
PHYSICAL REVIEW A 92, 062328 (2015)

Reexamination of the evidence for entanglement in a quantum annealer
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A recent experiment [T. Lanting et al., Phys. Rev. X 4, 021041 (2014)] claimed to provide evidence of up to
eight-qubit entanglement in a D-Wave quantum annealing device. However, entanglement was measured using
qubit tunneling spectroscopy, a technique that provides indirect access to the state of the system at intermediate
times during the anneal by performing measurements at the end of the anneal with a probe qubit. In addition, an
underlying assumption was that the quantum transverse-field Ising Hamiltonian, whose ground states are already
highly entangled, is an appropriate model of the device and not some other (possibly classical) model. This begs
the question of whether alternative classical or semiclassical models would be equally effective at predicting
the observed spectrum and thermal state populations. To check this, we consider a recently proposed classical
rotor model with classical Monte Carlo updates, which has been successfully employed in describing features of
earlier experiments involving the device. We also consider simulated quantum annealing with quantum Monte
Carlo updates, an algorithm that samples from the instantaneous Gibbs state of the device Hamiltonian. Finally,
we use the quantum adiabatic master equation, which cannot be efficiently simulated classically and which has
previously been used to successfully capture the open-system quantum dynamics of the device. We find that only
the master equation is able to reproduce the features of the tunneling spectroscopy experiment, while both the
classical rotor model and simulated quantum annealing fail to reproduce the experimental results. We argue that
this bolsters the evidence for the reported entanglement.
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I. INTRODUCTION

The D-Wave processors [1–3] are designed to be physical
quantum annealers [4] performing adiabatic evolution using
programmable superconducting flux qubits. These devices
have generated a substantial debate in the quantum computing
community by laying claim to being the first large-scale imple-
mentation of a quantum algorithm [5]. Much effort has been
directed at answering the fundamental question of whether the
D-Wave processors exhibit sufficient “quantumness” to justify
these claims.

Independent verification of the quantumness of the D-Wave
devices is challenging in part because of their black-box nature:
the user interacts with the device by presenting it with an
Ising model problem instance that is programed as input and
receives a classical bit string representing the measured state
of the qubits in the computational basis as output, at the end
of the computation (or quantum annealing run). This state is
the device’s attempt at finding the ground state of the input
Ising problem instance. This input-output interaction mode
is clearly not amenable to the usual tests of quantumness
emphasizing nonlocality [6]. Nevertheless, for sufficiently
small problems (�20 qubits), specific instances that emphasize
quantum features of the evolution have been designed and
found to show strong agreement only with quantum master
equations, i.e., open quantum system models, but not with
classical models [7–9]. However, for a class of much larger
(>100 qubits) random Ising model problems, the device’s
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output exhibited strong correlations [10,11] with a classical
rotor model with Monte Carlo updates due to Shin, Smith,
Smolin, and Vazirani (SSSV) [11], with simulated quantum
annealing (SQA) implemented using quantum Monte Carlo
[10,12,13], and with parallel tempering simulations [14].
While a detailed study of the excited states and degenerate
ground states showed significant deviations between the
device and these models [15], these results nevertheless keep
alive the question of whether SQA and the SSSV model
provide an effective microscopic description of the device at
large numbers of qubits. This question is particularly pertinent
since both models are efficiently simulatable on classical
computers. Another approach that has been used successfully
to model the D-Wave devices is the quantum adiabatic master
equation (ME) [16]. The latter is so far the only model
that has successfully captured all aspects of the “quantum
signature” experiments reported in Refs. [7,8]. Importantly,
unlike SQA, this quantum model does not lend itself to
an efficient classical simulation. A related master equation
(based on the noninteracting blip approximation [17]) was
successfully used to model collective tunneling in experiments
involving a D-Wave device [9].

In contrast to the black-box approach, which permits
observations only at the end of each annealing run, recent
experiments found evidence of entanglement generated during
the evolution of the D-Wave devices from input to output,
effectively opening the black box [18]. Specifically, the
experiments reported in Ref. [18] showed, using qubit tunnel-
ing spectroscopy [19], that the measured quantum spectrum
and thermal populations are in strong agreement with the
quantum spectrum and Gibbs state of the transverse-field
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Ising Hamiltonian, the Hamiltonian the device is supposed to
evolve under. This, in turn, allowed Ref. [18] to demonstrate
the existence of entanglement in the device using negativity
[20,21] and an entanglement witness [22–24].

However, an important caveat is that these experiments
provide only an indirect way to detect entanglement since
the underlying assumption is that the quantum transverse-field
Ising Hamiltonian is an appropriate model of the device. That
is, entanglement was detected under the assumption that the
measured spectrum and populations arise from transverse-field
Ising models whose ground states are already highly entangled
and not from some other (possibly classical) model. This begs
the question of whether alternative classical or semiclassical
models would be equally effective at predicting the observed
spectrum and thermal state populations. If so, the deduced
entanglement witness would not be applicable.

