȳ 〉

+
√

2n−wy − 1

2n − 1
|xy〉|ψ⊥

ȳ 〉 +
√

2wy − 1

2n − 1
|ψ⊥

y 〉|xȳ〉.

Evidently, the state |�〉 across this bipartition may be written
as a state with no more than two Schmidt coefficients. The
maximum entanglement is when the two Schmidt coefficients
are λ1 = λ2 = 1

2 (wy = 1 as n → ∞), yielding a value of
My = 2 for this standard, pure-state, version of Grover’s
search. There is only ever a finite amount of entanglement
between any bipartition, much like the DQC1 model, the only
difference being the value.

We now show that there is a variant of this algorithm for
which the entanglement can be made vanishingly small [no

more than My = 1 + 2−n(
1
2 −ε) for any ε > 0]. Consider using

an initial state of

ρ = p|+〉〈+|⊗n + (1 − p)
1

2n
(9)

for any 0 < p � 1. A single run of the algorithm requires the
standard quantum time, O(2n/2), and succeeds in finding the
search target x0 with probability p̃ = p + 1−p

2n . (The mixture
describes that with probability p the pure-state algorithm
proceeds, while with probability 1 − p, a maximally mixed
state is present. This is unchanged by the application of
unitaries and hence is still the maximally mixed state when
the measurement outcome is determined and, hence, gives
every possible answer with equal probability.) By allowing L

repetitions, the algorithm succeeds with probability 1 − (1 −
p̃)L ≈ p̃L for small p̃. Thus, for a given finite ε, we could

select p to be as small as p ∼ 2−n(
1
2 −ε). For sufficiently large

n, p̃ ≈ p, and we need a number of repetitions L ∼ 1/p.
This requires a run time 2n/2L ∼ 2n(1−ε), thereby providing an
advantage over the classical run time of 2n, while we anticipate
(and prove in the next subsection) that for smaller p, there is
less entanglement present.

A. Entanglement

We turn to calculating the entanglement present in the
depolarized algorithm. Progress through the algorithm can be
specified by a parameter θ , such that the state is

ρ(θ ) = p|�(θ )〉〈�(θ )| + (1 − p)
1

2n
.

Assume that the Schmidt coefficients for state |�〉 are cos2 φ

and sin2 φ with respect to bipartition y. In the large-n limit,
φ can take on any value (0,π/2]. ρ(θ ) is unitarily equivalent
(where the unitaries are local with respect to the bipartition
and, hence, do not change the eigenvalues under the partial
transposition) to a state⎛
⎜⎜⎜⎜⎝

p cos2 φ+ 1−p

2n 0 0 p cos φ sin φ

0 1−p

2n 0 0
0 0 1−p

2n 0
p cos φ sin φ 0 0 p sin2 φ+ 1−p

2n

1−p

2n 12n−4

⎞
⎟⎟⎟⎟⎠,

(10)
where the upper-left 4 × 4 describes the space spanned by
|xy〉|xȳ〉, |xy〉|ψ⊥

ȳ 〉, |ψ⊥
y 〉|xȳ〉, and |ψ⊥

y 〉|ψ⊥
ȳ 〉. We can readily

take the partial transpose of this and calculate the eigenvalues:
1−p

2n (repeated 2n − 4 times), p

2 (1 ± cos(2φ)) + 1−p

2n , and
1−p

2n ± p

2 sin(2φ). Hence,

My = 1 − 1 − p

2n−1
+ p sin(2φ).

This is maximized at φ = π/4, indicating that for all biparti-
tions, and at all points during the computation,

M < 1 + p − 1 − p

2n−1
. (11)

When p is exponentially small, the entanglement is always
exponentially small and there is still a provable (oracle-based)
speedup in searching over the classical case. This compares
favorably to the DQC1 model, wherein typical unitaries
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have been numerically shown to produce exponentially small
amounts of entanglement [9], while having a believed speedup
over classical.

B. Quantum discord

Perhaps it is not entanglement that needs to be present in a
mixed-state quantum computation. Instead, other measures of
nonclassicality, such as the quantum discord, have arisen. If
exponentially small entanglement might be considered surpris-
ing, perhaps it is the case that there is finite quantum discord?
We now show that the discord is also vanishingly small.

A precise definition [12,13] of the discord is unnecessary. It
suffices to know that it is a non-negative quantity which is
always 0 in the classical limit and, for pure states, reduces to
the entanglement entropy.

