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Deterministic generation of remote entanglement with active quantum feedback
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We consider the task of deterministically entangling two remote qubits using joint measurement and feedback,
but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible
protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require
real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use
this notion of optimality to construct two protocols that can deterministically create maximal entanglement:
a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for
high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics
can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the
limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and
discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol
for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally,
we show using simulations incorporating experimental imperfections that deterministic entanglement of remote
superconducting qubits may be achieved with current technology using the continuous-time feedback protocol
alone.
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I. INTRODUCTION

Engineering of quantum devices requires optimization of
two essentially contradictory requirements. On the one hand,
quantum properties such as superposition and entanglement
upon which these devices rely are fragile and require careful
isolation from external degrees of freedom. On the other hand,
control and measurement of a system requires coupling to an
external device, which often runs contrary to the necessity
for decoupling from the environment. To balance this trade-
off, many quantum systems relevant for quantum computing
and sensing lack readout capabilities that are effectively
instantaneous and projective. Instead, measurement occurs
over a finite resolvable time scale in such systems. Recent
research has taken advantage of this by utilizing the fact that
continuous weak measurement enables direct observation of
the continuous-time evolution of a quantum system (quantum
trajectories) [1–4] and also permits operations on the system
during the measurement process, including feedback and
feedforward control [5–8].

Real-time quantum feedback control is expected to be
broadly applicable to many problems in quantum information
science. Some quantum information applications that have
been proposed to date include rapid purification of qubits or
qubit registers [9–14], quantum error correction [15,16], trans-
mission of quantum information through noisy channels [17],
adaptive measurement for quantum state discrimination
[18–20], and several forms of quantum state preparation and
stabilization [21–25].
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Experimentally, quantum feedback has been mostly demon-
strated to date with atomic, molecular, or optical systems
(see, e.g., [6,7]). However, the advent of quantum-limited
microwave amplifiers has recently enabled experimental re-
alization of quantum feedback in superconducting circuits,
where it has been used to stabilize the Rabi oscillations of a
single qubit [8] and to deterministically create entanglement of
two qubits within a single cavity [26] using a discrete feedback
loop.

Several works have also suggested using quantum feedback
to enhance generation of remote entanglement [27–30]. These
papers have considered the case in which the controller has
access to a joint measurement on a pair of qubits that are too
far apart to engineer a direct or photon-mediated interaction,
an important scenario for quantum networks or large-scale
quantum computers [31]. The remote aspect requires that the
quantum feedback operations be restricted to local unitaries,
which cannot on their own generate entanglement [32]. Con-
versely, a joint measurement alone cannot deterministically
project a separable system into a fixed entangled state, but
access to this measurement and local unitary feedback can [33].

In this work we build upon this literature in our goal
to achieve optimal protocols for remote entanglement, fo-
cusing in particular on joint measurements that have been
implemented in superconducting qubits [4]. We motivate our
approach by an examination of optimality for the state update
in a single discrete-time step and define an average-sense
locally optimal (ASLO) strategy that makes the state update
over this discrete-time step using the most recent measurement
outcome and knowledge of the average state. We show that
this discrete-time step protocol reduces to a direct feedback
protocol in the continuous-time limit, whose dynamics can be
modeled by a Wiseman-Milburn feedback master equation
with an analytic solution that yields a simple closed-form
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expression for the locally optimal quantum feedback in this
limit. This analytic solution shows that for unit measurement
efficiency, the fidelity with respect to the target entangled state
asymptotically approaches exponentially 1. The discrete-time
step optimality study also motivates a semiclassical protocol
that is more effective for low measurement efficiencies,
provided one takes longer time steps between applications
of feedback. This feedback strategy is capable of fully
entangling the qubits even for nonunit efficiency, but creates
entanglement more slowly than the continuous case. Both
semiclassical and quantum protocols asymptotically approach
unit entanglement fidelity under unit measurement efficiency.
In the case of nonideal measurements, the preferred form
of the optimal feedback protocol is found to depend on the
measurement efficiency η, with the semiclassical (quantum)
protocol being preferred for low- (high-) η values. We then
show that for arbitrary nonunit efficiency, continuously tuning
the measurement time leads to a protocol that can surpass this
ASLO strategy and switches from using the quantum protocol
at short times to the semiclassical protocol at larger times.

The remainder of the paper is organized as follows. In Sec. II
we describe the measurement that conditions our feedback
using both stochastic master equation and positive-operator-
valued measure (POVM) descriptions. Section III derives the
optimal feedback unitary for a single discrete-time step as a
function of the prior state of the qubits. We first consider the
case of inefficient measurement in Sec. IV, where we neglect
coherence terms of the density matrix that are dephased by the
measurement to obtain a semiclassical strategy. In Sec. V we
use the full density matrix for the system to derive a quantum
strategy that is valid in the continuous measurement limit. In
Sec. VI we combine the semiclassical and quantum protocols
to develop a superior hybrid protocol that allows unit fidelity
to be reached for arbitrary nonunit measurement efficiencies.
Section VII demonstrates the experimental feasibility of the
continuous-time ASLO protocol with numerical simulations
of remote entanglement generation in a realizable system of
transmon qubits in spatially separated cavities. Section VIII
summarizes and provides an outlook for future work.

II. ENTANGLEMENT VIA MEASUREMENT

To study feedback in the context of remote entanglement
generation, we must first describe the measurement on which
the feedback will rely. As analyzed in [34], it is possible using
a dispersive homodyne readout to implement a half-parity
measurement in the superconducting circuit architecture. In
Ref. [4], the authors succeeded in applying this measurement
to two superconducting transmon qubits separated by over a
meter. Reference [35] describes another scheme for imple-
menting the required measurement, also in circuit QED. This
measurement is characterized by the operator

X = 1
2 (σz1 + σz2), (1)

where σzi is the Pauli operator acting on the ith qubit. This
can be used to probabilistically generate entanglement by first
preparing the separable uniform superposition state |ψ0〉 =
1
2 (|00〉 + |01〉 + |10〉 + |11〉) (e.g., by making two local σy

rotations on the ground state |11〉) and then measuring X. Since
this observable cannot distinguish the states |01〉 and |10〉, such

a measurement (if perfect) will with 50% probability project
the initially unentangled |ψ0〉 into the entangled triplet state
|t0〉 = 1√

2
(|01〉 + |10〉).

In the superconducting qubit architecture, the implemen-
tation of the measurement is such that projection onto one
of the eigenstates of X can be said to occur only after a
resolvable time period. During this time interval one can then
perform feedback on the system based on information already
gained. The measured value of the observable X is obtained
from a homodyne measurement of the voltage V [4]. During
the measurement, the time-dependent homodyne voltage that
constitutes the measurement signal is specified by [36]

dVt = 〈X〉(t)dt + dW (t)√
8ηk

, (2)

where 〈·〉 denotes an expectation value under ρ(t), the state of
the two-qubit system, k is the strength of the measurement,
0 � η � 1 is the measurement efficiency, and dW (t) is a
Wiener increment satisfying dW (t)dW (t ′) = δ(t − t ′)dt that
represents the quantum noise in the homodyne detection [5].
Note that we have chosen dV to have units of time, so the
average signal �V = 1

�t

∫
dV is unitless. Experimentally, the

appropriate scale factor can be extracted simply by preparing
states with 〈X〉 = {1,0, − 1} and measuring 〈�V 〉 for any pair
of these states.

