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Solving strongly correlated electron models on a quantum computer
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One of the main applications of future quantum computers will be the simulation of quantum models. While
the evolution of a quantum state under a Hamiltonian is straightforward (if sometimes expensive), using quantum
computers to determine the ground-state phase diagram of a quantum model and the properties of its phases
is more involved. Using the Hubbard model as a prototypical example, we here show all the steps necessary
to determine its phase diagram and ground-state properties on a quantum computer. In particular, we discuss
strategies for efficiently determining and preparing the ground state of the Hubbard model starting from various
mean-field states with broken symmetry. We present an efficient procedure to prepare arbitrary Slater determinants
as initial states and present the complete set of quantum circuits needed to evolve from these to the ground state
of the Hubbard model. We show that, using efficient nesting of the various terms, each time step in the evolution
can be performed with just O(N ) gates and O(log N ) circuit depth. We give explicit circuits to measure arbitrary
local observables and static and dynamic correlation functions, in both the time and the frequency domains. We
further present efficient nondestructive approaches to measurement that avoid the need to reprepare the ground
state after each measurement and that quadratically reduce the measurement error.
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I. INTRODUCTION

Feynman envisioned that quantum computers would enable
the simulation of quantum systems: An initial quantum state
can be unitarily evolved with a quantum computer using
resources that are polynomial in the size of the system and
the evolution time [1]. However, it is not clear that this would
enable us to determine the answers to the questions of greatest
interest to condensed-matter physicists. The properties most
readily measured in experiments do not appear to be simple
to determine in a quantum simulation, and known algorithms
for quantum simulation do not return the quantities of greatest
physical interest. In experiments in a solid, one can rarely,
if ever, prepare a known simple initial state, nor does one
know precisely the Hamiltonian with which it would evolve.
Meanwhile, the ground-state energy (or the energy of any
eigenstate yielded by quantum phase estimation [2–4]) is not
a particularly enlightening quantity and, furthermore, given
a quantum state it is not clear how to determine its long-
wavelength “universal” properties. Consider, for instance,
the following questions. Given a model Hamiltonian for the
electrons in a solid, such as the Hubbard model, can we
determine if its ground state is superconducting? Can we
determine why it is superconducting? In this paper, we show
that it is possible, in principle, to answer the first question and,
if it has a clear answer (in a sense to be discussed), the second
question as well. Moreover, we show that it is not only possible
in principle but, in fact, feasible to answer such questions with
a quantum computer of moderate size.

The first step in the solution of a quantum Hamiltonian is
to map its Hilbert space to the states of a quantum computer.
While the Hilbert spaces of systems of bosons or spins are
mapped most naturally to the states of a general-purpose
quantum computer, fermionic systems can also be simulated
by using a Jordan-Wigner transformation to represent them as

spin systems [5,6]; the cost can be reduced to log(N ) using
the techniques of [7], with additional qubits [8], or using
appropriate ordering techniques discussed below. In order to
evolve the system on a general-purpose quantum computer,
we decompose the time-evolution operator according to the
Trotter-Suzuki decomposition [9,10]; the number of time
intervals in such a decomposition is determined by the desired
accuracy. The evolution for each time interval is expressed in
terms of the available gates. If the Hamiltonian can be broken
into k noncommuting terms, then the gates can be broken into
k sets; within each set, the gates can be applied in parallel,
and only O(k) time steps are needed for each interval. Time
evolution can be used in conjunction with the quantum phase
estimation [2–4] algorithm to find an approximate energy
eigenvalue and eigenstate of the Hamiltonian.

The challenge when applying this approach to electronic
systems is that the Coulomb Hamiltonian in second quantized
form,

H =
N∑

p,q=1

hpqc
†
pcq + 1

2

N∑
p,q,r,s=1

hpqrsc
†
pc†qcrcs, (1)

has k = O(N4) terms for N orbitals. Here the operators c
†
p and

cp create and annihiliate an electron with spin σ in spin-orbital
p (combining orbital index i and spin index σ ). The quadratic
hpq terms arise from the kinetic energy of the electrons and the
Coulomb potential due to the nuclei (which are assumed to be
classical in the usual Born-Oppenheimer approximation) and
the quartic hpqrs terms encode the Coulomb repulsion. In order
to estimate the ground-state energy of a system of interacting
electrons in a large molecule of N orbitals, naive estimates
indicated that O(N8) operations are needed [11], due to the
large number of noncommuting terms in the Hamiltonian, but
more recent analyses indicate that ∼N5 operations may be
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sufficient [12,13]. While this makes the simulation of small
classically intractable molecules feasible, the scaling is still
too demanding to perform electronic structure calculations
for more than a few hundred orbitals. This makes the brute-
force simulation of large molecules and crystalline solids
impractical.

