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We present a systematic method to introduce free parameters in sets of mutually unbiased bases. In particular, we
demonstrate that any set of m real mutually unbiased bases existing in dimension N > 2 admits the introduction
of (m − 1)N/2 free parameters that cannot be absorbed by a global unitary operation. As consequence, there
are m = k + 1 mutually unbiased bases in every dimension N = k2 with k3/2 free parameters, where k is
even. We explicitly construct the maximal set of triplets of mutually unbiased bases for two-qubit systems and
triplets, quadruplets, and quintuplets of mutually unbiased bases with free parameters for three-qubit systems.
Furthermore, we study the richness of the entanglement structure of such bases and provide the quantum circuits
required to implement all these bases with free parameters in the laboratory. We also show that the free parameters
introduced can be controlled by a single party of the system. Finally, we find the upper bound for the maximal
number of real and complex mutually unbiased bases existing in every dimension. This proof is simple, short,
and considers basic matrix algebra.
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I. INTRODUCTION

Mutually unbiased bases (MUB) have an important role in
quantum mechanics. They are useful in generating quantum
key distribution protocols [1–3], detection of entanglement [4],
quantum random access codes [5], dense coding, teleportation,
entanglement swapping, and covariant cloning (see [6] and ref-
erences therein). Additionally, a maximal set of MUB allows
us to univocally reconstruct quantum states [7]. Furthermore,
entropic certainty [8,9] and uncertainty relations [10] have
been studied for MUB. Such applications have motivated
considerable effort to understand the underlying structure
behind incomplete [11,12] and complete [7,13] sets of MUB.
In particular, MUB play an important role in locking of
classical correlations in quantum states [14–16] and a not-so-
well understood role in some Bell inequalities [17]. Despite
the important advances done for complete sets of MUB in
prime [7] and prime power [13] dimensions, the structure of
incomplete sets of MUB is still a mystery even in low prime
dimensions. The full classification of MUB for two-qubit
systems, i.e., all triplets, quadruplets, and quintuplets of MUB
existing in dimension 4, was done in [18]. In dimensions
2, 3, and 5 the problem has a simple solution because of
the existence of a unique complex Hadamard matrix up to
equivalence, i.e., the Fourier matrix. For every dimension
higher than 5 the classification of incomplete sets of MUB
is still unknown. Indeed, it is open in the prime dimension
seven, which seems to be the simplest open case.

The lack of a deeper understanding of mutually unbiased
bases is due to the absence of a suitable mathematical tool
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to study the problem. Indeed, quadruplets of MUB having
free parameters are not known and a few triplets having free
parameters were accidentally found [19]. In this work we shed
light on this area of research by presenting a systematic method
of introducing free parameters in sets of MUB. We demonstrate
that any set of m real MUB existing in every dimension N > 2
admits the introduction of free parameters. Our construction
is not restricted to real sets of MUB. Indeed, we illustrate our
method by constructing the maximal set of triplets for two-
qubit systems and several triplets, quadruplets, and quintuplets
of MUB having free parameters for three-qubit systems. All
of these cases involve sets of complex MUB. Furthermore, we
analyze the entanglement structure of these sets of MUB and
provide the quantum circuits required to implement all the sets
in the laboratory.

This work is organized as follows. In Sec. II we present a
short introduction to mutually unbiased bases and the link to
complex Hadamard matrices and we summarized the state of
the art of MUB with free parameters. In Sec. III we present
our method of introducing free parameters in sets of MUB.
In Sec. IV we prove that any set of m real MUB existing in
dimension N admits the introduction of the maximal number
of parameters allowed by our method, that is, (m − 1)N/2 free
parameters. In Sec. V we construct triplets, quadruplets, and
quintuplets of MUB having free parameters for three-qubit
systems and study the entanglement structure of each case. In
Sec. VI we summarize our main results, conclude, and discuss
some open questions. Additionally, we illustrate our method
by constructing triplets of MUB for two-qubit systems (see
Appendix A). The explicit construction of a quadruplet and
a quintuplet of MUB having free parameters for three-qubit
systems is provided in Appendix B. In Appendix C we derive
the quantum circuits required to generate every quadruplet
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DARDO GOYENECHE AND SANTIAGO GÓMEZ PHYSICAL REVIEW A 92, 062325 (2015)

and quintuplet of MUB presented in this work. Finally, in
Appendix D we present a simple and short proof for the upper
bound of the maximal number of real and complex MUB in
every dimension by considering basic matrix algebra.

II. MUTUALLY UNBIASED BASES AND COMPLEX
HADAMARD MATRICES

In this section we present some fundamental properties
about MUB and complex Hadamard matrices (CHMs) re-
quired to understand the rest of the work. For a complete review
about MUB and CHMs we suggest Refs. [6,20], respectively.
Two orthonormal bases {φj }j=0,...,N−1 and {ψk}k=0,...,N−1

defined in CN are mutually unbiased if

|〈φj ,ψk〉|2 = 1

N
, (1)

for every j,k = 0, . . . ,N − 1. In general, a set of m > 2
orthonormal bases is MUB if all the pairs of bases of the set are
MUB. A set of m MUB is called extensible if there exists an
(m + 1)th basis that is mutually unbiased with respect to the
rest of the bases. It has been shown that m = N + 1 MUB exist
for N prime [7] and prime power [13]. Additionally, maximal
sets of MUB can be constructed in prime power dimensions by
considering Gaussian sums and finite fields [21–23]. For any
other dimension N = p

r1
1 p

r2
2 · · · prk

k (pr1
1 < p

r2
2 < · · · < p

rk

k )
the maximal value of m is not known and the lower bound
m � p

r1
1 is provided by the maximal number of fully separable

(i.e., tensor product) MUB [24]. Additionally, in dimensions
of the form N = k2 it is possible to find m = k + 1 real MUB
by considering orthogonal latin squares [25]. Let us arrange
the bases {φj } and {ψk} in columns of unitary matrices B1 and
B2, respectively. If B1 and B2 are MUB then

B
†
1B2 = H, (2)

where H is a complex Hadamard matrix. An N × N matrix
H is called a complex Hadamard matrix if it is unitary
and all its complex entries have the same amplitude 1/

√
N .