The state of the system conditioned on this continuous
measurement record is given by the following stochastic
master equation [5]:

ρdV (t + dt) = ρ(t) + D[M]ρ(t)dt + H[M]ρ(t)
√

ηdW (t),

M ≡
√

2kX, (3)

Here D[M]≡MρM†−1/2(M†Mρ + ρM†M) and H[M]ρ ≡
Mρ + ρM† − 〈M + M†〉ρ (throughout this paper we use units
such that � = 1). The second term in Eq. (3) represents
the dephasing due to the measurement and the third term
represents the information update of the system state derived
from the measurement outcome. Note that Eq. (3) is expressed
in the interaction picture with respect to the free Hamiltonian
for the two-qubit system H0 = −ω1

2 σz1 − ω2
2 σz2.

Equation (3) generates a set of stochastic quantum trajec-
tory equations that provides a description of the measurement
conditioned dynamics in continuous time. In the following we
will also be interested in the conditioned dynamics at discrete-
time intervals. In order to obtain such a discretized description
of the system, we must compute the finite-time generalized
measurement, or POVM [5,37] that is associated with the
above continuous-time weak measurement. Such finite-time
POVM descriptions are generally difficult to compute for weak
measurements. However, in the case of quantum nondemoli-
tion (QND) measurements, for which [H0,X] = 0, this can
be readily derived. As shown in the Appendix, the finite-time
POVM for such weak QND measurements is composed of a
set of effects E(�V ) = 	

†
�V 	�V [37], with 	�V an operator

corresponding to the measurement of voltage increment �V

during a finite-time interval �t . These effects satisfy the com-
pletion property

∫
E(�V )d(�V ) ≡ ∫

	
†
�V 	�V d(�V ) = 1,

where the integral is performed over the domain of the voltage
increment. As shown in the Appendix, in the case of perfect
measurement efficiency η = 1, the operator corresponding to
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the above weak measurement is given by

	�V =
(

4k�t

π

)1/4

exp[−2k�t(�V − X)2]. (4)

The state update corresponding to a discrete-time measure-
ment outcome �V is then given by the familiar relation
ρ → 	�V ρ	

†
�V /Tr[	�V ρ	

†
�V ]. In order to model inefficient

measurement, we note that a weak QND measurement with
strength k and efficiency η �= 1 can be viewed as a sequence
of two weak measurements of the same observable, the first
with strength kη and the second with strength k(1 − η), where
we integrate out the latter in order to model the loss of this
portion of the measurement signal. The measurement operator
corresponding to the observed fraction η of the signal is given
by

	�V,η =
(

4ηk�t

π

)1/4

exp[−2ηk�t(�V − X)2]. (5)

After evolution by Eq. (3) for a discrete time �t , the two-
qubit state conditioned on the finite voltage increment �V is
then given by

ρ�V (t + �t) =
∫ ∞

−∞
	�V ′,1−η

	�V,ηρ(t)	†
�V,η

Tr[	�V,ηρ(t)	†
�V,η]

×	
†
�V ′,1−ηd(�V ′). (6)

Equations (3) and (6) define the time evolution of ρ under
generalized measurement of the observable X for continuous-
and discrete-time increments, respectively. In Fig. 1 we plot
histograms of the measurement outcomes for η = 1 and
η = 0.2, at a fixed measurement time �t . For an inefficient
measurement, the variance of the outcomes is larger, which
represents uncertainty due to loss or noise. For unit efficiency,
there is a residual variance due to vacuum fluctuations
of the readout signal and overlap between the Gaussian
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FIG. 1. (Color online) Histograms of the integrated measurement
signal for the three eigenstates ρi of the measurement, given by
Tr[	�V,ηρi	

†
�V,η]. Plots are for η = 1 (thin lines) and η = 0.2 (thick

lines) and use the parameters �t = 3 μs and k = 1(2π ) MHz.

distributions due to this effect leads to the measurement being
nonprojective, or weak. The limit of projective measurement
can be recovered by either letting k → ∞, i.e., making the
measurement infinitely strong, or �t → ∞, corresponding to
an infinitely long measurement time. As noted earlier, putting
the system initially into the equal superposition state ψ0 and
then measuring X can project the system into a maximally
entangled state, but the probability for achieving this by
measurement alone cannot exceed 50%. In the following
sections we will see that feedback can increase this probability
to 1.

III. OPTIMAL ROTATION IN A SINGLE TIME STEP

The only nonlocal resource in our deterministic entan-
glement scheme is the half-parity measurement X that was
introduced in the previous section. Due to the lack of direct
qubit-qubit coupling, the remaining control resource, the
quantum feedback operations, will be restricted to local
rotations that act on each qubit individually. Specifically, we
define the feedback unitary as

UF [θ1,θ2,φ1,φ2] = U (θ1,φ1) ⊗ U (θ2,φ2), (7)

where

U (θ,φ) ≡ Î2 cos θ/2 − in̂(φ) · σ̂ sin θ/2

is a general single-qubit unitary rotation [σ̂ is a 3-vector of
the Pauli matrices, n̂(φ) is a real 3-vector of unit norm, and
Î2 is the identity matrix]. Given the starting point of the equal
superposition state |ψ0〉, any target state lying within the triplet
manifold may be obtained by rotations within a fixed φ plane
of the Bloch sphere of each qubit. Hence we set n̂(φ) · σ̂ =
σx cos φ + σy sin φ. We note that in the presence of dephasing
one might wish to remove this restriction and additionally
allow σz rotations in order to introduce rotations between
the target state |t0〉 ≡ 1√

2
(|01〉 + |10〉) and the corresponding

singlet |s〉 = 1√
2
(|01〉 − |10〉). However, our measurement

operator X is not capable of distinguishing these two states and
so does not yield any direct information determining when to
apply this operation. Hence the present construction of optimal
strategies will assume negligible decoherence, although we
retain the density-matrix element ρss throughout the analysis
in order to study the impact of dephasing (see Sec. VII).

Our goal is to find the optimal values of θi and φi as a
function of time and measurement outcomes �V that will
maximize entanglement. We choose the fidelity [38] of ρ

with respect to the pure state ρt0 ≡ |t0〉〈t0|, i.e., F(ρ,ρt0) ≡
Tr[

√√
ρt0ρ

√
ρt0]2 = ρt0t0, as a proxy for entanglement rather

than the concurrence [39] with this state, since the former
yields a figure of merit that is linear in the state ρ. We
further simplify the setup by enforcing identical local feedback
unitaries satisfying the properties θ1 = θ2 and φ1 = φ2 = π/2.
The triplet subspace is closed under local unitary rotations sat-
isfying these constraints. We assume that the initial state is in
the triplet subspace, so we do not require the general rotations
that connect the singlet and triplet subspaces. This is consistent
with initializing in the equal superposition state |ψ0〉.