We take ρ(θ ) as for the previous calculation,⎛
⎜⎜⎜⎜⎝

p cos2 φ+ 1−p

2n 0 0 p cos φ sin φ

0 1−p

2n 0 0
0 0 1−p

2n 0
p cos φ sin φ 0 0 p sin2 φ+ 1−p

2n

1−p

2n 12n−4

⎞
⎟⎟⎟⎟⎠,

and define a second state

σ =

⎛
⎜⎜⎜⎜⎝

p cos2 φ + 1−p

2n 0 0 0
0 1−p

2n 0 0
0 0 1−p

2n 0
0 0 0 p sin2 φ + 1−p

2n

1−p

2n 12n−4

⎞
⎟⎟⎟⎟⎠.

By virtue of being diagonal with respect to a separable basis,
the state σ has 0 discord [18] and yet is very close in terms of
trace distance to ρ:

d = Tr|ρ − σ | = p sin(2φ).

The quantum discord is continuous [19,20], meaning that we
can bound the amount of discord present in ρ(θ ) [19],

D(ρ) � 8d(n − 1) + 4h(d), (12)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary

entropy. This scales as O(n2−n(
1
2 −ε)) and is, therefore, also

vanishingly small across all bipartitions simultaneously, and
for all steps of the algorithm.

C. Decomposing the oracle

An oracle-based problem (whether this is explicit, as for
Grover’s search, or implicit, requiring the implementation of
controlled U in the DQC1 model) is useful for determining the
computational complexity of a problem (with respect to that
oracle), often enabling lower bounds as well as upper bounds.
However, it has the potential to mask a lot of the entanglement
properties. If one has to implement an oracle by using a
collection of smaller, more manageable, operations, we need to
be sure that each of those individual operations does not leave
an intermediate state that has large amounts of entanglement.
After all, there are many quantum computations that start
and end in separable states, and it is only the intermediate
products that are entangled. The Bernstein-Vazirani algorithm
is one case that hides all the entanglement in such a way
[14,15]. Typical DQC1 computations probably also hide their
entanglement: imagine decomposing U in terms of one-qubit
unitaries and controlled nots and implementing the controlled
U by consecutively applying the appropriate controlled-one-

qubit and Toffoli gates.1 The first Toffoli gate is likely to
introduce a finite amount of entanglement.

We claim that there need be no corresponding difficulty
when using Grover’s search. The Grover iterator may be
written as

H⊗nP0H
⊗nPx0 ,

where H is the Hadamard gate, and Px is an n-qubit controlled-
phase gate which adds a phase of π only to state |x〉, and P0 is
the reflection operator (which works as Px0 , but acting on |0〉⊗n

instead of |x0〉). Let us take each step in turn. If ρin is the state
before the action of the iterator, and ρout is the state after the ap-
plication, then our results so far show that both have exponen-
tially small entanglement and discord. Now, observe that after
the action of Px0 , the form of ρin in Eq. (10) is only changed by
adding a negative sign to the off-diagonal elements. Both the
entanglement and the discord are unchanged. Application of a
set of local unitaries (H⊗N ) also cannot change these values.
What about the application of P0? Instead, we observe that after
the action by P0, this is the same as state ρout with H⊗n applied
to it, which must have the same entanglement properties as ρout.

Should we decompose the operations any further, perhaps
by writing Px0 in terms of a universal set of two-qubit gates?
We suggest that this is unnecessary, as it appears that in a wide
variety of experimental implementations, the gate Px0 can be
implemented directly [21–23]. So, we are justified in our claim
that every elementary step of the algorithm leaves us in a state
of almost no entanglement and almost no discord.

IV. CONCLUSIONS

One of the aspects of the DQC1 model of computation that
originally generated much interest was the suggestion that it
achieved its computational speedup without entanglement. In

1This is certainly far from the only decomposition that one could
make, and this is merely an illustrative argument.
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fact, it does use entanglement [9], and that entanglement can
be up to a finite amount across many different bipartitions
of the system. Even on those bipartitions for which there is
no entanglement, it has been shown [5] instead that other
measures of nonclassicality are present in finite amounts and
could be a resource for the computational speedup that is
believed to be present in the DQC1 model.