For example, the Fourier matrix (FN )jk = 1√
N

e2πijk/N is a

CHM for every N , where i = √−1. Two CHMs H1 and
H2 are equivalent if there exist permutation matrices P1

and P2 and diagonal unitary matrices D1 and D2 such that
H2 = P1D1H1D2P2. Therefore, MUB and CHMs are closely
related: Any set of m MUB S1 = {B1, . . . ,Bm} is unitary
equivalent to a set S2 = {I,H1, . . . ,Hm−1}, where I represents
the computational basis and H1, . . . ,Hm−1 are CHMs. Indeed,
the unitary transformation that connects S1 with S2 is B

†
1. That

is,

B
†
1(S1) = {B†

1B1,B
†
1B2, . . . ,B

†
1Bm}

= {I,H1, . . . ,Hm−1}
= S2, (3)

where we considered Eq. (2). Alternatively, B
†
k (S1) also

provides an analogous result to (3) for k = 2, . . . ,m. A CHM
H is dephased if its first row and column are composed of
1’s. Note that any CHM is equivalent to a dephased CHM. In
general, a set of m MUB {I,H1, . . . ,Hm−1} is dephased if H1 is
dephased and the resting m − 2 CHMs have 1’s in the first row.

Furthermore, two sets of m MUB S1 and S2 are equivalent if
there exist permutations P1, P2, and P and diagonal unitaries
D1 and D2 such thatS2 = P[P1D1S1D2P2]. HereP[ ] denotes
a suitable permutation of entries of the vector of matrices
{I,H1, . . . ,Hm−1}. In this way, any set of m MUB can be
written in a nonunique dephased form.

The full classification of CHMs and MUB has been solved
up to dimension N = 5 (see [26] and [18], respectively). For
N = 6 both problems remain open despite considerable effort
made during the past 20 years [12,27–35]. Both problems
of CHMs and MUB also remain open for any dimension
N > 6. For example, they are open in the prime dimension
N = 7, where a single one-parameter family of complex
Hadamard matrices is known [36] and a maximal set of eight
MUB is known [7] but incomplete sets of MUB are not yet
characterized. Indeed, it is still an open question whether a
triplet of MUB having free parameters exists in dimension
N = 7.

Let us summarize the state of the art for MUB with free
parameters. First, any set of m MUB in prime dimension N =
p of the form {I,Fp,C1, . . . ,Cm−2} is isolated, where Fp is the
Fourier matrix and {C1, . . . ,Cm−2} are circulant CHMs [37].
A complex Hadamard matrix is isolated if there is no family
of CHMs connected with it [20]. A family of CHMs is a set of
inequivalent complex Hadamard matrices depending on some
free real parameters. We extend the same definition to sets
of MUB: A set of m MUB is isolated if there is no family of
m MUB connected with it. For example, any set of m � N + 1
MUB in dimensions N = 2,3,5 is isolated. In dimension N =
4 there is a unique three-parameter triplet of MUB of the
form {I,F (1)

4 (x),H (y,z)} and quadruplets and quintuplets of
MUB are isolated [18]. In dimension N = 6 a one-parameter
triplet of MUB exists [27]. Moreover, two-parameter triplets of
the form {I,F (2)

6 (x,y),H (x,y)} exist for any x,y ∈ [0,2π ) and
seem to be unextendible for any pair x,y [12,29]. Furthermore,
in dimensions N = 9 [38] and N = 4k [19] one-parameter
triplets of MUB can be defined by considering cyclic n roots.

All the above sets of MUB with free parameters were found
by taking advantage of special properties holding in specific
dimensions. So far, the existence of quadruplets of MUB
having free parameters is still unknown in every dimension. In
the next section we present a systematic method to introduce
free parameters in sets of m MUB in dimension N .

III. MUB WITH FREE PARAMETERS

A set of r > N vectors {vk} ⊂ CN is associated with a Gram
matrix G ∈ Cr×r , where Gij = 〈vi,vj 〉; i,j = 0, . . . ,r − 1;
and rank R(G) = N . Also, from a Gram matrix G of size
r > N and rank N we can find a set of vectors v′

k ∈ CN

such that Gij = 〈v′
i ,v

′
j 〉. Two sets of vectors {vk} and {v′

k}
associated with the same G can be connected by a unitary
transformation. That is, both sets of vectors {vk} and {v′

k} define
the same geometrical structure in the complex projective space
CPN−1. The vectors {v′

k} can be found from G by considering
the Cholesky decomposition, i.e., to find the unique upper
triangular matrix L having positive diagonal entries such that
G = L†L. Thus, the r vectors {v′

k} are given by the r columns
of L, where we only have to consider entries of the first N

rows of L (the rest of the rows have zero entries because of
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the rank restriction). In this work we are particularly interested
in studying Gram matrices associated with a set of m MUB
{I,H1,H2, . . . ,Hm−1} in CN . That is,

G =

⎛
⎜⎜⎜⎜⎜⎝

I H1 H2 · · · Hm−1

H
†
1 I H

†
1 H2 · · · H

†
1 Hm−1

H
†
2 H

†
2 H1 I · · · H

†
2 Hm−1

...
...