In order to find the optimal feedback rotation af-
ter a measurement, regardless of whether this is in a
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discrete- or infinitesimal-time increment, we parametrize the
density matrix as follows:

ρ =

⎡
⎢⎢⎢⎣

ρt−t− ρt−t0 ρt−t+ ρt−s

ρ∗
t−t0 ρt0t0 ρt0t+ ρt0s

ρ∗
t−t+ ρ∗

t0t+ ρt+t+ ρt+s

ρ∗
t−s ρ∗

t0s ρ∗
t+s ρss

⎤
⎥⎥⎥⎦, F = ρt0t0,

where |t−〉 ≡ |00〉, |t+〉 = |11〉, and |s〉 ≡ 1√
2
(|01〉 − |10〉).

Since we are restricting the feedback operations to σy rotations
(φ = π/2) and our measurement is represented by a real
matrix, we may further restrict ρ to be a real matrix. The
fidelity with respect to |t0〉 after applying identical σy rotations
on both qubits is given by

F1 = 〈t0|ρ1|t0〉
= F + 1

4 (
√

8 sin 2θ (ρt−t0 − ρt0t+)

+ (1 − cos 2θ )(1 − 3F − 2ρt−t+ − ρss), (8)

where ρ1 = UF [θ,θ, π
2 , π

2 ]ρU
†
F [θ,θ, π

2 , π
2 ]. The optimal rota-

tion angle θ is then found by maximizing 〈t0|ρ1|t0〉 over θ

and is given by

θopt[ρ] = 1
2 arctan[

√
8(ρt−t0 − ρt0t+),3F

+ ρss + 2ρt−t+ − 1], (9)

where arctan[y,x] behaves as arctan[y/x], but with θ chosen
in the correct quadrant, i.e.,

arctan[y,x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan[y/x], x > 0

arctan[y/x] + π, y � 0, x < 0

arctan[y/x] − π, y < 0, x < 0

(y/|y|)π/2, x = 0.

(10)

Average-sense local optimality

Equation (9) defines the optimal feedback as a function
of the density matrix in a single time step. This relation will
define a locally optimal protocol (sometimes referred to as a
greedy strategy [40]), meaning that the controller maximizes
the figure of merit at each time step.1 However this may not be
viable for practical applications. Although the controller does
in principle have access to the density matrix at every time step,
actually calculating ρ(t), e.g., using Eq. (3) or (6), amounts to
dynamical state estimation, which may be too computationally
intensive to implement on the fly, i.e., in real time, and hence
experimentally infeasible. Ideally, one would prefer to provide
a protocol that does not require storing and manipulating the
entire measurement record.

In order to obtain an experimentally feasible protocol, we
drop the requirement that a protocol be locally optimal and
instead search for one that is ASLO. To define such a protocol,
we first define the average evolution over a single iteration
of measurement and feedback to be the final state averaged
over all measurement outcomes. Thus the average state ρ̄

represents the state of knowledge of a controller that measures,

1The term local refers to time local here and not spatially local (as
in local unitary rotation).

applies feedback according to the measurement outcome, but
then forgets which measurement outcome occurred and which
feedback operation it applied. Average-sense locally optimal
feedback is then given by the feedback operation that would
be locally optimal if the average state were the actual state.
This notion will allow us to define feedback protocols that
can be applied with low computational overhead or even with
a passive device. It also simplifies the analysis, since ASLO
protocols are Markovian by definition.

Given an arbitrary feedback protocol UF [ρ], we define the
average evolution over a time interval containing measurement
and feedback by

ρ̄(t + �t) =
∫

UF [ρ̄�V (t + �t)]ρ̄�V (t + �t)

×U
†
F [ρ̄�V (t + �t)]d(�V ) (11)

for discrete measurement and by

ρ̄(t + dt) =
∫

UF [ρ̄dV (t + dt)]ρ̄dV (t + dt)

×U
†
F [ρ̄dV (t + dt)]d(dV ) (12)

for continuous measurement. In the sections that follow, we
denote average quantities derived from ρ̄, such as F̄ and θ̄opt,
by an overbar. Here ρ̄�V (dV )[t + �t(dt)] is the state after a
measurement initiated at time t , which is given by Eq. (6) [or
Eq. (3)] acting on ρ̄(t) [but not yet performing the average
over �V (dV )]. Note that we are neglecting the time it takes
to apply the unitary operations, so only the measurement
contributes to the time duration of the feedback process.
These equations represent the state update for the controller
described above. Because we have set UF to be a function
of ρ̄V , we have implicitly restricted the feedback operation to
depend only on the most recent measurement outcome V (t)
and the current time t , given the known time evolution of
ρ̄(t). Consequently the feedback is Markovian. Furthermore,
because of the integration over measurement outcomes, ρ̄(t)
is not a stochastic quantity and thus one can solve Eq. (11)
or (12) for ρ̄(t) given feedback protocol UF [ρ̄V ] and initial
state ρ̄(t = 0).

The ASLO feedback operation θ̄opt is defined by replacing
ρ with ρ̄V in Eq. (9), which corresponds to applying the locally
optimal feedback assuming that the actual state is ρ̄. Because
ρ̄ is known from the outset, the ASLO feedback operation can
be specified in a lookup table that can be computed beforehand
for a given initial state. This is a substantial reduction in
computational overhead and as we will see in later sections,
this lookup table can in some instances be implemented by a
passive device such as a mixer (multiplier), essentially making
the feedback autonomous. In the following sections we will
calculate the ASLO feedback strategy UF [V,t] for several
cases and analyze their behavior for deterministic remote
entanglement generation.

It is useful to analyze the symmetries of the framework that
we have outlined above. Suppose we start in an initial state
that is symmetric under the transformation |0〉 ↔ |1〉 on both
qubits (henceforth referred to simply as a 01-symmetric state).
This symmetry implies that ρt+t+ = ρt−t−, ρt−t0 = ρt0t+, and
〈X〉 = 0. Measurement can stochastically break this symmetry
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by pushing the state toward |00〉 or |11〉. However, because
the target state |t0〉 also respects this constraint, feedback
will act equally and oppositely for these two cases [i.e.,
θopt(V ) = −θopt(−V )] and thus this symmetry will be restored
after integrating over V as in Eq. (11) or (12). Thus we may
assume throughout that ρ̄ retains 01 symmetry so long as
the initial state does and thus ρ̄t+t+ = ρ̄t−t−, ρ̄t−t0 = ρ̄t0t+,
and 〈X〉ρ̄ = 0. Note that unlike both the target and equal
superposition state, which are both 01 symmetric, the ground
state |11〉 is an example of a state that is not 01 symmetric and
thus we have excluded a natural initial state for the problem.
However, in this case it is locally optimal to apply a π/2
rotation on both qubits, after which we will be in the equal
superposition state |ψ0〉.