In this paper, we have contrasted this with Grover’s search
when acting on an initial state that has a large admixture of the
maximally mixed state. The degree of admixture for which a
computational speedup is still possible (without any attempt
at error correction) was readily derived, and as such, it was
shown that over every bipartition both the entanglement and the
quantum discord are vanishingly small. Moreover, we know
that the computational speedup is present for Grover’s search,
since we know the minimum running time for the classical
algorithm (using a certain oracle). We conclude that the DQC1
is nothing special: Grover’s search exhibits stronger properties
in every way (guaranteed vs assumed speedup, guaranteed
exponentially little entanglement vs little entanglement on av-
erage, exponentially little discord vs finite discord), except for
one feature: the DQC1 model is believed to have an exponential
speedup, while Grover’s search is only polynomial.

The presence of quantum discord in the DQC1 model
has been taken by a number of authors as “the first real
evidence that mixed-state quantum computation can have an
advantage over classical computation even when entanglement
is absent” [24], choosing to view almost no entanglement
as essentially equivalent to no entanglement. However, here,
we have almost no entanglement and almost no quantum
discord (and, indeed, any measure of quantum resource that
is continuous). We are left to conclude that there is a marked
difference between “almost no” and “no” entanglement or
discord. Exactly what is required for a computation to gain
speed over a classical one remains unclear, but it seems that
only small amounts of whatever resource suffice. However, this
leaves open the possibility that larger amounts of a resource,
such as quantum discord, are necessary for an exponential
vs polynomial speedup. In this context, it is interesting to
contrast with the results of [25], wherein it is shown that
any quantum computation (including those with exponential
speedups) can be rewritten such that it has an amount of
entanglement that vanishes polynomially quickly (for a broad
class of entanglement measures), while the current study has
demonstrated the case of exponentially little entanglement.

On a final note, we wish to raise an important issue with the
calculation of the typical entanglement [9] or discord [5] across
a bipartition in the DQC1 computation. The decision problem
for the DQC1 model was defined by explicitly bounding the
trace away from 0. However, typical unitaries have an expected
trace of 0, and the trace is closely centered on the 0 value. As
such, the decision problem explicitly asserts that the unitaries
involved are not typical, and further studies are required to
clarify the impact of this, although the studies of special cases
that are performed in the Appendix suggest that the impact is
not significant.
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APPENDIX: TYPICAL ENTANGLEMENT

In this Appendix, we illustrate some important features of
the calculation of typical entanglement in the DQC1 model.
Rather than permitting an arbitrary Haar-random unitary, we
concentrate on a subset of unitaries, based on graph states,
that facilitate simpler calculations. We define the random
unitary, U , in the following way: consider n qubits and select a
random diagonal matrix, meaning that each diagonal element
is selected at random to be eiθx for all x ∈ {0,1}n. We then
conjugate this with Hadamard gates on each qubit (i.e., both
before and after the diagonal matrix) before conjugating by
controlled phase gates between all pairs of qubits (i,i + 1).
These conjugations are the unitaries required for preparing the
one-dimensional cluster state.

The reason for concentrating on graph states is that there
is a well-established formalism for calculating the partial
transpose [8,26,27]. If the eigenvalues of U are written as
a vector,

|�〉 =
∑

x

eiθx |x〉,

then the eigenvalues of U01010101...01 are given by the vector
R|�〉, where

R = H⊗n

⎛
⎝ ∑

x∈{0,1}n
(−1)

∑n−1
i=1 xixi+1 |x〉〈x|

⎞
⎠H⊗n.

Lemma 1. If n is even, then every matrix element of R has
|〈y|R|z〉| = 1

2n/2 . In every row, there are 1
2 (2n + 2n/2) positive

entries and 1
2 (2n − 2n/2) negative entries.

Proof. The matrix elements have the form

〈y|R|z〉 = 1

2n

∑
x∈{0,1}n

(−1)x·(z+y)(−1)
∑n−1

i=1 xixi+1 .

First, observe that 〈y|R|z〉 = 〈000 . . . 0|R|z ⊕ y〉, so it suffices
to concentrate solely on the first row. The elements in all other
rows are just permutations of the first. We denote the elements
in this first row Rz.

Note that ∑
z∈{0,1}n

Rz = 1.

This means that if it is true that all 2n elements have |Rz| =
1/2n/2, then since they are all real, it must be that there are
1
2 (2n + 2n/2) positive entries and 1

2 (2n − 2n/2) negative entries.
We prove the first half of Lemma 1 by induction, using the

base case of n = 2:

R(00) = 1
2 , R(01) = 1

2 , R(10) = − 1
2 , R(11) = 1

2 .