...
. . .

...
H

†
m−1 H

†
m−1H1 H

†
m−1H2 · · · I

⎞
⎟⎟⎟⎟⎟⎠

.

(4)

Note that this mN × mN Gram matrix G naturally defines
a structure of m2 square blocks of size N , each of them
defined by a unitary matrix of the form H

†
i Hj , where i,j =

0, . . . ,m − 1 and H0 = I. The Cholesky decomposition of this
Gram matrix G is given by

L =

⎛
⎜⎜⎝

I H1 H2 · · · Hm−1

0N 0N 0N · · · 0N

...
...

...
. . .

...
0N 0N 0N · · · 0N

⎞
⎟⎟⎠, (5)

where 0N is the zero matrix of size N . So the set of m MUB is
clearly given by {I,H1,H2, . . . ,Hm−1}, which corresponds to
the first block of rows of G [see Eq. (4)]. As we will show later,
this property considerably simplifies the use of our method.

In previous work [39] we found the most general way to
introduce free parameters in pairs of columns (or rows) of
any complex Hadamard matrix. In every dimension N > 2
a free parameter can be introduced in two columns C1

and C2 of a CHM if and only if C1 ◦ C2 ∈ RN. Here the
circle denotes the (entrywise) Hadamard product, that is,
(C1 ◦ C2)j = (C1)j (C2)j , j = 0, . . . ,N − 1. Pairs of columns
(or rows) satisfying this property were called equivalent to real
(ER) pairs [39]. It is immediately realized that ER pairs only
exist for even dimensions. Consequently, a family of CHMs
existing in odd dimension N cannot have a free parameter
appearing in only in two columns. The introduction of free
parameters in ER pairs is very simple.

Construction 1. Given an ER pair of columns {C1,C2}, we
introduce a free phase eiα in the j th entries (C1)j and (C2)j if
(C∗

1 ◦ C2)j < 0 for j = 0, . . . ,N − 1 [39].
Here the asterisk denotes complex conjugation. Note that∑N−1
j=0 (C∗

1 ◦ C2)j is the inner product between the column
vectors C1 and C2, which has to be zero by definition of
CHMs. Let us exemplify this method by introducing two free
parameters in the Fourier matrix

F4 = 1

2

⎛
⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞
⎟⎠. (6)

That is,

F4(α,β) = 1

2

⎛
⎜⎝

1 1 1 1
1eiα ieiβ −1eiα −ieiβ

1 −1 1 −1
1eiα −ieiβ −1eiα ieiβ

⎞
⎟⎠. (7)

Here we consider the ER pairs of columns {C1,C3} and
{C2,C4} to introduce the parameters α and β, respectively.

Note that α and β are aligned along the second and fourth
rows in Eq. (7). A set of N/2 ER pairs producing aligned
free parameters in matrices of size N are called aligned ER
pairs. Aligned ER pairs have one of the parameters linearly
dependent (if we consider the equivalence of CHMs defined
above). Thus, the parameter β of Eq. (7) is linearly dependent
and thus the Fourier family in dimension 4 has only one
relevant parameter [20]. In the same way, some new families
of CHMs have been defined [39].

Let us now extend this method to the construction of
MUB with free parameters. Here the key ingredient is the
generalization of the concept of ER pairs: A set of two
columns {C1,C2} of a Gram matrix G associated with m

MUB in dimension N is called a generalized ER (GER) pair if
C1 ◦ C2 ∈ RmN . The following result, natural generalization
of Construction 1, is the main result of the present work.

Proposition 1. Let G be the Gram matrix of a set of m

MUB in dimension N and suppose that it has N GER pair of
columns such that both vectors of each GER pair belong to the
same block of columns. Then the set of m MUB admits the
introduction of N free parameters.

Proof. For simplicity, let us first consider the case of 3 MUB
(m = 3) in dimension N , where the Gram matrix is given by

G =

⎛
⎜⎝

I H1 H2

H
†
1 I H

†
1 H2

H
†
2 H†

2H1 I

⎞
⎟⎠, (8)

and suppose that G has a GER pair of columns {Ci,Cj } defined
within a block of columns (i.e., I[i/N ] = I[j/N ], where I
means integer part). Therefore, N of the products (Ci)k(Cj )k
are zero because of the corresponding identity block I and
only 2N values of these products play a role in Ci ◦ Cj .
Thus, a free parameter can be introduced in both columns
Ci and Cj by applying Construction 1 to the 2N -dimensional
subvectors of Ci and Cj having 2N nonzero entries. Note that
after introducing the parameter the Hermiticity of the Gram
matrix G is destroyed. In order to restore the Hermiticity we
apply the same method to the GER pairs of rows {Ri,Rj },
which exists because G is a Hermitian matrix. We remark
that the same free parameter should be considered in both
GER pairs {Ci,Cj } and {Ri,Rj }. Otherwise, the resulting
matrix would be not Hermitian. For further clarifications see
the explicit example provided in Appendix A. Therefore, the
above construction leads us to a one-parameter set of matrices
satisfying (i) G(α) = U (α)GU †(α) and (ii) |G(α)ij | = |Gij |
for any α ∈ [0,2π ). Note that (i) holds for any unitary matrix
U whereas (ii) is strongly dependent on our construction.
Here U (α) and U †(α) represent the introduction of the free
parameter α in two columns and two rows, respectively.
Furthermore, G(α) and G(0) have the same eigenvalues for
any α ∈ [0,2π ) and consequently G(α) is a one-parameter set
of Gram matrices defining a one-parameter set of m MUB
in dimension N . Furthermore, the explicit dependence on α

in the Gram matrix G implies that the parameter cannot be
absorbed by a global unitary operation acting on all the vectors.
Additionally, the parameter does not appear in every entry of
a row or column, which implies that α cannot be absorbed as a
global phase of a vector. Finally, if G has N GER pairs, then
we can introduce N free parameters in the same way. The
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generalization to any set of m > 3 MUB is straightforward
from the above explanation. �

Let us emphasize the importance of considering both vec-
tors of the GER pairs in the same block of columns: Suppose
that we choose a GER pair formed by two columns belonging
to different blocks [e.g., the fifth and ninth columns of the
Gram matrix given in the example (A4)] and we introduce a
free parameter. Despite this action generating a genuine Gram
matrix, the set of three bases would be not composed of MUB
with free parameters. This is simple to understand because the
free parameter would appear in a single vector of the second
and third bases. In this way, for α 
= 0 we would not have
orthonormal bases.

In the particular case of m = 2 our Proposition 1 is reduced
to Construction 1, which was derived in a previous work [39].
That is, introducing free parameters in a pair of MUB is
equivalent to introducing free parameters in a CHM, as
suggested by Eq. (3). The explicit construction of the maximal
set of triplets of MUB for two-qubit systems is shown in
Appendix A. Also, a triplet, a quadruplet and a quintuplet of
MUB having free parameters for three-qubit systems are given
in Appendix B. We encourage to the reader to have a close look
at the examples in order to have a clear understanding of our
method.

IV. FAMILIES STEMMING FROM REAL MUB

As we have shown, Proposition 1 allows us to introduce
free parameters in Gram matrices of MUB having GER pairs.
In this section we demonstrate that any set of m real MUB
existing in dimension N > 2 allows the introduction of the
maximal number of parameters allowed by GER pairs.

Proposition 2. Any set of m real MUB in dimension N > 2
admit the introduction of Nm/2 free parameters. Furthermore,
(m − 1)N/2 of these parameters cannot be absorbed by global
unitary transformations and at most one of them is linearly
dependent.

Proof. Every pair of columns belonging to the same block
is clearly a GER pair. Therefore, there are Nm/2 GER pairs
allowing the introduction of Nm/2 free parameters. The rest
of the proof is straightforward (already explained in the proof
of Proposition 1). �

Furthermore, note that there are many different ways to
choose the GER pairs and consequently many sets of MUB
with free parameters can be constructed. Precisely, there are (N2 )
different ways to choose GER pairs in each of the m − 1 blocks
of columns (the first block only provides unitary equivalent
MUB), that is, a total of (m − 1)N (N − 1)/2 different ways.
We do not know how many ways are inequivalent for N > 4.
For N = 4 the answer is provided in Ref. [18]. In dimensions
of the form N = k2 it is possible to construct m = k + 1
real MUB for every k ∈ N. By combining this result with
Proposition 2 we have the following result.

Corollary 1. In every dimension N = k2 there exist m =
k + 1 MUB admitting k3/2 free parameters.

In dimension N = 4 there exist m = 3 real MUB and then
we can introduce k3/2 = 4 free parameters, where the GER
pairs are aligned; so one of the four parameters is linearly
dependent (see Appendix A). Here the 12 possible ways to
introduce free parameters produce equivalent sets [18]. These

triplets are also equivalent to the solution found in Appendix A
with our method. Sets of real MUB are not the only cases where
a maximal number of parameters can be introduced. In the next
section we construct sets of MUB with free parameters in the
three-qubit space by considering complex MUB.

V. MUB FOR THE THREE-QUBIT SPACE

For three-qubit systems (N = 23) there is a maximal
number of N + 1 = 9 MUB. Indeed, four maximal sets having
a different entanglement structure have been constructed [21]:

S1 = (2,3,4), S2 = (1,6,2),

S3 = (0,9,0), S4 = (3,0,6), (9)

where the first, second, and third entries denote the number of
fully separable, biseparable, and maximally entangled bases,
respectively. These sets of MUB are not equivalent under Clif-
ford operations, but they are equivalent under general unitary
transformations. In this section we construct pairs, triplets,
quadruplets, and quintuplets of MUB having free parameters
from considering subsets of S4. We have chosen this particular
set of MUB because it contains the highest number of
maximally entangled bases and consequently it has potentially
important applications in quantum information theory.

From considering Proposition 1 we find the following
results for every subset of m � 9 MUB of S4 (three qubits).

(i) Every pair of MUB {I,Hi} ⊂ S4 admits the introduction
of four free parameters, where i = 1, . . . ,8. This is equivalent
to introducing free parameters in the CHM Hi .

(ii) Every triplet of MUB {I,Hi,Hj } ⊂ S4 admits the intro-
duction of eight free parameters for every i 
= j = 1, . . . ,8.

(iii) Some quadruplets of MUB {I,Hj ,Hk,Hl} ⊂ S4 admit
the introduction of four free parameters in only one of the
bases, whereas the rest of the quadruplets do not admit free
parameters.

(iv) Every quadruplet admitting four free parameters can be
extended to a quintuplet of MUB having four free parameters.
The extension of quadruplets to quintuplets is not unique.

(v) Every set of 6 � m � 9 MUB does not admit free
parameters.