While feedback strategies designed in this manner may
not perform as well as those in which full dynamical state
estimation is used at each time step, the added simplicity of
average-sense local optimality makes the resulting protocols
substantially simpler to implement experimentally. Note that
until Sec. VI, none of the strategies we formulate attempt to
surpass the performance of a locally optimal protocol.

IV. DISCRETE FEEDBACK AND THE SEMICLASSICAL
PROTOCOL

We now consider specific feedback protocols based on
ASLO introduced in the previous section. In this section
we consider the situation where the quantum efficiency of
the measurement is small, i.e., η 
 1, which is a highly
relevant scenario in many experimental settings. In this regime,
measurement-induced dephasing quickly reduces the off-
diagonal elements of the density matrix to zero [see Eq. (3)],
so the controller only has access to the classical probabilities
associated with the three measurement eigenstates. Without
knowledge of the coherences, we arrive at a semiclassical
protocol. This not only will provide a useful comparison to
the more general quantum protocol derived in the following
section, but will also be important for developing a hybrid
protocol for arbitrary but not necessarily small efficiency η < 1
(Sec. VI).

In the limit of very small η, off-diagonal elements of ρ̄(t)
will be approximately 0. To study feedback in this case, we
explicitly set the off-diagonal elements to be some small
quantities ρ̄t−t0 = ρ̄t0t+ = ε and ρ̄t−t+ = ε′, respectively, so
that the first argument y of the arctan function in Eq. (9)
and thus arctan[y/x] are approximately zero. If the second
argument x is positive, i.e., 3F̄�V − 1 − 2ε′ ≈ 3F̄�V − 1 >

0, then θ̄opt = 0 (assuming for simplicity of the resulting
equations that the singlet subspace is unpopulated). Using
Eq. (6), we see that for an initially-01-symmetric state with
fidelity F̄ , the fidelity F̄�V after measurement is given by

F̄�V = F̄
F̄ + 1−F̄

2 (e−4ηk�t(1+2�V ))(1 + e16ηk�t�V )
. (13)

Because Eq. (13) decreases monotonically away from
�V = 0, the above inequality yields a threshold behavior for
the feedback strategy, in which the preferred operation is to
do nothing unless |�V | exceeds some critical value VT,opt. In
this case x < 0 and then θ̄opt = ±π/2 where the sign is chosen
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FIG. 2. (Color online) Discrete-time feedback simulations,
showing fidelity with the |t0〉 state as a function of time, starting
from the maximally mixed state in the triplet subspace. For these
simulations, η = 0.1, k = 1(2π ) MHz, and �t = 20 μs. The inset
shows the optimal threshold voltage as a function of time. Note that
for a smaller threshold, fidelity increases quickly at first but then
saturates to a value significantly less than one, while for a larger
constant threshold, fidelity increases slowly at first but then surpasses
the former and approaches unity, though it does not asymptotically
approach 1 [see Eq. (15)]. The locally optimal strategy, which
increases the threshold as a function of time, matches or surpasses
both fixed-threshold strategies at all times.

to match the sign of y. Using Eq. (4) to calculate y, it is not
difficult to show that the sign of y is the same as that of ε�V .2

The optimal threshold voltage is given as

VT,opt = 1

8ηk�t
arccosh

[
2F̄

1 − F̄
exp(4ηk�t)

]
, (14)

which defines the semiclassical protocol. Note that VT,opt =
1/2 in the projective measurement limit k�t � 1. Equa-
tion (14) has a simple interpretation. If the state is already
entangled with high probability, the controller does nothing. If
the probability of being in either |t−〉 or |t+〉 is above a certain
threshold, one applies a ±π/2 pulse to both qubits, which
essentially resets the state to the product state 1

2 (|0〉 + |1〉) ⊗
(|0〉 + |1〉) = |ψ0〉 and gives the joint measurement another
chance to collapse to the entangled |t0〉 state. Figure 2 shows
the performance of this feedback strategy, in which fidelity is
calculated according to Eq. (11).

This strategy is classical in the sense that the optimal
feedback could just as easily be calculated by using the
classical Bayes rule to combine prior state knowledge with
the information gathered from the previous measurement to
determine whether it is beneficial to apply feedback or do
nothing [41]. Note that the larger F̄ is, the larger VT,opt is and
hence the wider the range of voltage in which no operation is
performed, [−VT,opt,VT,opt]. Qualitatively, this is because as

2If ε is identically zero, then one may take it to be an infinitesimal
positive or negative value when calculating θ̄opt.
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the fidelity with |t0〉 increases, it becomes more likely that the
qubits are in the entangled state and so new information needs
to suggest with higher probability that the system is in |t−〉 or
|t+〉 before applying a rotation is beneficial, consistent with
the Bayesian interpretation.

If one instead uses a fixed threshold value for feedback, one
can analytically solve for the steady-state fidelity under this
protocol:

F̄ss = 〈t0|ρ̄(∞)|t0〉

= 1 − 4 erfc
[

VT

σ

]
erfc

[ (VT +1)
σ

] + 4 erfc
[

VT

σ

] + erfc
[ (VT −1)

σ

] , (15)

where σ ≡ 1/
√

4kη�t is the standard deviation of the mea-
surement operator and erfc is the complement error function
1 − erf(x). We can see by taking limits of this expression that
one can only reach unit steady-state fidelity in the limit that
VT � σ or, in other words, the threshold voltage is much
greater than the variance of the Gaussian weak measurement
effect (5).

The discussion above defines a viable locally optimal
discrete feedback protocol using a half-parity measurement.
Feedback applied to a full-parity measurement has been
used to deterministically entangle qubits located in the same
cavity [26], without analysis or proof of any optimality
properties. A different protocol was described in [42].

V. THE CONTINUOUS-TIME CASE AND QUANTUM
PROTOCOL

If one attempts to derive a continuous-time protocol using
the above result, the increase in fidelity becomes arbitrarily
slow in the small-�t limit. This is problematic for implemen-
tations. The underlying issue is apparent from examination of
the �t → 0 limit if the threshold voltage in Eq. (14) is taken.
Here VT,opt diverges as 1/�t , but the standard deviation of the
measurement outcomes diverges more slowly, as 1/

√
�t . (We

note that the fact that these quantities diverge is an artifact of
our normalization convention for �V . No physical observable
diverges in this limit.) Thus the probability that this feedback
strategy will result in performing any operation on the state
vanishes. In order to derive a viable continuous-time protocol,
we must therefore include coherences and take the full density
matrix into account instead of just the diagonal elements.