To make this important point clearer, we might formulate
it as a “model loophole” in the tradition of the loopholes
associated with nonlocality and Bell inequality tests (see, e.g.,
Ref. [25]). The loophole is simply the fact that entanglement
was detected under the assumption that a particular, already
quantum model of the dynamics is responsible for the observed
experimental results. In an attempt to close this loophole,
here we numerically simulate the tunneling spectroscopy
experiment using the SSSV model, SQA, and the ME. We shall
demonstrate that SQA and the SSSV model both fail to capture
any feature of the entanglement witness experiments reported
in Ref. [18], whereas the ME again succeeds. In other words,
the reported measurements [18] are consistent with the ME
but inconsistent with SSSV and SQA. If the correct model of
the D-Wave device is the ME, then the reported measurements
imply entanglement. The SQA model fails not because it is
not a quantum model but because it is the incorrect quantum
model for the experiments at hand: unlike the ME, it does not
include a unitary dynamics component, and this dynamics
is what is presumably responsible for the experimental
observations via an adiabatic connection of eigenstates. Our
strategy does, of course, not rule out the possibility that other
classical models or efficiently simulatable quantum models
might also obtain agreement with the reported measurements.
Our results may be seen as an invitation to invent such
models, which, if found, would further guide the study of the
quantumness question of the D-Wave devices.

The structure of this paper is as follows. In Sec. II we review
the principle behind the qubit tunneling spectroscopy tech-
nique, as well as the theory behind the entanglement measures.
In Sec. III we describe the simulation methods, in particular
the ME, SQA, and the SSSV model. In Sec. IV we describe
the simulated experiment. We present and discuss our results
in Sec. V, where we demonstrate that only the ME matches the
experimental tunneling spectroscopy results. We conclude in
Sec. VI. In the Appendixes we demonstrate the robustness of
our conclusions to various noise models and also reject another
classical model based on spin dynamics with a friction term.

II. REVIEW

A. Qubit tunneling spectroscopy

We briefly review the principle behind qubit tunneling
spectroscopy [19], where the goal is to find the energy gaps of

the quantum system Hamiltonian HS. We take HS to be of the
form

HS = −A

N∑
i=1

σx
i + BHIS, (1)

where A,B > 0 are constants and

HIS =
∑

i

hiσ
z
i +

∑
i<j

Jij σ
z
i σ z

j (2)

is an Ising Hamiltonian acting only on the system qubits. The
hi and Jij are the local fields and couplings, respectively, and
we use σx

i (σ z
i ) to denote the Pauli x (z) matrix acting on qubit i.

We denote the eigenstates and eigenenergies of HS by
{|En〉}n=1 and {En}n=1, respectively, with E1 � E2 � · · · . A
probe qubit P is coupled to system qubit 1 to give a system +
probe Hamiltonian:

HS+P = HS + BH1P, (3a)

H1P = J1Pσ
z
1 σ z

P − J1Pσ
z
1 − hPσ

z
P . (3b)

An offset local field ∝ −J1P has been applied to qubit 1 such
that, in the eigenenergy subspace where the probe qubit is in
state |0〉, the eigenstates of the system are given by |En〉 ⊗ |0〉
with energy En − BhP (where the first ket is the state of the
system qubits and the second ket is the probe qubit state).
When the probe is in the |1〉 state, the lowest-energy state
of the system and probe can be written as |ψ0〉 ⊗ |1〉 with
eigenenergy ε̃0 = ε0 + BhP, where |ψ0〉 is the ground state of
HS − 2BJ1Pσ

z
1 with eigenenergy ε0.

Let us assume that the system and probe are initialized
in state |ψ0〉 ⊗ |1〉. Introducing a small transverse field term
(∝σx

P ) for the probe qubit allows for transitions between states
|ψ0〉 ⊗ |1〉 and |En〉 ⊗ |0〉. In an open quantum system we
may expect that the dominant process is incoherent tunneling
between these two states [26]. By tuning the value of hP, we can
make the two states degenerate, i.e., En − BhP = ε0 + BhP,
resulting in a resonant peak in the tunneling rate. Since both
B and hP are known, this allows us to solve for differences
of En, and by finding the locations of the tunneling peaks as
a function of hP, we can map out the quantum spectrum of
HS. For example, for a pair of such tunneling peaks at h

(1)
P and

h
(2)
P , corresponding to the n = 1 and n = 2 energy eigenstates,

respectively, the energy gap between eigenstates |E2〉 and |E1〉
is then given by

E2 − E1 = 2B
(
h

(2)
P − h

(1)
P

)
. (4)

B. Equilibrium distribution

Let us assume that to a very good approximation our system
only populates states |ψ0〉 ⊗ |1〉 and {|En〉 ⊗ |0〉}n=1, such that
the populations in these states sum to unity:

P (|ψ0〉 ⊗ |1〉) +
∑
n=1

P (|En〉 ⊗ |0〉) = 1. (5)

If we observe that the probe qubit is in state |0〉, the system
energy eigenstate populations P (En) are given by

P (En) = P (|En〉 ⊗ |0〉)∑
i=1 P (|Ei〉 ⊗ |0〉) = P (|En〉 ⊗ |0〉)

1 − P (|ψ0〉 ⊗ |1〉) . (6)
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However, if we have tuned hP so that states |ψ0〉 ⊗ |1〉
and |En〉 ⊗ |0〉 are degenerate and we have waited long
enough that their populations have thermalized (i.e., they
have equal populations), then P (|En〉 ⊗ |0〉) = P (|ψ0〉 ⊗ |1〉).
Under these assumptions we can find the energy eigenstate
populations entirely in terms of the population of the state
|ψ0〉 ⊗ |1〉:

P (En) = P (|ψ0〉 ⊗ |1〉)
1 − P (|ψ0〉 ⊗ |1〉) . (7)

We expect these to match the Gibbs state populations, i.e.,
P (En) = e−βHIS/Z, where Z is the partition function and
β = 1/(kT ) is the inverse temperature.