The maximal number of parameters that can be introduced
for every m is provided in Table I. Furthermore, the con-

TABLE I. MUB with free parameters in dimension N = 8. The
asterisk means that GER pairs are aligned, which produces one
linearly dependent parameter. Note that a set of MUB in general
allows many different choices for GER pairs and some of them
produce nonaligned GER pairs. In Appendix B we explain in detail
all possible sets of m MUB having free parameters.

No. of MUB (m) No. of parameters Example

2 3 {I,H1}∗

2 4 {I,H1}
3 7 {I,H1,H2}∗

3 8 {I,H1,H2}
4 4 {I,H1,H2,H3}
5 0 {I,H1,H2,H3,H4}
5 4 {I,H1,H2,H3,H5}∗

6–9 0 {I,Hi,Hj ,Hk,Hl,Hm}
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struction of every set of MUB for three qubits systems arises
from Table II of Appendix B, where we present the proof of
the above results. The free parameters of all quadruplets and
quintuplets of MUB described in (iii) and (iv) can be generated
in the laboratory by considering 7 different quantum circuits
(56 cases, 8 cases per circuit; see Appendix C), which involve
local, CNOT, and Toffoli gates. The generation of the fixed
set of bases, i.e., the set S4, requires a different circuit [40]
that involves local, nonlocal controlled-phase, and Toffoli
gates [41]. Therefore, the sets of MUB with free parameters are
generated by a composition of two different quantum circuits,
which are realizable with current technology. The explicit
expression of the quantum circuits is provided in Appendix C.

The sets of MUB presented above have a rich entanglement
structure. For example, let us consider the quintuplet of
MUB {I,H1(α),H2,H3,H5} ⊂ S4 (explicitly constructed in
Appendix B). For simplicity, let us assume that the four param-
eters α1, . . . ,α4 are identical (α). Here H1(0) is a maximally
entangled basis, in the sense that every vector of the basis is
equivalent, up to local unitary operations, to the Greenberger-
Horne-Zeilinger state |GHZ〉 = (|000〉 + |111〉)/√2. On the
other hand, H1(π/2) is a biseparable basis. Indeed, every
vector of the basis is equivalent to |φ〉 = |0〉(|00〉 + |11〉)/√2.
That is, Alice is separated and Bob and Charlie share a
maximally entangled Bell state. For any 0 < α < π/2 we have
an intermediate amount of entanglement shared between Alice
and Bob-Charlie, whereas Bob and Charlie are as entangled as
they can be for any α. That is, two of the three parties (Bob and
Charlie) saturate the maximal amount of entanglement allowed
by the monogamy of entanglement principle [42]. Indeed,
for any value of the parameter α the single-qubit reductions
ρB and ρC are maximally mixed. It is highly nontrivial that
the bases H1(0) (maximally entangled) and H1(π/2) (fully
separable) can be continuously connected without losing the
unbiasedness of the quintuplet of MUB {I,H1(α),H2,H3,H5}
for any value α ∈ [0,π/2). In Appendix C we show that,
in this case, the parameter α is fully controlled by a local
unitary operation applied by Bob (see quantum circuit G). This
means that Bob can control the entanglement existing between
Alice and Bob-Charlie. Of course, this quantum circuit is also
composed of nonlocal gates but the remarkable property is
that the parameter α can be locally controlled (by Bob) in
a simple way. Table III in Appendix C shows all possible
entanglement structures that can be found from quadruplets
and quintuplets with free parameters arising from S4. The
purity of the reductions ρA, ρB , and ρC as a function of the
free parameter α for the above quintuplet is depicted in Fig. 1.

VI. CONCLUSION

We have presented a systematic way of introducing free
parameters in sets of m mutually unbiased bases in dimension
N (see Proposition 1). In particular, for m = 2 our method is
reduced to the introduction of free parameters in a complex
Hadamard matrix (see Construction 1 and Ref. [39]). We
proved that any set of m real mutually unbiased bases existing
in any dimension N > 2 admits the introduction of free
parameters (see Proposition 2). As consequence, in every
dimension N = k2 there are k + 1 MUB with kN/2 free
parameters, where k is even (see Corollary 1). We have found

FIG. 1. Purity of the reductions to Alice (ρA), Bob (ρB ), and
Charlie (ρC) for all the states of the basis H1(α). Here Bob and
Charlie are as entangled as they can be for any value of α (dashed
line), whereas Alice is maximally entangled with Bob and Charlie
for α = 0 (the GHZ state) and separated for α = π/2 (solid line). For
α = π/2 Bob and Charlie share a Bell state.

the maximal set of triplets of MUB with free parameters for
two-qubit systems (see Appendix A). Also, we constructed
pairs, triplets, quadruplets, and quintuples of MUB having
free parameters for three-qubit systems (see Appendix B).
Such sets are constructed from subsets of the maximal set
of MUB S4 [see Eq. (9)]. Additionally, we provided the
complete set of quantum circuits required to implement
all such quadruplets and quintuplets in the laboratory (see
Appendix C). Interestingly, the free parameters introduced can
be locally controlled by a single party. Finally, we presented
a short and simple proof for the upper bound on the maximal
number of real and complex mutually unbiased bases existing
in every dimension (see Appendix D).