We approach this by recognizing that Eq. (9) itself defines
an ASLO protocol and can therefore be used to derive both
discrete- and continuous-time feedback strategies directly,
without setting the off-diagonal terms of ρ to zero. Figure 3
shows the performance of this discrete-time strategy in
the case of perfect efficiency η = 1 for various choices of
�t and compares with the semiclassical protocol derived
in the preceding section. Not surprisingly, Fig. 3 shows
that the quantum protocol has a strictly better performance
over the semiclassical protocol. However, the performance gap
between the two protocols closes as �t increases. The reason
for this is that both the measurement-induced dephasing and
the time interval between feedback operations increases as
�t increases, so the density matrix for which the feedback
is calculated becomes closer and closer to a diagonal form.
One can see this behavior explicitly in Fig. 3(b), in which
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FIG. 3. (Color online) (a) Discrete feedback simulations, show-
ing fidelity with the |t0〉 state as a function time under the
semiclassical and quantum feedback [Eq. (9)] strategies, starting in
the equal superposition state |ψ0〉 and assuming a unit efficiency
measurement and k = 1(2π ) MHz. The performance also changes
according to the discrete time step �t : we show two representative
cases here. (b) Feedback θopt(V ) applied by the quantum protocol
shown in (a) for the case �t = 0.2/k at four distinct time steps. At
the latest time step, θopt resembles the semiclassical protocol because
the off-diagonal elements of the density matrix have decayed to zero.

we plot the applied feedback as a function of the measurement
outcome. At late times, it resembles the semiclassical protocol.
We will revisit this point in Sec. VI.

The above example still constitutes discrete feedback, in
which the measurement and feedback unitary rotations act
sequentially. To derive a continuous protocol, we take the
measurement strength to be small and assume that infinite
strength rotations are available. We show below that this
unphysical assumption will be unnecessary, but it is convenient
for the initial derivation.

Given that ρ̄ is 01 symmetric for any evolution starting from
an initially-01-symmetric state, dV ∝ dW because 〈X〉 = 0.
Furthermore, inspection of Eq. (3) shows that the quantity
ρ̄t−t0,dV − ρ̄t0t+,dV appearing in the first argument of the
arctan function in Eq. (9) is infinitesimal and proportional to
dW . We can then substitute the continuous-time measurement
update in Eq. (3) into Eq. (9) and expand in a Taylor series
with respect to ρ̄t−t0,dV − ρ̄t0t+,dV ∝ dW . Assuming that the
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second argument in the arctan function is greater than zero,3

this yields a proportional feedback strategy in which the
feedback rotation is proportional to the measurement outcome
dW via

θ̄opt = 4
√

kηρ̄t−t0

3F̄ + ρ̄ss + 2ρ̄t−t+ − 1
dW (16)

or equivalently

P̄opt(t) ≡ θ̄opt

dV
= 8

√
2kηρ̄t−t0

3F̄ + ρ̄ss + 2ρ̄t−t+ − 1
. (17)

This shows that the ASLO feedback is in fact direct
feedback in the continuous-time limit, where the feedback
rotation angle is directly proportional to the measurement
value. This is the type of feedback is modeled by a Wiseman-
Milburn feedback master equation [5,43] given in this instance
by

dρ̄V = D[M]ρ̄dt + H[M]ρ̄
√

ηdW − i[HF ,ρ̄]
dW√
8ηk

− i[HF ,{M,ρ̄}] dt√
8k

+ D[HF ]ρ̄
dt

8kη
, (18)

with

HF = P̄opt(t)

2
(σy1 + σy2). (19)

Here dρ̄ may be calculated as before using the averaged
version of Eq. (18), i.e., integrating out dW . Substituting
Eq. (17) into Eq. (18) then yields the equations of motion for
the state under the ASLO quantum, continuous-time protocol.
While this equation is difficult to solve in the general case,
for η = 1 it admits an analytic solution when the initial state
is pure and satisfies the usual symmetry property. To find this
solution, we take the trial solution to be pure and 01 symmetric,
so ρ̄ = |ψ〉〈ψ | with

|ψ(t)〉 =
⎡
⎣

√
1 − F̄(t)

2
,

√
F̄(t),

√
1 − F̄(t)

2
, 0

⎤
⎦

T

. (20)

Substituting this form into Eq. (18) yields the following
differential equation for F̄ :

dF̄
dt

= 2k(1 − F̄) ⇒ F̄(t) = 1 − [1 − F̄(0)]e−2kt . (21)

Crucially, the terms in Eq. (18) that depend on dW cancel
upon substitution. This cancellation ensures that the actual
state equals the average state at all times, i.e., ρ̄(t) = ρ(t),
so the average state evolution is pure under this feedback
protocol. This implies that the nonaveraged evolution is
also deterministic and thus dynamical state estimation is not
necessary to implement the locally optimal strategy in this
special case.

3If we start in the separable state (|0〉 + |1〉) ⊗ (|0〉 + |1〉) as is most
practical, this constraint will hold true for all later times. If we start in
a state that does not satisfy this property, it is locally optimal to first
apply a π/2 rotation on both qubits, after which the second argument
will be greater than zero.

Having a solution for the evolution of the full density
matrix in the case η = 1 also yields an analytic solution for
the optimal proportionality coefficient between feedback and
measurement Popt as a function of time:

Popt(t) = 4k[1 − F(0)]√
[1 − F(0)][F(0) − 1 + e2kt ]

. (22)

This equation displays a marked similarity to the optimal
feedback for single-qubit purification [9], with the functional
form differing only by two minus signs in distinct locations.
Like this quantum protocol for pure states, the single-qubit
state evolution under optimal feedback is also deterministic
and has been shown to be globally optimal for η = 1 [9,12,14].
These parallels lead us to speculate that the protocol given
by Eq. (22) may be globally optimal as well. In the case of
nonunit measurement efficiency, F̄ appears to exactly follow
an exponential that asymptotically approaches a value less than
1. However, we have not been able to find an analytic solution.

Figure 4 shows the fidelity as a function of time using the
quantum protocol for η = 1, comparing the performance of
the ASLO protocol with time-dependent Popt(t) (blue line) to
that obtained by using a constant multiple of the zero time
value Popt(0) (red and yellow dotted lines). The superiority of
the ASLO protocol is evident.