Assume that |R(n−2)(z)| = 1
2n/2−1 . Now consider

R(n)(z‖zn−1zn). For each term x in the sum for R(n−2)(z), there
are four terms in R(n)(z‖zn−1zn): x‖xn−1xn. We can consider
each of them separately, and how they affect the additional
phases:

(−1)znxn+zn−1xn−1+xnxn−1+xn−1xn−2 .
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One of the phases can be moved into an effective z:

R(n)(z‖zn−1zn) =1

4

∑
xn,xn−1

(−1)znxn+zn−1xn−1+xnxn−1

× R(n−2)(z ⊕ (00 . . . 0xn−1)).

Upon performing the sum over xn, we have either 1
2R(n−2)(z)

(if zn = 0) or 1
2R(n−2)(z ⊕ (00 . . . 01)). By assumption, both

have the same absolute value, 1/2n/2.
Our aim is to evaluate the multiplicative negativity:

My = 1 + 1

2n

∑
λ∈R|�〉:λ>1

(λ − 1).

We assume that each element of R|�〉 is independent (this
may not be strictly true but is a good approximation). This
reduces My to My = 1 + E, where E is the expected value
of max(λ − 1,0). To evaluate this, we need the probability
distribution for λ. As a consequence of Lemma 1, we
have

P (λ � 1) = P

⎛
⎜⎝

∣∣∣∣∣∣∣
1
2 (2n+2n/2)∑

i=1

eiθi −
2n∑

i= 1
2 (2n+2n/2)+1

eiθi

∣∣∣∣∣∣∣ � 2n/2

⎞
⎟⎠.

However, if the probability distribution of θi is unaffected by
a π shift, this is entirely equivalent to

P

(∣∣∣∣∣
2n∑

i=1

eiθi

∣∣∣∣∣ � 2n/2

)
.

We consider two cases. First, each θi is a random
choice, θi ∈ {0,π}. In this case, |∑2n

i=1 eiθi | is simply the
expected distance of a random walk in one dimension.
Second, θi ∈ [0,2π ) leads to the interpretation of |∑2n

i=1 eiθi |
as a random walk in two dimensions.2 In either case,
Rayleigh’s solution for the probability distribution at large n

is

P

(
x �

∣∣∣∣∣
2n∑

i=1

eiθi

∣∣∣∣∣ < x+δx

)
=

{√
2

π2n e
−x2/2n+1

dx, 1D,
2x
2n e−x2/2n

dx, 2D,

in order to calculate

E =
∫ ∞

2n/2
P

(
x �

∣∣∣∣∣
2n∑

i=1

eiθi

∣∣∣∣∣ < x + δx

)(
x

2n/2
− 1

)
,

which yields

E =
{√

2
πe

− erfc
(

1√
2

)
, 1D;

√
π

2 erfc(1), 2D.
(A1)

Figure 2 provides numerical confirmation of this calculation.
We conclude that in both cases there is a constant amount of

2We define this to be a walk such that at each step, a step length of
1 is taken in a random direction in the plane. Some authors choose to
define it as a walk on a square lattice.

FIG. 2. (Color online) Comparison of theoretical results (lines),
Eq. (A1), and average for 10 000 samples (points) for both 1D [upper
(blue) line] and 2D [lower (purple) line] random walks.

entanglement. This is in contrast with the numerical results in
[9] for general random unitaries.

However, there is one further subtlety that it is important to
raise. Recall that for the DQC1 model we are given the promise
that the trace of U is bounded away from 0. Meanwhile, the
probability distribution for the trace of a typical unitary is
strongly centered on the value 0: in effect, we are postselecting
on highly atypical unitaries so typicality arguments might
not reveal everything. However, it turns out that this only
serves to reduce the amount of entanglement present. For
a simple argument, consider the case where Tr(U ) = 2n.
In this case, we know that U = 1 and that My = 1, less
than the above-calculated values. More generally, we have
numerically examined the random unitary model described
above (restricting the eigenvalues to ±1), fixing the trace
to be different values of Tr(U ) (see Fig. 3). The amount of
entanglement present decreases as the value of the trace is
increased.

FIG. 3. Typical entanglement for a graph diagonal unitary of fixed
trace Tr(U )/2n = 1

4 , 5
8 , 3

4 , and 7
8 for shades black through light gray,

respectively. The larger the trace, the less entanglement is present.
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