Finally, we present some open issues: (i) finding a triplet
of MUB having a free parameter in dimension 7, (ii) finding
the subset of triplets, quadruplets, and quintuplets of MUB
considered in Appendix C such that they are extendible to nine
MUB, (iii) whether it is possible to construct maximal sets of
MUB with free parameters in some dimension N > 8 (this
question may have a negative answer for every N but a formal
proof is only known for N � 5 [18]), and (iv) constructing
MUB with free parameters for four-qubit systems.
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APPENDIX A: MUB FOR TWO QUBITS

Let us consider the simplest case where our method can be applied. In dimensions N = 2 (one qubit) and N = 3 (one qutrit)
complex Hadamard matrices are isolated and consequently any set of MUB in such dimensions is isolated. On the other hand,
in dimension 4 there is a family of CHMs [see Eq. (7)]. So the simplest case to introduce free parameters corresponds to N = 4
(i.e., two-qubit systems). The construction of m = 2 MUB having free parameters is reduced to find a family of CHMs and thus
here we consider m = 3. A fixed triplet of MUB for N = 4 is given by the columns of the following matrices:

H1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (A1)

H2 = 1√
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 i −i

1 −1 −i i

⎞
⎟⎟⎠, (A2)

H3 = 1√
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1

−1 1 1 −1
1 −1 1 −1

⎞
⎟⎟⎠. (A3)

The Gram matrix G associated with this set is given by 1/2 of the matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 1 1 1 1 1 1 1 1
0 2 0 0 1 1 −1 −1 1 1 −1 −1
0 0 2 0 1 −1 i −i −1 1 1 −1
0 0 0 2 1 −1 −i i 1 −1 1 −1
1 1 1 1 2 0 0 0 1 1 1 −1
1 1 −1 −1 0 2 0 0 1 1 −1 1
1 −1 −i i 0 0 2 0 i −i 1 1
1 −1 i −i 0 0 0 2 −i i 1 1
1 1 −1 1 1 1 −i i 2 0 0 0
1 1 1 −1 1 1 i −i 0 2 0 0
1 −1 1 1 1 −1 1 1 0 0 2 0
1 −1 −1 −1 −1 1 1 1 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Here we have six GER pairs of columns and rows given
by {1-2;3-4;5-6;7-8;9-10;11-12}. Note that the perfect match
between GER pairs of columns and rows is due to the fact
that G is Hermitian. The introduction of free parameters into
the GER pairs {C1,C2; C3,C4} produces equivalent sets. From
considering the remaining four GER pairs defined above we
easily generate the following MUB with free parameters:

H2(α,β) = 1√
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1

eiα −eiα ieiβ −ieiβ

eiα −eiα −ieiβ ieiβ

⎞
⎟⎟⎠, (A5)

and

H3(γ,δ) = 1√
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1

−eiγ eiγ eiδ −eiδ

eiγ −eiγ eiδ −eiδ

⎞
⎟⎟⎠. (A6)

Note that our method can be considerably simplified by
introducing the free parameters in a reduced region of the
Gram matrix (A4). This is because G contains much more

information than the set of three MUB [see Eq. (5)]. Precisely,
we can restrict our attention to introducing free parameters in
the first four rows of G in Eq. (A4) according to the existing
pairs of GER and Proposition 1. The rest of the rows give
us the explicit expression of the inner products between the
elements of the different bases, which is not interesting for our
purpose. In general, we can restrict our attention to introducing
parameters in the first N rows of G when we consider m MUB
in dimension N .

The four parameters α,β,γ,δ appearing in Eqs. (A5)
and (A6) cannot be absorbed by global unitary operations.
However, they are aligned, so one of them can be absorbed
in a global phase of a vector of the canonical basis H1.
Therefore, we find the following three-parameter triplet of
MUB in dimension N = 4:

{I,H2(α,0),H3(γ,δ)}. (A7)

This result has been reported as the most general triplet
of MUB that can be constructed in dimension N = 4 [18].
Quadruplets and quintuplets of MUB do not allow free param-
eters in dimension 4. Indeed, quadruplets and quintuplets are
isolated [18].
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TABLE II. GER pairs required to construct any subset of m MUB stemming from the maximal set of nine MUB S4.