It is useful to study the asymptotic behavior of these
protocols. The numerical simulations show that with the ASLO
strategy, the fidelity quickly asymptotically approaches one,
while using a constant multiple of Popt(0) does not reach unit
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FIG. 4. (Color online) Continuous feedback simulations, show-
ing fidelity with the |t0〉 state F̄ as a function of time under
the continuous-time ASLO protocol given in Eq. (17). The initial
state is the separable state |ψ0〉. The simulation parameters are
k = 1(2π ) MHz and η = 1, with time step dt 
 1/k. Fidelity as
a function of time for several values of constant proportionality
coefficient P are also shown for comparison. The inset shows the
steady-state fidelity F̄ss,f achieved for constant P , according to
Eq. (23). Since we have taken the small dt limit, the threshold strategy
would not change from its fidelity at t = 0. Note that if we were to
plot the locally optimal strategy in this continuous-time situation,
which would nomically require dynamical state estimation, it would
coincide exactly with the curve for Popt(t).
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fidelity. This raises the question of whether a specific fixed
value of P could also yield unit fidelity. By fixing dρ̄ = 0 in
Eq. (18), we obtain a system of linear equations that can be
solved to yield the steady-state fidelity for fixed P :

F̄ss,f = P 2 + 16k2η(1 + 8η)

3P 2 + 16k2η(3 + 8η)
. (23)

This result is valid for P �= 0 (when P = 0, any state that
commutes with the measurement is a steady state). For large
P , the steady-state fidelity tends to 1/3, while in the limit
P → 0, the steady-state fidelity is given by (1 + 8η)/(3 + 8η).
Moreover, since the denominator in Eq. (23) is greater than
the numerator for all values of parameters, F̄ss,f < 1. This
analysis proves that it is not possible to obtain unit fidelity
with a constant value of P and therefore a time-varying direct
feedback protocol is necessary in order to reach unit fidelity at
long times.

This quantum protocol has several appealing features
for experimental realization. First, proportional feedback is
realizable simply by using a mixer or analog multiplier [8],
both of which have very low latency. Furthermore, unlike
the semiclassical protocol, only infinitesimal rotations are
called for in any given time step, which reduces the resources
necessary for implementation.

VI. INEFFICIENT MEASUREMENT AND HYBRID
PROTOCOLS

For unit efficiency, the fidelity quickly reaches 1 when
continuous-time feedback is used. However, for η < 1, the
fidelity asymptotically approaches a value less than 1 (see
Fig. 5). Qualitatively, this happens because the off-diagonal
elements of ρ that drive feedback in the continuous-time case
[see Eq. (17)] decay faster relative to the feedback terms that
increase the fidelity. In contrast, if we implement discrete-time
feedback for the same value of η < 1, the fidelity increases
more slowly at first, but eventually surpasses the asymptotic
fidelity of the continuous-time strategy. Moreover, we know
from Sec. IV that the semiclassical strategy is unaffected
by decay of the off-diagonal terms and this strategy does
reach a fidelity of 1. However, this strategy is only viable
when the measurement time is finite. These facts suggest
that we consider a hybrid protocol that transitions between
continuous-time and discrete-time feedback, i.e., has a variable
measurement duration.

To determine how to make this transition, we perform
a numerical optimization of the measurement durations as
follows. We divide the system evolution into 200 discrete steps
each of duration �ti subject to the constraint

∑
i �ti = Tfinal.

At each time step, discrete-time measurement, according
to Eq. (5), followed by feedback according to the general
optimal function (9) is applied. Then an optimization over all
time intervals �ti is performed (using the gradient descent
algorithm) to minimize the cost function 1 − 〈t0|ρ̄(Tfinal)|t0〉.

The results of this optimization are shown in Fig. 5, where
we plot the resulting fidelity as a function of time and compare
to evolutions in which all �ti are fixed to a constant finite or
an infinitesimal value. The optimization consistently finds a
minimum in which the majority of the �ti intervals are small
and approximately equal, while a few at the end are large. In
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FIG. 5. (Color online) Fidelity F̄ starting from the |ψ0〉 state as
a function of time under the optimal variable-time-step protocol
(blue circles), compared to fidelity obtained with constant-time-
step protocols [discrete-time semiclassical protocol (red crosses)
and continuous-time quantum protocol (yellow dotted line)]. The
measurement is on continuously at a constant rate and feedback is
applied instantaneously at each point in the graph. The parameters
k = 1(2π ) MHz and η = 0.4 are chosen to illustrate the benefit of
this optimized strategy for nonunit but not too small efficiency. The
dense cluster of points before t = 2 μs shows that the gradient search
resulted in almost all of the times for application of feedback to be
located in the early stages of the evolution. Also shown is the fidelity
obtained from a full non-Markovian strategy using dynamical state
estimation and locally optimal feedback (see the text).

other words, the optimal solution found by gradient descent
shows a sharp transition between continuous-time feedback at
short times to discrete-time feedback at long times. After the
switching time, the off-diagonal elements are observed to be
small and thus the applied feedback closely resembles that of
the semiclassical protocol.

Since the measurement rate k is held constant in the
above optimizations, an alternative way to view the change
in optimal measurement time step is to view the finite duration
measurements as a series of infinitesimal measurements.
This perspective lends itself to the interpretation that when
the hybrid protocol uses discrete feedback, it abstains from
applying feedback at one time, only to apply a stronger
feedback at a later time, and thus is not locally optimal.
While we cannot prove any optimality properties of this hybrid
protocol, its superior numerical performance indicates that it is
significantly closer to global optimality than both of the fixed
�t protocols derived in previous sections.

Figure 5 also shows that there exists a non-Markovian
strategy that outperforms the hybrid protocol described above.
Simulating continuous feedback and averaging over 300
trajectories, we plot the fidelity as a function of time, assuming
that the controller performs dynamical state estimation at each
time step and then applies the optimal feedback unitary (9).
Because simulation of trajectories tracks the actual state as
opposed to the average state, this protocol is locally optimal, as
opposed to ASLO. This strategy is found to surpass the hybrid
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protocol at both early and late times, showing that for η < 1,
dynamical state estimation can yield a better protocol than one
based only on the average state. However, as discussed earlier
(see Sec. III), such a non-Markovian protocol is generally more
difficult to implement in practice.

VII. EXPERIMENTAL REALIZATION

In any experimental realization of the proposed feedback
schemes to achieve entanglement between remote qubits,
numerous imperfections will complicate the dynamics studied
above. First, finite coherence of the qubits will limit the fidelity.
Second, the above results apply only to truly Markovian
dynamics, in which the controller acts instantaneously with
an action that is based solely on the most recent measurement
outcome. In practice, the homodyne measurement will have
finite bandwidth and the feedback will necessarily act with
some finite delay. In this section we present simulations of
the continuous-time quantum feedback protocol specified in
Eq. (17), in which these imperfections are now incorporated.
We use the full stochastic master equation including finite
detector bandwidth that is derived in [44],

dρ = D[M]ρdt + H[M]ρ
√

ηdW + Lqdt − i

τ
[HF ,ρ]

×
∫ ∞

t0

e−(s−t0)/τ

[
2〈X〉(t − s)ds + dW (t − s)√

η

]
, (24)

where Lq models relaxation T1 and dephasing Tφ on both
qubits

Lq =
∑

i

[
1

2Tφ,i

D[σz,i]ρ + 1

T1,i

D[σi]ρ

]
. (25)

Notice that the term in large square brackets in Eq. (24) is sim-
ply dV . Simulations are for experimental parameters η = 0.4,
dephasing times Tφ,1 = 11.3 μs/2π and Tφ,2 = 30 μs/2π

for the first and second qubits, respectively, relaxation time
T1 = 20 μs/2π [4], feedback delay t0 = 100 ns, feedback
loop bandwidth 1/τ = 1.6(2π ) MHz [8], and measurement
rate k = 1.3(2π ) MHz. The effective dephasing times are
obtained from combining an intrinsic qubit dephasing time
of 30 μs/2π with a loss of 0.04 in amplitude units between
the cavities due to the circulator, which amounts to an effective
σz measurement on the first qubit by the environment [4].