C. Evidence for entanglement

In Ref. [18], the authors use the populations found in the
ground state P1 and first excited state P2 to construct the
density matrix of the system ρ = ∑2

i=1 Pi |Ei〉〈Ei |, which
assumes that the off-diagonal components in the energy
eigenbasis are zero. Under this assumption (which, as we
show below, agrees with the results of our ME simulations) the
authors calculate the negativity [20] for all possible bipartitions
A of the system,

N (ρ) = 1
2 (‖ρ�A‖1 − 1), (8)

where ρ�A denotes the partial transpose of ρ with respect to
the bipartition A. Global entanglement is then defined as the
geometric mean of the negativity of all bipartitions [21] and
was shown to be nonzero in Ref. [18].

A drawback of this approach is that it assumes the off-
diagonal elements of the density matrix vanish. To ensure the
robustness of an entanglement conclusion, an entanglement
witness was used in Ref. [18] (based on the theory formulated
in Ref. [24]):

WA = |φ〉〈φ|�A, (9)

where |φ〉 is the eigenstate of |E0〉〈E0|�A with the most
negative eigenvalue. The entanglement witness approach
succeeds in certifying entanglement even when the off-
diagonal elements of the density matrix are not constrained
to vanish, thus extending the range of validity of the presence
of entanglement beyond that attainable using the negativity
approach.

Using this entanglement witness, two nontrivial checks
were performed. First, experimental errors in populations P1

and P2 impose linear constraints on state ρ:

Pi − 	Pi � Tr[ρ|Ei〉〈Ei |] � Pi + 	Pi. (10)

If Tr[WAρ] < 0 for all ρ satisfying the experimental con-
straints in Eq. (10), then entanglement is certified for the
bipartition A. Optimizing Tr[WAρ] subject to the above
constraints is an instance of a semidefinite program, a class of
convex optimization problems for which efficient algorithms
are known.

Second, uncertainties in the specification of the Hamilto-
nian in Eq. (1), which can lead to changes in eigenstates |Ei〉,
were included by adding random perturbations (104 samples in
total) to the Hamiltonian while ensuring that the maximum of
Tr[WAρ] < 0 for all perturbations. We independently verify
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FIG. 1. (Color online) The annealing schedules used in the ex-
periment [18]. The functional form for AS(s) and AP(s) in Eq. (11) is
identical to the function A(s) shown. The dashed line corresponds to
the experimental temperature of 12.5 mK.

that such noise does not change the presence-of-entanglement
conclusion in Appendix A.

III. SIMULATION METHODS

The time-dependent Hamiltonian of the experiment is given
by

H (s) = −AS(s)
N∑

i=1

σx
i − AP(s)σx

P + B(s)HIsing, (11)

where s = t/tf is the dimensionless time, and the Ising
Hamiltonian HIsing is given by

HIsing = HIS + H1P. (12)

Just as in Ref. [18], we take J1P = −1.8. The annealing
schedule functions [AS(s),AP(s),B(s)] are shown in Fig. 1.
These schedules are calculated using rf superconducting quan-
tum interference device (SQUID) models with independently
calibrated qubit parameters [27], and they correspond to the
same schedule used in Ref. [18] [see their Fig. 1(d)].

A. ME

We assume that the qubit system is coupled to a bath
of independent, thermal, Ohmic oscillators via a dephasing
interaction. The adiabatic quantum master equation [16] can
be used to describe the system evolution in the weak-coupling
limit, and the evolution of the density matrix is given by

d

dt
ρ = − i

�
[H (t),ρ] +

N∑
α=1

g2
α

�2

∑
a,b

�(ωba)

×[
Lab,α(t)ρ,σ z

α

] + H.c., (13)

where the index α runs over the qubits and the indices
a,b = 1, . . . ,2N run over the instantaneous energy eigenvalues
εa(t) of the system Hamiltonian H (t), with Bohr frequencies
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ωba = [εb(t) − εa(t)]/�. The Lindblad operators are given by

Lab,α(t) = 〈εa(t)|σ z
α |εb(t)〉〈εa(t)|εb(t)〉, (14)

and the function � encodes the bath correlation function:

�(ω) = 1

2
γ (ω) + iS(ω) (15a)

= πηe−|ω|/ωc

1 − e−βω
+ i

∫ ∞

−∞

dω′

2π
γ (ω′)P

(
1

ω − ω′

)
, (15b)

where P is the principal value. The important free parameters
in the ME are the coupling strengths between the system and
probe qubits and their respective bosonic baths. We denote
these couplings by gS and gP, respectively. For convenience,
we take the system-bath coupling strength gS to be the same
and fixed for all the system qubits and vary the probe-bath
coupling strength gP relative to gS, expecting gP � gS since,
experimentally, the probe qubit is operated in a regime where
its coupling to the environment is strong (see Supplemental
Material of Ref. [18]). In the simulations performed in this
work, we fix the system-bath coupling strength to

g2
Sη/�

2 = 1.2732 × 10−4, (16)

which is the value used in previous work [8].