H1 H2 H3 H4 H5 H6 H7 H8

H
†
1 1-3-4-8;2-5-6-7 1-4-5-7;2-3-6-8 1-2-4-7;3-5-6-8 1-4-5-6;2-3-7-8 1-6-7-8;2-3-4-5 1-2-3-7;4-5-6-8 1-2-5-8;3-4-6-7

H
†
2 1-2-5-8;3-4-6-7 1-3-4-8;2-5-6-7 1-2-3-6;4-5-7-8 1-2-5-8;3-4-6-7 1-2-5-8;3-4-6-7 1-4-5-7;2-3-6-8 1-2-4-6;3-5-7-8

H
†
3 1-2-4-7;3-5-6-8 1-6-7-8;2-3-4-5 1-4-5-6;2-3-7-8 1-6-7-8;2-3-4-5 1-3-4-8;2-5-6-7 1-2-4-8;3-5-6-7 1-3-4-8;2-5-6-7

H
†
4 1-3-5-7;2-4-6-8 1-4-5-7;2-3-6-8 1-2-4-6;3-5-7-8 1-2-3-6;4-5-7-8 1-4-5-6;2-3-7-8 1-3-5-8;2-4-6-7 1-4-5-7;2-3-6-8

H
†
5 1-2-3-6;4-5-7-8 1-2-4-6;3-5-7-8 1-2-5-8;3-4-6-7 1-3-5-7;2-4-6-8 1-3-5-7;2-4-6-8 1-6-7-8;2-3-4-5 1-6-7-8;2-3-4-5

H
†
6 1-3-4-8;2-5-6-7 1-2-3-7;4-5-6-8 1-3-5-6;2-4-7-8 1-2-5-8;3-4-6-7 1-3-4-8;2-5-6-7 1-2-5-6;3-4-7-8 1-3-5-6;2-4-7-8

H
†
7 1-6-7-8;2-3-4-5 1-2-5-8;3-4-6-7 1-6-7-8;2-3-4-5 1-6-7-8;2-3-4-5 1-2-4-7;3-5-6-8 1-2-3-6;4-5-7-8 1-2-3-7;4-5-6-8

H
†
8 1-4-5-6;2-3-7-8 1-3-5-6;2-4-7-8 1-2-3-7;4-5-6-8 1-3-4-8;2-5-6-7 1-3-5-7;2-4-6-8 1-2-4-7;3-5-6-8 1-3-4-6;2-5-7-8

APPENDIX B: MUB FOR THREE QUBITS

In this appendix we construct the maximal number of
triplets, quadruplets, and quintuplets of MUB having free
parameters that can be constructed from subsets of S4 [see
Eq. (9)]. The key result is provided in Table II, where we
present the complete set of GER pairs for S4. This is how to
read Table II.

(i) The cell associated with column Hk and row H
†
j contains

all the GER pairs allowed by the triplet {I,Hj ,Hk}.
(ii) The notation i-j -k-l means that every possible combi-

nation of two nonrepeated indices determines a GER pair, that
is, {Ci,Cj }, {Ci,Ck}, {Ci,Cl}, {Cj ,Ck}, {Cj ,Cl}, and {Ck,Cl}
are GER pairs. By convention, we consider 1 � i < j < k <

l � 8.
(iii) The semicolon separates complementary sets of GER

pairs (e.g., for {i-j -k-l; μ-ν-κ-η} a mixture of greek and latin
indices does not form a GER pair).

To construct quadruplets or quintuplets of MUB we have
to find the intersection of sets of GER pairs allowed by all

the subsets of triplets. If there is no intersection then free
parameters cannot be introduced. Let us construct a triplet of
MUB by following the above rules (i)–(v): Suppose that we
want to introduce free parameters in the triplet {H1,H2,H3}
[see Eq. (8)]. In order to introduce free parameters in H1 we
have to find common GER pairs in the cells associated with
H

†
2 H1 (i.e., column 2, row 3 of Table II: {1-2-5-8;3-4-6-7})

and H
†
3 H1 (i.e., column 2, row 4: {1-2-4-7;3-5-6-8}). This

is equivalent to finding GER pairs appearing in the Gram
matrix of {H1,H2,H3}. Thus, the unique set of common GER
pairs is given by {C1,C2}, {C3,C6}, {C4,C7}, and {C5,C8}.
Analogously, we can find the GER pairs for the second and
third blocks of G, that is, {C1,C8},{C2,C5},{C3,C4},{C6,C7}
and {C1,C4},{C2,C6},{C3,C8},{C5,C7}, respectively. Thus,
we have the conditions to introduce 12 free parameters in
the Gram matrix of the fixed set {H1,H2,H3}. As noted in
Appendix A, the Cholesky decomposition allows us to simplify
the introduction of free parameters by only considering the first
N rows of G. Our 12-parameter set of m = 3 MUB is given by

H1(α1,α2,α3,α4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i −i i i −i i i −i

−i −i −i i i −i i i

−ieiα1 ieiα1 ieiα2 −ieiα3 −ieiα4 −ieiα2 ieiα3 ieiα4

ieiα1 −ieiα1 ieiα2 ieiα3 −ieiα4 −ieiα2 −ieiα3 ieiα4

eiα1 −eiα1 −eiα2 −eiα3 −eiα4 eiα2 eiα3 eiα4

eiα1 −eiα1 eiα2 −eiα3 −eiα4 eiα2 eiα3 −eiα4

−1 −1 1 −1 1 1 −1 1

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

H2(β1,β2,β3,β4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 −1 −1 1 1 1 −1

−ieiβ1 −ieiβ2 −ieiβ3 ieiβ3 ieiβ2 ieiβ4 −ieiβ4 ieiβ1

−i i i i i −i −i −i

−eiβ1 −eiβ2 eiβ3 −eiβ3 eiβ2 −eiβ4 eiβ4 eiβ1

−eiβ1 eiβ2 eiβ3 −eiβ3 −eiβ2 eiβ4 −eiβ4 eiβ1

−i −i i i −i i i −i

ieiβ1 −ieiβ2 ieiβ3 −ieiβ3 ieiβ2 ieiβ4 −ieiβ4 −ieiβ1

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)
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and

H3(γ1,γ2,γ3,γ4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ieiγ1 ieiγ2 ieiγ3 −ieiγ1 −ieiγ4 −ieiγ2 ieiγ4 −ieiγ3

−eiγ1 eiγ2 eiγ3 eiγ1 eiγ4 −eiγ2 −eiγ4 −eiγ3

−1 1 −1 −1 1 1 1 −1

−i −i i −i i −i i i

−eiγ1 −eiγ2 eiγ3 eiγ1 −eiγ4 eiγ2 eiγ4 −eiγ3

−ieiγ1 ieiγ2 −ieiγ3 ieiγ1 −ieiγ4 −ieiγ2 ieiγ4 ieiγ3

−i i i −i −i i −i i

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

Here only eight parameters are relevant because four of them
do not appear in the inner products and thus they can be
absorbed by a unitary transformation applied to the entire
set of vectors of the MUB. That is, the α, β, or γ can be
considered as zero without loss of generality. Moreover, given
that the parameters are aligned, we have seven independent
parameters. This triplet can be straightforwardly extended
to a quadruplet of MUB by adding the computational basis
H9 ∈ S4. In order to construct a quintuplet we have to find
a suitable fifth basis. One way to do this is by considering
H5 (see Table II). For this choice we have a nonempty set
of GERs and four parameters can be introduced in H1 (see
Table II, the column starting with H1). The remaining four
bases I, H2, H3, and H5 are fixed, where H2 = H2(0,0,0,0),
H3 = H3(0,0,0,0), and H5 is given by