To apply the average state feedback protocols, we assume
that the effects of delay and finite bandwidth, the non-
Markovian effects, are small, so that P̄opt(t) is unchanged
after neglecting them. In this limit, we can then first run
a simulation to calculate the average evolution ρ̄(t) using
the continuous-time quantum protocol (12). This simulation
incorporates decoherence but not the feedback delay or finite
bandwidth effects. From this first simulation, we extract P̄opt(t)
and we then apply this feedback coefficient to the stochastic
simulations using Eq. (24), which are able to incorporate
non-Markovian effects. This average performance is obtained
here by averaging over 1500 stochastic trajectories. For these
particular experimental parameters, dephasing prevents the
fidelity from reaching the switching point observed above,
which was confirmed by applying the same optimization as
that of Sec. VI but including the above dephasing and decay
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FIG. 6. (Color online) Continuous-feedback simulations, show-
ing fidelity with the |t0〉 state as a function of time under the
continuous-time ASLO protocol prescribed by Eq. (17) and incor-
porating experimentally realistic parameters and imperfections as
described in the text. The fidelity reaches a much lower peak value
than it would in the ideal case before decaying due to finite dephasing.
Despite this, the fidelity substantially surpasses 50%, which is the
threshold for entanglement. To directly quantify entanglement, we
also plot the concurrence [45] as a function of time. Dashed and
dotted curves show fidelity using a 50% postselection criterion with
and without feedback, respectively.

rates. Therefore, in this case, our hybrid strategy dictates that
we apply only continuous feedback.

Figure 6 shows the time dependence of the fidelity and
concurrence resulting from this strategy, i.e., applying the
continuous-time ASLO quantum feedback protocol in the
presence of the additional experimental imperfections (solid
blue lines). Figure 6 shows that existing technology is adequate
to implement our proposal and to deterministically entangle
two transmon qubits, since both the fidelity and concurrence
achieved substantially surpass the corresponding entanglement
thresholds to a significant degree. Although the average state
feedback protocols derived here are motivated by the goal
of achieving deterministic entanglement generation, one can
also add postselection to this protocol even though, unlike
the situation in measurement-induced entanglement without
feedback [4], it is not essential here. The red dotted lines in
Fig. 6 show the effect on the fidelity and concurrence of using
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a 50% postselection, in which only the trajectories for which
the absolute value of the integrated signal from 0 to 2.7 μs
is less than the median are retained. The value of 2.7 μs was
chosen to optimize the peak fidelity. This postselection method
does not require any advanced processing of the signal and is
seen to further enhance the fidelity and concurrence. We also
plot the fidelity and concurrence using the same postselection
criteria but without feedback, which confirms that feedback
results in an improvement.

In the experiment of Ref. [8], the propagation through
cables introduced the largest contribution to delay. Our results
show that this delay has a measurable effect on the results of
the simulation. It is conceivable that the delay could increase
as the physical separation between the qubits is increased. It is
useful to inquire whether our feedback protocol remains viable
in this context. The answer to this question lies in the fact
that the measurement strength k effectively sets the time scale
for all feedback dynamics, as is evident in Eq. (18). Making
the substitutions k → k/s, dt → dts, and dW → dW/

√
s

leads to recovery of the same equation. Thus the effect of
feedback delay and finite bandwidth can be removed simply
by reducing the measurement strength. This has the effect of
slowing down all the dynamics. Of course, one still encounters
a limit set by the other absolute time scales inherent to the
problem, in particular, the time scales for T1 and T2 processes.
Nevertheless, this heuristic scaling argument shows that one
can always choose k to strike a balance between delay and
dephasing in order to optimize fidelity and that it is only the
effective coherence times that will fundamentally limit the
achievable entanglement.

In practice, increasing the distance between the qubits
will also increase photon loss between cavities. Since the
measurement probe has not yet interacted with the second
qubit at this point, loss between cavities introduces additional
dephasing on the first qubit. Such dephasing was seen to be
significant in the experiment of Ref. [4], in which photon
loss was dominated by the microwave circulator. Until better
circulators are made, this source of loss is also likely to
present a significant limitation to the maximum achievable
entanglement using this scheme.

VIII. CONCLUSION

In this work we have developed several protocols for remote
entanglement generation using measurement-based feedback
that do not require real-time quantum state estimation. We
introduced the notion of average-sense locally optimal pro-
tocols, in which the feedback operations are determined at
a specific (local) time by maximizing the fidelity of the
average state after a discrete or infinitesimal measurement with
respect to the target state. Using this approach, we derived
a quantum feedback scheme with local unitary operations
that allows deterministic generation of entanglement when
the measurements can be performed with unit efficiency
(η = 1). The time local measurement averaging results in a
Markovian feedback that is applicable to both discrete- and
continuous-time implementation. In the continuous-time limit,
the optimal ASLO quantum feedback becomes equivalent to
simple proportional feedback, which is easily modeled using
a Wiseman-Milburn equation [5,43] and may be realized

in an autonomous fashion in experiments using a mixer
(multiplier) [8]. The ASLO strategy was then used to develop
a discrete-time step, semiclassical protocol, suitable for low
measurement efficiencies and large time steps, in which only
the classical probabilities for being in the entangled or unentan-
gled states are taken into account. Analysis of the asymptotic
behavior of both quantum and semiclassical protocols led to
the development of a hybrid strategy that transitions from the
quantum protocol at early times to the semiclassical strategy
as the target state is approached at longer times, with an
accompanying change in time step at the switching point. We
demonstrated that such a hybrid strategy can be beneficial for
the general case of intermediate measurement efficiency η < 1
with numerical optimizations and found strong evidence that
the hybrid strategy is significantly closer to global optimality
than any fixed-time-increment ASLO protocol.

The ASLO feedback strategies developed here possess
interesting relationships to the locally optimal strategies for
single-qubit purification by measurement and feedback [14]. In
particular, the semiclassical protocol bears some resemblance
to the locally optimal strategy for qubit purification in the
small-η limit, while the quantum protocol at unit measurement
efficiency also bears a striking resemblance to the correspond-
ing optimal feedback for qubit purification in Ref. [14]. The
advantages of combining two different strategies tailored to
different measurement efficiencies in a single hybrid strategy
were also observed in single-qubit purification, although here
we have taken the additional step of optimizing the transition
time.