B. SSSV

The Hamiltonian of the SSSV model [11] is obtained by
replacing σx

i 	→ sin θi and σ z
i 	→ cos θi in Eq. (11). The system

is evolved by performing Monte Carlo updates on the angles
θi ∈ [0,π ]. At the end of the evolution, the state is projected
onto the computational basis by mapping θi � π/2 → +1
(state 0) and θi > π/2 → −1 (state 1). This model was derived
from first principles using the Keldysh formalism in Ref. [28].

C. SQA

We implement a discrete-time version of SQA [10,12,13].
At each fixed time t in Eq. (11), Monte Carlo sampling is
performed on the dual classical spin system with

βHS(t) = β

Nτ

B(t)
∑

τ

⎡
⎣∑

i

hiμi,τ +
∑
i<j

Jijμi,τμj,τ

⎤
⎦

−
∑
i,τ

J⊥,i(t)μi,τμi,τ+1, (17)

where β is the inverse temperature of the Monte Carlo
simulation, Nτ is the number of Trotter slices used along the
Trotter direction, μi,τ denotes the ith classical spin on the τ th
Trotter slice, and Jτ,i is the nearest-neighbor coupling strength
of the ith qubit along its Trotter direction and is given by

J⊥,i(t) ≡ − 1
2 ln{tanh[βAi(t)/Nτ ]} > 0. (18)

In our simulations we fixed Nτ = 128 (we checked that
increasing it does not alter the results).

IV. DESCRIPTION OF THE SIMULATED EXPERIMENT

The initial Hamiltonian is given by H (1), with H (s) as
in Eq. (11). We choose the initial state of our ME and SQA

simulations to be |1〉 ≡ |1〉⊗(N+1) (the N system qubits plus
the probe qubit); for SSSV we correspondingly choose all
the initial angles as θi = π . We emphasize that this is not
necessarily the ground state of H (1) = B(1)HIsing. Note that
by doing this we are able to skip the state preparation step
performed in Ref. [18]. The simulation of the experiment then
proceeds as follows:

(1) B(s) and AS(s) are evolved backward from s = 1 to
s = s∗ in a time τ1. The choice of s∗ determines the quantum
Hamiltonian whose spectrum we wish to study.

(2) AP(s) is evolved backward from s = 1 to s = sP in a
time τ1.

(3) The system evolves under the constant Hamilto-
nian H = −AS(s∗)

∑
i∈S σ x

i − AP(sP)σx
P + B(s∗)HIsing for a

“hold” time τ . Note that this means that the values of A and B

in Eq. (1) are given by A(s∗) and B(s∗), respectively.
(4) AP is evolved forward from s = sP to s = 1 in a time τ1.
(5) B(s) and AS(s) are evolved forward from s = s∗ to

s = 1 in a time τ1.
The states of the system qubits and probe qubit are then read.

Since states |1〉 and |ψ0〉 ⊗ |1〉 are adiabatically connected
energy eigenstates, measuring the population change in the
|1〉 state indicates how much incoherent tunneling [26] (to
the isoenergetic state |En〉 ⊗ |0〉) has occurred at s∗. By
repeating the experiment for different values of the hold time
τ and recording the probability P|1〉(τ,hP,s

∗) of observing the
|1〉 state at the end of the experiment, we can extract the
tunneling rate �(hP,s

∗) by fitting P|1〉(τ,hP,s
∗) to the function

a + be−�(hP,s∗)τ . The experiments are repeated for a range of
hP values in order to find the location of the peaks in �.

The simulations were performed, as in the experiment of
Ref. [18], on two system qubits plus one probe qubit (depicted
in Fig. 2) and eight system qubits plus one probe qubit
(depicted in Fig. 3).

V. RESULTS

A. ME: (2 + 1)-qubit results

We first analyze the (2 + 1)-qubit system example studied
in Ref. [18], using the adiabatic quantum master equation
described in Sec. III A. We perform the procedure outlined
in Sec. IV with τ1 = 10 μs, and we give an example of
the tunneling rate observed at a particular s∗ in Fig. 4 and
compare it to the experimental results of Ref. [18]. We estimate
the position of the peak by fitting the data points around
the peak with a Gaussian. We find excellent agreement with
the energy spectrum as computed directly from diagonalizing
the Hamiltonian, as shown in Fig. 5(a). We then extract the

1 2P
J1P JS

h1 = −J1P h2 = 0hP

FIG. 2. (Color online) Depiction of the (2 + 1)-qubit Ising prob-
lem. Qubits are displayed as (labeled) green disks, with their local
field value above them. Couplings are shown as solid lines connecting
qubits with their value above the line. Values are picked according to
the experiment in Ref. [18], i.e., JS = −2.5, J1P = −1.8, and hP is
varied.
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1 2 3 4

5 6 7 8P

J1P JS

h1 = −J1P

FIG. 3. (Color online) Depiction of the (8 + 1)-spin Ising prob-
lem. The local fields are zero, and we take the couplings to be
JS = −2.5. The probe qubit couples as in Fig. 2.

energy eigenstate population distribution using Eq. (7) at the
values of hP corresponding to the peaks in the tunneling
rate and reproduce the theoretical Gibbs state [see Fig. 5(b)].
Therefore, by reproducing the quantum spectrum and Gibbs
populations, the ME is able to reproduce the spectroscopy
results of the experiments performed in Ref. [18].