One approach to reduce the scaling complexity for the
simulation of crystalline solids is to focus on effective models
that capture only the relevant bands close to the Fermi energy
and simplify the O(N4) terms of the Coulomb interaction to
just a few dominant terms. One of the paradigmatic effective
models for strongly correlated fermions, discussed in detail in
Sec. II, is the square lattice Hubbard model, which is a radical
simplification of the full electronic structure Hamiltonian (1) to
arguably the simplest interacting single-band model, described
by the Hamiltonian

HHub = −
∑
〈i,j〉

∑
σ

tij (c†i,σ cj,σ + c
†
j,σ ci,σ )

+U
∑

i

ni,↑ni,↓ +
∑

i

εini, (2)

where ni,σ = c
†
i,σ ci,σ is the local spin density and ni = ∑

σ ni,σ

is the total local density. Of all the orbitals in a unit cell, we
only keep a single orbital (describing, e.g., the Cu dx2−y2 in a
cuprate superconductor) and reduce the long-range Coulomb
repulsion to just the local repulsion U within this orbital
and the hybridizations tij = −hpq to nearest neighbors on the
lattice. The on-site energies are called εi = hii . Usually one
can consider a translationally invariant model and then drop
the indices in tij and εi since all sites are equivalent. Here we
keep them explicitly since they may not all be the same during
the adiabatic evolution.

The computational complexity of the Hubbard model (2)
is much reduced compared to the full electronic structure
problem (1), since only a single orbital is used per unit cell
instead of dozens needed for the full problem and the number
of terms is linear in N instead of scaling with the fourth
power N4. On a lattice of 20 × 20 unit cells this means a
reduction of the total number of terms from about ∼1012 to
∼103, which makes such a simulation feasible on a quantum
computer. Furthermore, since the 2D Hubbard Hamiltonian
can be expressed as a sum of five noncommuting terms (the
on-site interaction terms and four sets of hopping terms, one
for each nearest neighbor to a given site), each time step
in the Trotter-Suzuki decomposition requires only ∼ log N

parallel circuit depth (in fact, constant, if it were not for the
Jordan-Wigner strings). To achieve this optimal scaling, we
use a Jordan-Wigner transform combined with optimal term
ordering and the “nesting” and Jordan-Wigner cancellation
technique of Ref. [12].

The simplifying features of the Hubbard model that afford
such advantageous scaling with N are the restriction to nearest-
neighbor hopping and on-site interactions. Of course, a real
solid will have long-ranged Coulomb interactions and longer-
ranged hopping terms. However, the point of a model such
as the Hubbard model is not to give a quantitatively accurate
description of a solid, but rather to capture some essential
features of strongly correlated electrons in transition-metal
oxides. For these purposes, a simplified model that does not

include all of the complexity of a real solid should be sufficient
(although, for the case of the cuprate high-Tc superconductors,
the required simplified model may be a bit more complicated
than the Hubbard model; we focus here on the Hubbard model
for illustrative purposes).

A central question in the study of a model of strongly
correlated electrons is as follows. What is its phase diagram
as a function of the parameters in the model? The Hubbard
model has the following interesting subquestion: Is there
a superconducting phase somewhere in the phase diagram?
Once the phase diagram has been determined, we wish to
characterize the phases in it by computing key quantities
such as the quasiparticle energy gap and phase stiffness
(superfluid density) in a superconducting phase. To answer
these questions, we need to determine the ground-state wave
function for a range of interaction parameters and densities
and then measure ground-state correlation functions.

We take the following approach to solve the Hubbard model
(or related models) on a quantum computer.

(1) Adiabatically prepare an approximate ground state
|�̃0〉 of the Hubbard model starting from different initial states.

(2) Perform a quantum phase estimation to project the true
ground-state wave function |�0〉 from the approximate state
|�̃0〉 and measure the ground-state energy E0 = 〈�0|H |�0〉.

(3) Measure local observables and static and dynamic
correlation functions of interest.

The general strategy for simulating quantum models has
already been discussed previously, starting from Feynman’s
original proposal [1]. Abrams and Lloyd [14] were the first
to discuss time evolution under the Hubbard Hamiltonian,
but without giving explicit quantum circuits; in Ref. [15] the
same authors discuss how quantum phase estimation can be
used to project from a trial state into an energy eigenstate.
References [5,16] provided more details of how to simulate
quantum lattice models, proposed an algorithm to construct
arbitrary Slater determinants, and discussed measurements of
various observables of interest. The idea of adiabatic state
preparation for interacting fermion systems was proposed in
Ref. [5] and adiabatic preparation has been considered by a
number of authors [17–19].