We investigated the performance of these ASLO protocols
for generation of remote entanglement between superconduct-
ing qubits with calculations based on existing superconducting
3D transmon technology. We found that even under the current
conditions of relatively low measurement efficiency, the ASLO
protocols can deterministically generate amounts of entangle-
ment substantially surpassing the entanglement threshold [46].
In contrast, the known methods of heralded entanglement
based only on measurements are always probabilistic. We
further showed that in the presence of low measurement
efficiency, one can also use postselection to further enhance
the fidelity and we therefore developed a simple scheme based
on the integrated signal to further enhance the fidelity to the
target entangled state. This analysis highlights an interesting
advantage of this remote entanglement generation scheme over
others, such as those based on single-photon counting and the
Hong-Ou-Mandel effect [47,48]. The ability to use feedback in
our setup allows one to enhances the probability of success in
a way that is not possible in these other heralded entanglement
schemes. While the analysis presented in this work most
immediately applies to superconducting qubits in microwave
cavities, it could of course be adapted to any system in which
one can implement a weak measurement of the half-parity
observable defined in Sec. II.

This work suggests several future avenues for research
that would be interesting from both a theoretical and an
applied point of view. First, one could apply the verification
theorems to address the question of whether or not our
protocols are globally optimal [49]. In the case of unit
efficiency and no decoherence, we speculate that our solution
is globally optimal, although we have not attempted to prove
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this statement. The deterministic evolution of the state under
the quantum ASLO protocol indicates promise for this, in
part because this feature, i.e., the deterministic evolution, is
also observed in the globally optimal protocol for single-
qubit purification. Second, while fidelity is a useful figure
of merit for generating known states, concurrence may be
more suitable for a detailed theoretical study and could yield
additional insights. For instance, unlike fidelity, concurrence is
invariant under the allowed feedback Hamiltonians, mirroring
the behavior of entanglement. It would be useful to see
whether this shared symmetry could be exploited. Finally,
while we have ignored dephasing in the development of the
ASLO feedback protocols, in applying the protocols to the
realistic experimental setting for superconducting transom
qubits, we found that dephasing presented the main limitation
to performance. This suggests that it would be useful to
investigate related protocols that would focus on correcting
dephasing errors and hence assist with remote entanglement
stabilization.
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APPENDIX: DERIVATION OF FINITE-TIME POVM

As discussed in the main text, the stochastic master equation
(SME) associated with a continuous-time QND measurement
of the Hermitian observable X with strength k on a system
with free Hamiltonian H is

dρ =−i[H,ρ]dt + 2kD[X]ρdt +
√

2kH[X]ρdW (t). (A1)

The superoperators D and H are defined in the main text. We
assume that the measurement is unit efficiency and since it is
QND, [H,X] = 0. This equation describes the evolution of the
system conditioned on the measured voltage

dV (t) = 〈X〉(t)dt + dW (t)√
8k

. (A2)

The linear stochastic master equation [50–52] associated
with this equation is

dρ̄ =−i[H,ρ̄]dt + 2kD[X]ρ̄dt +
√

2kH̄[X]ρ̄dW (t),

(A3)

with H̄[A]ρ̄ ≡ Aρ̄ + ρ̄A†. While Eq. (A1) is nonlinear in ρ

and produces a normalized density matrix [i.e., tr(dρ) = 0],
Eq. (A3) is linear in ρ̄ and produces an unnormalized density
matrix. Further, since this equation is linear we can restrict our
focus to its action on pure states (since any density matrix is
a convex sum of pure state density matrices). This defines the

associated linear stochastic Schrödinger equation (SSE) [50]

d|ψ̄〉 = [(−iH − kX2)dt +
√

2kdW (t)X]|ψ̄〉. (A4)

This is again a linear equation in the state |ψ̄〉.
Both the linear SME and linear SSE sacrifice the nor-

malization of the resulting state for linearity. To see what
this means physically, note that both equations are consistent
with 〈X〉 = 0 and hence dV (t) = dW (t)√

8k
, which means that we

are generating conditional dynamics according to statistics
associated with some fictitious (time-independent) state with
property 〈X〉 = 0. The real state |ψ〉 may not have this property
and this is why the normalization is incorrectly predicted by
Eq. (A4).

Despite this issue with unnormalized states, the utility of
Eq. (A4) is that it is sometimes possible to analytically solve
for |ψ̄〉 (see, for example, Ref. [52]). In fact, the linear SSE
in Eq. (A4) is in the easiest class of such equations to solve
since all the operators in it commute. We are interested in the
solution to Eq. (A4) over a small finite measurement time �t .
This can be solved explicitly and is given by [52])

|ψ̄�W (t + �t)〉 = e−iH�te−2kX2�t+√
2kX�W |ψ̄(t)〉

= e−iH�te−2kX2�t+4kX�V |ψ̄(t)〉
≡ 	̄�V |ψ̄(t)〉 (A5)

for any initial state |ψ̄(t)〉 (including normalized states), where
�W = ∫ t+�t

t
dW (t ′) is a Gaussian random variable. In the

second line we have used the relation between the measured
voltage and �W to write the solution in terms of the measured
quantity �V , which has the probability distribution

P�V =
√

4k

π�t
e− 4k�V 2

�t . (A6)

Equation (A5) generates states that do not quite yield correct
predictions since the normalization of the state is incorrect.
Consider a normalized initial state |ψ(t)〉. Then the probability
of evolving during the measurement time according to the
stochastic variation �V to time t + �t is not actually 〈ψ̄(t +
�t)|ψ̄(t + �t)〉, but rather [50–52]

P�V 〈ψ̄(t + �t)|ψ̄(t + �t)〉 = P�V 〈ψ(t)|	̄†
�V 	̄�V |ψ(t)〉.

This expression immediately tells us that the measurement
operator associated with the true finite-time evolution is

	�V =
√

P�V 	̄�V , (A7)

since the true probability of this stochastic evolution
is 〈ψ(t)|E�V |ψ(t)〉 for the positive-valued effect E�V =
	

†
�V 	�V .
Now, solving for this effect for the QND measurement, we

get

	�V =
(

4k

π�t

) 1
4

e−iH�te− 2k�V 2

�t
−2kX2�t+4kX�V

=
(

4k

π�t

) 1
4

e−iH�te−2k�t( �V
�t

−X)2
. (A8)
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Here 	�V is the finite-time measurement operator associated
with the η = 1 weak QND measurement used in the main
text (with H = 0) and E�V = 	

†
�V 	�V is its corresponding

effect.
For completeness we can also show that the effects defined

above constitute a POVM since

∫ ∞

∞
d(�V )dE�V

=
∫ ∞

∞
d(�V )	†

�V 	�V

=
∫ ∞

∞
d(�V )P�V e−4kX2�t+8kX�V

=
√

4k

π�t
e−4kX2�t

∫ ∞

∞
d(�V )e− 4k�V 2

�t
+8kX�V

=
√

4k

π�t
e−4kX2�t

√
π�t

4k
e4kX2�t

= 1. (A9)

Here the integral on the second line is a Gaussian integral that
can be evaluated by completing the square in the exponent.
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