While the relative positions of the dominant peaks corre-
sponding to the ground state and first excited state agree very
well, we observe that the experimental results are broadened
considerably. It is shown in Ref. [18] that the experimental
broadening is dominated by the linewidth of the probe qubit,
which is claimed to be strongly affected by low-frequency
(1/f ) noise [29]. We attempted to reproduce the broadening

2B(s )hP/h̄ (GHz)
0 10 20 30 40

Γ

10 -5

10 -4

10 -3

10 -2

10 -1

ME
SQA
SSSV
Experiment

FIG. 4. (Color online) Tunneling rate calculated using the ME,
SSSV, and SQA for s∗ = 0.339 and gP = 10gS compared with the
experimental results in Ref. [18] [see the center figure in their
Fig. 8(a)], shifted to the left by 14.5 GHz to align the first peak
with the ME results (a constant term in the Hamiltonian present in
the experimental setup but not in the ME accounts for this shift).
For the experimental results, 1σ error bars are shown. The two
dominant peaks correspond to resonances with the ground state and
the first excited state; the magnitude of the peak grows as gP → gS

(shown in Appendix B), but the peak position remains the same
regardless of the value of gP. For SSSV, we show the results with T =
12.5 mK and τ1 = 5. For each hP value, 106 runs were performed,
and the population of the |1〉 state was determined by counting the
number of times it occurred in these runs. For SQA, we show the
results with T = 12.5 mK and τ1 = 5. We performed 106 runs for
each hP value, and the population of the |1〉 state was determined by
counting the number of times it occurred in these runs. The tunneling
rate for the ME is measured in μs−1, while for SSSV and SQA it is
in inverse sweeps.

using a variety of methods detailed in Appendix B, including
the incorporation of low-frequency noise but unfortunately
were unable to do so, and this remains an open problem.
Furthermore, the positions of the third and fourth peaks
corresponding to the third and fourth excited states do not
match the experimental result well, but this can be understood
as being due to a breakdown of the two-level approximation
of the rf-SQUIDs (see the Supplemental Material of Ref. [18]
and also Ref. [30]).

B. SSSV: (2 + 1)-qubit results

We now follow the same procedure using the SSSV model.
Because this model effectively operates in a strong system-bath
coupling regime, it thermalizes rapidly, so we are forced to
make τ1 very small (we take each to be only five Monte Carlo
sweeps, where a sweep is a complete update of all spins).
Otherwise, the SSSV model quickly forgets the initial state
before it reaches s∗ and also forgets the state it relaxed to at s∗
when it returns to s = 1.

We show the tunneling rate calculated using the SSSV
model in Fig. 4. Only a single peak is observed over the entire
range of hP values studied, and this peak does not occur at
the same position as any of the ME peaks. It is perhaps not
surprising that the SSSV model does not reproduce multiple
tunneling peaks, as its energy spectrum is continuous. The
single tunneling peak represents the thermal configuration of
the classical rotors at s∗ that maximally depopulates the |1〉
state. However, as the SQA results will demonstrate next, the
failure is ultimately due to the absence of unitary dynamics
that adiabatically connects energy eigenstates.

C. SQA: (2 + 1)-qubit results

Unlike the SSSV model’s continuous energy spectrum,
SQA’s spectrum is discrete. However, as we show in Fig. 4,
SQA also fails to reproduce the experimental tunneling
signature on the (2 + 1)-qubit problem and has a strong
similarity to the SSSV model’s result (also shown in Fig. 4).
We note that SQA and SSSV also correlated strongly on the
108 random Ising spin problem studied in Ref. [10], as further
corroborated and explained in Ref. [15].

First, we check whether this failure is due to SQA
somehow failing to capture the thermal expectation values of
observables. However, that is not the case: when we held SQA
at a constant Hamiltonian, it correctly reproduced the thermal
quantum Gibbs state populations for the computational states,
as shown in Fig. 6. Instead, the present failure of SQA is
rooted in the absence of unitary dynamics. Namely, there is
no adiabatic connection between the initial |1〉 state and state
|ψ0〉 ⊗ |1〉 at point s∗. In order for the arguments presented
earlier to work, it is important that during the anneal from
s = 1 to s∗ and sP and then back to s = 1, the evolution
remain adiabatic with no loss of population from the energy
eigenstates in order for the population of state |1〉 to accurately
track the population of state |ψ0〉 ⊗ |1〉. For the ME, this is
plausible since all other states with the probe qubit in the
|1〉 state at s = 1 are at much larger energies; that is, they
correspond to much higher energy eigenstates. Therefore, in a
simulation with a unitary dynamics component such as the one
that occurs in the ME, we do not expect (nor do we observe)
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FIG. 5. (Color online) ME results for the (2 + 1)-qubit problem. (a) Energy levels calculated using the tunneling rate peaks via the ME
with gP = 10gS. E on the vertical axis label is E2, E3, or E4. The solid curves correspond to the theoretical result from diagonalizing HS. Error
bars (only visible at a few points) represent the 95% confidence interval for the fit of the mean for the Gaussian used to estimate the position
of the peak in the tunneling rate (see Fig. 4). (b) Population fraction as calculated using Eq. (7) via the ME with gP = 10gS, τ = 1.5 ms, and a
temperature of 12.5 mK. The solid curves correspond to calculating the Gibbs state associated with HS. We do not show the population of the
higher states since they are <10−5.

any of these states to be populated such that the only state
with the probe qubit in the |1〉 state is the |1〉 state. However,
SQA lacks unitary dynamics, so at best it can provide an
adiabatic connection between the thermal states at s = 1 and
at s = s∗, which cannot reproduce the experimental tunneling
peak signature. We also see that SQA does populate other
states with the probe qubit in the |1〉 state besides the |1〉 state.
(Note that if we choose to define the tunneling rate in terms of
the populations of states with the probe qubit down, our SQA
tunneling curves do not change.)