H5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 1 −1 −1 −1 1
1 −1 −1 1 1 1 −1 −1
−i −i −i i i −i i i

−i −i i i −i i i −i

i −i −i −i −i i i i

−i i −i i −i i −i i

−1 −1 1 −1 1 1 −1 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B4)

We encourage the reader to verify that there is no intersection
between the set of GER pairs for H2, H3, and H5 (see Table II)
and consequently no more free parameters can be introduced.
Therefore, the four-parameter quintuplet is given by

{I,H1(α1,α2,α3,α4),H2,H3,H5}. (B5)

FIG. 2. Quantum circuit required to construct the fixed set of nine
MUB S4 [40].

APPENDIX C: QUANTUM CIRCUITS FOR QUADRUPLETS
AND QUINTUPLETS OF MUB

Every quadruplet and quintuplet of MUB with free pa-
rameters for three-qubit systems has been generated from
considering subsets of S4 [see Eq. (9)]. These subsets can be
implemented in the laboratory by considering suitable quan-
tum circuits that can be implemented with current technology.
First, we have to consider the generation of the fixed bases
(subset of S4) and then the introduction of the free parameters.
Therefore, the full quantum circuit is the composition of
two different circuits. The generation of the set S4 is given
by the quantum circuit depicted in Fig. 2. This circuit was
recently derived [40]. The free parameters can be introduced
by considering one of the seven quantum circuits shown
below (A–G). Table III shows the quantum circuit required
to generate every quadruplet and quintuplet of MUB. Here,
every set of four numbers ijkl denotes the four CHMs Hi ,
Hj , Hk , and Hl . The fifth basis is given by H9 = I, which is
implicit in the table. Thus, the quintuplet associated with ijkl is
{I,Hi,Hj ,Hk,Hl}. By removing one basis we get a quadruplet
having free parameters. The seven quantum circuits are

TABLE III. Quantum circuit required to construct every quadru-
plet and quintuplet of MUB stemming from S4. The four numbers
ijkl denote the quintuplet {I,Hi,Hj ,Hk,Hl}, whereas the bold
numbers denote which basis carries the parameters. Quadruplets are
constructed by removing any basis from quintuplets.

Circuit A Circuit B Circuit C Circuit D Circuit E Circuit F Circuit G

1246 1234 1236 1345 1245 1237 1235

1257 1278 1258 1367 1267 1248 1268

1347 1368 1348 1468 1478 1358 1378

1356 1467 1456 1578 1568 1457 1567

2478 2358 2378 2346 2347 2368 2348

2568 2457 2567 2357 2356 2467 2456

3468 3456 3467 2458 3458 3567 3457

3578 5678 4578 2678 3678 3568 4678
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given by where

R(α) =
(

1 0
0 eiα

)
(C1)

and α ∈ [0,2π ). Every quantum circuit (from A to G)
introduces aligned free parameters in one of the bases of every
quintuplet. The selection of the quadruplet or quintuplet has to
be according Table II, as we already explained and exemplified
in Appendix B. The aligned free parameters appear according
the following table:

Circuit A B C D E F G
Rows 1234 1256 1357 1467 2367 2457 3456 (C2)

Here, every set of four numbers determines the rows where the
free parameters are introduced in the bases. For example, the
quintuplet {I,H1,H2,H3,H5} provided in Appendix B allows
the introduction of parameters in H1. The fixed set of five bases
is generated by the quantum circuit given in Fig. 2. According
Table III, the free parameters can be introduced in H1 by
considering the quantum circuit G. The aligned parameters in
H1 appear in the rows 3–6 [according to (C2)]. We encourage
readers to verify these properties from the explicit expressions
of the quintuplet {I,H1,H2,H3,H5} provided in Appendix B.

APPENDIX D: MAXIMAL NUMBER OF MUB:
A SIMPLE PROOF FOR THE UPPER BOUND

Here we present an independent proof for the upper bound
of the maximal number of MUB in real and complex Hilbert
spaces. This proof is simple, short, and considers basic algebra.

Proposition 2. In dimension N there are mR � N/2 + 1
and mC � N + 1 MUB for real and complex Hilbert spaces,
respectively.

Proof. Let G be the Gram matrix of m complex MUB in
dimension N . Then

G ◦ G† = 1

N
J + I, (D1)

where the mN × mN matrix J has m diagonal blocks of size
N , each of them having the null matrix, and the nondiagonal
blocks of size N are equal to the unit matrix 1 (i.e., every entry
of 1 is 1). The matrix I of Eq. (D1) is the identity matrix of size
mN . From matrix theory it is known that given two matrices
A,B � 0 we have the following relationship between ranks:
R(A ◦ B) � R(A)R(B). By considering A = B† = G(n,d),
the above inequality, and Eq. (D1) we have mN − (m − 1) �
N2 or, equivalently, m � N + 1. For the real case, we have
the tighter inequality R(A ◦ A) � 1

2R(A)[R(A) + 1] [43].
From combining this inequality with Eq. (D1) we have
mR � N/2 + 1. �

This proof was inspired by the derivation of the upper
bound of the maximal number of vectors in equiangular tight
frames [44].
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