D. ME: (8 + 1)-qubit results

We extend our analysis to the (8 + 1)-qubit problem
depicted in Fig. 3, which was also studied in Ref. [18]. We
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FIG. 6. (Color online) The population of the eight computational
states for SQA with Nτ = 128 Trotter slices at 1000 sweeps for 106

repetitions compared to their population in the quantum Gibbs state.
Both are evaluated at s∗ = 0.339 and hP = 1.03, which is very close
to the resonance condition for the states |E1〉 ⊗ |0〉 and |ψ0〉 ⊗ |1〉.

follow the same method as in the (2 + 1)-qubit case, the only
difference in our numerical simulations being that we truncate
the energy spectrum to the lowest 16 energy eigenstates in
order to reduce the computational effort. The results are shown
in Fig. 7. We continue to find no agreement between the
ME and SQA or SSSV. The experimental results exhibit two
broad tunneling peaks whose centers match the ME results
after a constant shift [as in the (2 + 1)-qubit case]. While
the amount of broadening is the same in the (8 + 1)- and
(2 + 1)-qubit experimental results, the limited range of hP

values used (extending only up to 15 GHz as opposed to

2B(s∗)hP/h̄ (GHz)
0 5 10 15

Γ

10 -3
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10 -1

ME
SQA
SSSV
Experiment

FIG. 7. (Color online) Tunneling rate calculated using the ME,
SSSV, and SQA for s∗ = 0.284 as well as the DW experimental results
(shifted to align with the first ME peak) on the (8 + 1)-qubit problem.
For the experimental results, 1σ error bars are shown. We show the
results with T = 12.5 mK for all simulation methods. Otherwise, the
parameters for all simulation methods are as for the (2 + 1)-qubit
case. The tunneling rate for the ME is measured in μs−1, while for
SSSV and SQA it is in inverse sweeps.

062328-6



REEXAMINATION OF THE EVIDENCE FOR . . . PHYSICAL REVIEW A 92, 062328 (2015)

s∗
0.24 0.26 0.28 0.3 0.32 0.34

(E
2
−

E
1)

/
h̄

(G
H

z)

0

5

10

15

20

25

30

(a)

s∗
0.24 0.26 0.28 0.3 0.32 0.34

Fr
ac

ti
on

of
po

pu
la

ti
on

0

0.2

0.4

0.6

0.8

1

P
(ME)
1

P
(ME)
2

P
(Gibbs)
1

P
(Gibbs)
2

(b)

FIG. 8. (Color online) Gap and populations ME vs Gibbs state results for the (8 + 1)-qubit problem. (a) The gap to the first excited state
calculated using the tunneling rate peaks via the ME with gP = 10gS. The solid curves correspond to the theoretical result from diagonalizing
HS. Error bars (barely visible) represent the 95% confidence interval for the fit of the mean for the Gaussian used to estimate the position of
the peak in the tunneling rate (see Fig. 4). (b) Population fraction as calculated using Eq. (7) via the ME with gP = 10gS, τ = 1.5 ms, and T =
12.5 mK. The solid curves correspond to calculating the Gibbs state associated with HS. We do not show the population of the higher states
since they are <10−5. In our simulations, we truncated the energy spectrum to the lowest 16 energy eigenstates to keep the computational time
tractable. We kept track of the populations along the evolution in order to make sure that this truncation does not lead to a loss of population.
We checked that the results do not change when additional energy levels are included.

45 GHz in Fig. 4) makes the agreement appear less impressive
than in the (2 + 1)-qubit case.

The energy spectrum and the populations as derived from
the ME results are shown in Fig. 8. The agreement between
the ME and the results from diagonalization [in Fig. 8(a)] and
the Gibbs state [in Fig. 8(b)] is again excellent.

VI. CONCLUSIONS

In this work we set out to check whether the conclusion
that entanglement is present during the evolution of two-
and eight-qubit experiments using the D-Wave device can
be explained using a classical rotor model (SSSV), SQA, or
the quantum adiabatic master equation (ME). This question
is pertinent since the evidence for entanglement is indirect
and assumes a quantum Hamiltonian. We found that neither
the SSSV model nor SQA can explain the evidence. The
failure of both models can ultimately be attributed to the
fact that neither accurately captures the adiabatic connection
between energy eigenstates during the annealing evolution.
In contrast, the ME reproduces the experimental tunneling
spectroscopy signature, suggesting that the underlying trans-
verse field Ising mode Hamiltonian, with its quantized energy
spectrum, is an appropriate description, along with the weak-
coupling approximation used to derive the master equation,
at least for the system sizes of up to eight qubits we have
considered.

Our results support the presence of entanglement in the
evolution of the D-Wave device, as concluded in Ref. [18].
Furthermore, the failure of SQA and the SSSV model to
capture this result indicates the importance of real-time open-
system quantum dynamics in supporting this conclusion. We
emphasize that it is important to have both the right thermal-
ization and the right dynamics to reproduce the experimental

results; for example, we have checked that a Langevin O(3)
model as used in Ref. [8] fails to reproduce the experimental
results as well (see Appendix C).

Nevertheless, it is important to note that while it becomes
computationally prohibitive to use the ME to study systems
larger than about 15 qubits, SSSV and SQA do not have this
drawback and seem to capture certain experimental results
(in particular the ground-state population) at scales of >100
qubits [10,11]. This tension between the small- and large-
system behaviors remains an open question: does the open
quantum system description of the device remain valid at larger
sizes, and is the agreement of SQA and the SSSV model with
ground-state populations due to the fact that they and the open
quantum system description yield similar final-time statistics?
If so, this could be an artifact of the problem instances studied
so far [31] or the dominance of thermal noise in the annealing
evolution. Or does the weak-coupling approximation actually
break down, so that semiclassical descriptions such as the
SSSV model become valid for the dynamics as well? Further
progress in open quantum system modeling and more appro-
priate benchmarking tests are required in order to address these
questions.
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APPENDIX A: ROBUSTNESS OF THE ENTANGLEMENT

We consider adding Gaussian noise to all the fields and
couplings in the two-qubit system Hamiltonian [Eq. (1)]; that
is, we include an additional Hamiltonian of the form

HNoise(s) = A(s)
(
α1σ

x
1 + α2σ

x
2

)
+B(s)

(
α3σ

Z
1 + α4σ

Z
2 + α5σ

Z
1 σZ

2

)
, (A1)

where αi ∼ N (0,0.1). This choice is well above the typical
σ = 0.05 internal control error (ICE) associated with the
D-Wave Two processors. We show in Fig. 9 that for the
105 noise samples generated, the Gibbs state never has zero
negativity [as defined in Eq. (8)]. Therefore, such a noise
model is unlikely to invalidate the presence-of-entanglement
conclusion of Ref. [18].

APPENDIX B: EXTENDED NOISE MODELS

While the ME is able to reproduce the positions of the
tunneling rate peaks (see Figs. 4 and 7), the experimental
results show a broadening of the peaks that is absent in the ME
results, indicating that an important noise source is missing
from the ME simulations. In the Supplemental Material of
Ref. [18], it is made clear that the line shape of the first
peak (corresponding to the ground state) in the two-qubit and
eight-qubit systems is almost identical to the probe qubit’s
macroscopic resonant tunneling (MRT) profile. This suggests
that the broadening observed is from noise on the probe qubit
and not the multiqubit system. In our simulations, we have
attempted to model this by increasing the relative system-bath
coupling strength between the probe and system qubits. We
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FIG. 9. (Color online) Histogram of the negativity of the Gibbs
state associated with the two-qubit Hamiltonian of Eq. (1) when a
noise term of the form given in Eq. (A1) is included. The red vertical
line at 0.211 is the negativity for the noiseless case. A total of 105

noise instances are shown.
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FIG. 10. (Color online) Tunneling rate for the (2 + 1)-qubit
problem calculated using the ME for s∗ = 0.339 and variable gP/gS

compared with the experimental results in Ref. [18].

show in Fig. 10 that the broadening induced by this method is
not sufficient to explain the observed broadening.

We attempt therefore to reproduce this broadening using
several other possible noise models. Our noise model choices
are phenomenological and are designed to test whether such
modifications are sufficient to broaden the tunneling peaks.
First, we consider introducing Gaussian noise on the Ising
local fields and couplings:

Jij → Jij + N (0,σ ), hi → hi + N (0,σ ). (B1)

This is a relevant source of noise for the D-Wave processors,
often referred to as internal control error [32]. We run the
ME with 1000 noise realizations for each applied (ideal) bias
hp. We then average the observed population in the |1〉 state
over these 1000 realizations and then extract the tunneling
rate associated with the applied (ideal) bias hp. We first
consider the case where the noise is purely on the local field
and coupling of the probe qubit. We show in Fig. 11 results
with σ = 0.05 and σ = 0.1, well above the typical σ = 0.05
ICE associated with the D-Wave Two “Vesuvius” processors.
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ME with ICE σ = 0.05
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FIG. 11. (Color online) Tunneling rate for the (2 + 1)-qubit
problem calculated using the ME for s∗ = 0.339 and gP = 10gS with
σ = 0.05 and σ = 0.1 ICE on only the probe qubit and without ICE
compared with the experimental results in Ref. [18].
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FIG. 12. (Color online) Tunneling rate for the (2 + 1)-qubit
problem calculated using the ME for s∗ = 0.339 and gP = 10gS with
σ = 0.05 and σ = 0.1 ICE on all qubits and without ICE compared
with the experimental results in Ref. [18].

While the introduction of ICE in the simulations reduces the
height of the tunneling-rate peaks and broadens them slightly,
it is insufficient to account for the broadening observed in the
experiment. Similar results are achieved if ICE is introduced
on all qubits (see Fig. 12), suggesting this noise model is not
sufficient to explain the broadening observed.

A more restrictive (and less physically reasonable) noise
model is

hi → hi + α, i = 1,2, (B2)

where we average over three α ∈ {−0.1,0,0.1} values. The
result is shown in Fig. 13. While this does not sufficiently
broaden the peaks, it does cause the appearance of peak
splitting, which is a feature of the experimental results.

Finally, we modify the spectral density γ (ω) in Eq. (15) to
include a low-frequency component. We consider a form of
telegraph noise [33], which we model as

γtel(ω) = ω

1 − e−βω

1

ω2 + ω2
IR

(B3)
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FIG. 13. (Color online) Tunneling rate for the (2 + 1)-qubit
problem calculated using the ME for s∗ = 0.339 and gP = 10gS

averaged over α [see Eq. (B2)] compared with the experimental results
in Ref. [18].
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FIG. 14. (Color online) The modifications due to the addition
of telegraph noise [Eq. (B3)] to the purely Ohmic spectral density
function γ (ω).

in order to satisfy the Kubo-Martin-Schwinger condition [34].
We set ω2

IR = 0.01,0.05 GHz2 (this choice is motivated by
numerical stability; making ωIR and ωIR smaller results in
a significant slowdown of our simulations) and assume that
this contribution to γ (ω) has the same coupling strength g

as the Ohmic component. We show in Fig. 14 how this
modifies the purely Ohmic case. As we show in Fig. 15,
these modifications are counterproductive and act to narrow
the peak. We also included 1/f noise [with a spectral density of
the form γ1/f (ω) = 2πe−|ω|/ωc

1−e−βω

|ω|
ω2+ω2

IR
], but this did not reproduce

the experimental broadening either (not shown).
Since we were unable to reproduce the observed broad-

ening, we must conclude that our noise model is lacking a
relevant feature, likely related to the breakdown of the weak-
coupling limit. Alternative methods (such as the noninteracting
blip approximation [9], although it is restricted to two-level
systems) may thus need to be employed or developed to capture
the broadening aspect of the experiment.
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FIG. 15. (Color online) Tunneling rate for the three-qubit prob-
lem calculated using the ME for s∗ = 0.339 and gP = 10gS using
purely Ohmic and Ohmic plus telegraph spectral noise compared
with the experimental results in Ref. [18].
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FIG. 16. (Color online) Results for the spin Langevin model described in Eq. (C1) for the three-qubit problem. Simulation parameters are
χ = 10−3 and T = 12.5 mK. One thousand runs were performed at each hP value. 〈Mz

P〉 denotes the average over these 1000 runs for the
z component of the magnetization of the penalty qubit.

APPENDIX C: SPIN-LANGEVIN MODEL

Given the importance of the unitary dynamics component
in reproducing the experimental results, we consider an
alternative classical model with dynamics, specifically a
(Markovian) spin-Langevin equation [35,36] with a Landau-
Lifshitz friction term [36,37],

d

dt
�Mi = −( �Hi + �ξ (t) + χ �Hi × �Mi) × �Mi, (C1)

with the Gaussian noise �ξ = {ξi} satisfying

〈ξi(t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = 2kBT χδij δ(t − t ′), (C2)

and

�Hi = 2Ai(t)x̂ − 2B(t)

⎛
⎝hi +

∑
j �=i

Jij
�Mj · ẑ

⎞
⎠ẑ, (C3)

where x̂ and ẑ are unit vectors. Like the SSSV model, this
model is another classical limit that can be derived from the
Keldysh path-integral formalism [28]. We follow the same
procedure as described in Sec. IV of the main text. We find
that magnetization along the z direction of the penalty qubit
does not depend on the hold time τ , as shown in Fig. 16(a).
Therefore, we do not observe the experimental signature of
exponential decay of the all-down state. Furthermore, the final
outcome of the z magnetization in fact depends smoothly on
hP, as shown in Fig. 16(b). Therefore, although this model
does include dynamics, it fails to reproduce the experimental
signature.

[1] M. W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. J.
Berkley, E. M. Chapple, R. Harris, J. Johansson, T. Lanting,
I. Perminov, E. Ladizinsky, T. Oh, and G. Rose, Supercond. Sci.
Technol. 23, 065004 (2010).

[2] A. J. Berkley, M. W. Johnson, P. Bunyk, R. Harris, J. Jo-
hansson, T. Lanting, E. Ladizinsky, E. Tolkacheva, M. H. S.
Amin, and G. Rose, Supercond. Sci. Technol. 23, 105014
(2010).

[3] M. W. Johnson et al., Nature (London) 473, 194 (2011).
[4] J. Brooke, D. Bitko, T. F., Rosenbaum, and G. Aeppli, Science

284, 779 (1999).
[5] S. Suzuki and A. Das, Eur. Phys. J. Spec. Top. 224, 1 (2015).
[6] B. W. Reichardt, F. Unger, and U. Vazirani, Nature (London)

496, 456 (2013).
[7] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A.

Lidar, Nat. Commun. 4, 2067 (2013).
[8] T. Albash, W. Vinci, A. Mishra, P. A. Warburton, and D. A.

Lidar, Phys. Rev. A 91, 042314 (2015).

[9] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov,
M. Dykman, V. S. Denchev, M. Amin, A. Smirnov, M. Mohseni,
and H. Neven, arXiv:1411.4036.

[10] S. Boixo, T. F. Ronnow, S. V. Isakov, Z. Wang, D. Wecker, D. A.
Lidar, J. M. Martinis, and M. Troyer, Nat. Phys. 10, 218 (2014).

[11] S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani,
arXiv:1401.7087.
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