In this paper we go beyond the earlier work in several
crucial aspects. Besides presenting full details of the nec-
essary quantum circuits for time evolution (Sec. IV) and
measurements (Secs. VI and VII), we address crucial issues
that have not received much attention so far. In particular,
in Sec. III we discuss in detail how to adiabatically prepare
approximate ground states |�̃0〉 of the Hubbard model starting
from different initial states, capturing various proposed broken
symmetries, and use this to determine the phase diagram of
the Hubbard model. Having thereby deduced the correct initial
state, we can cheaply prepare multiple copies of the ground
state of the system.

Due to the benign scaling of circuit depth with log N ,
the ground state of the Hubbard model on large lattices can
be prepared in very short time of less than a second, even
assuming logical gate times in the μs range as we discuss in
Sec. V.

We then present, in Sec. VI, details of how to measure
various quantities of interest, including both equal time and
dynamic correlation functions. For the latter, we present a
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different approach, based on importance sampling in the
frequency domain to complement the usual approach of
measuring in the time domain.

Since each measurement only gives limited information, the
ground state has to be prepared many times, which leads to a
significant total run time of a hypothetical quantum computer.
In Sec. VII, we present new approaches to nondestructive mea-
surements of arbitrary observables that substantially reduce the
run time. By using a relatively cheap quantum phase estimation
to recreate the ground state after a measurement, we reduce the
number of times the ground state needs to be prepared from
scratch. Furthermore, their run time scales as O(ε−1) with the
desired accuracy ε instead of the O(ε−2) scaling of the naive
approach to measurements.

For the aficionado of quantum algorithms, the paper
contains the following algorithmic ideas. In Sec. V, we
introduce a variant of quantum phase estimation that gives
a twofold reduction in the number of time steps and a fourfold
reduction in rotation gates compared to the standard approach.
Section III presents an approach to speeding up adiabatic state
preparation by adiabatically changing the Trotter time step.
In Sec. VI, we present an algorithm for measuring dynamical
correlation functions by importance sampling of the spectral
function in the frequency domain. Finally, Sec. VII presents
two approaches to nondestructive measurements.

II. THE HUBBARD MODEL

A. Derivation of the model

The square lattice Hubbard model is one of the paradig-
matic models for strongly interacting fermions. Although it
was originally introduced as a model for itinerant-electron
ferromagnetism [20,21], it is now studied primarily as a model
for the Mott transition and broken-symmetry (and perhaps
even topological) ordering phenomena in the vicinity of this
transition (for recent reviews, see, for instance, Refs. [22,23]).
In particular, it has been hypothesized that the square lattice
Hubbard model captures the important ingredients of the
cuprate high-temperature superconductors. It is a radical
simplification of the full Hamiltonian of a solid. A complete
description of a solid takes the form

H =
∑

i

p2
i

2me

+
∑

a

P 2
a

2Ma

+
∑
i>j

e2

|ri − rj |

+
∑
i,a

Zae
2

|ri − Ra| +
∑
a>b

ZaZbe
2

|Ra − Rb| , (3)

where i,j = 1, . . . ,Ne and a,b = 1, . . . Nions; Ne and Nions

are, respectively, the number of electrons and ions; and Za

is the atomic number of ion a and Ma its mass. In certain
situations, the physics is dominated by electron-electron inter-
actions. The ions form a crystalline lattice and the vibrations
of this lattice (phonons), though quantitatively important, do
not, it is hypothesized, play a major qualitative role. Then we
may, in a first approximation, ignore the dynamics of the ions
and, thereby, obtain a purely electronic Hamiltonian which, in
general, will take the form of Eq. (1). Explicitly introducing
labels for spin, unit cells, and orbitals with a unit cell of a

periodic solid, we write this Hamiltonian as

H = −
∑

i,j ;a,b;σ

tab
ij (c†i,a,σ cj,b,σ + H.c.) +

∑
i,a

εani,a

+
∑
i,a

Uani,a(ni,a − 1)/2

+
∑′

i,j,k,l;a,b,c,d

V abcd
ijkl c

†
i,ac

†
j,bck,ccl,d + · · · . (4)

Here i,j label unit cells and a,b label orbitals within a unit cell.
The local density in orbital a is ni,a = ∑

σ ni,a,σ . The coupling
constants have the following meanings: t

a,b
i,j is the matrix

element for an electron to hop from orbital b in unit cell j to
orbital a in unit cell i (possibly two different orbitals within the
same unit cell); εa is the energy of orbital a in isolation; Ua is
the energy penalty for two electrons to occupy the same orbital
in the same unit cell. This term can be rewritten equivalently
as

∑
i,a Uani,a,↑ni,a,↓. The prime on the summation in the final

line indicates that we have omitted the term with i = j = k = l

and a = b = c = d, which has been separately included as
the Ua term. They include, for instance, the terms with
i = k �= j = l, a = c �= b = d, which is the density-density
interaction V abab

ijij ni,anj,b, and the terms with j = l, b = d,

which is the correlated hopping term V abcb
ijkj c

†
i,ack,cnj,b. These

terms are assumed to be much smaller than t
a,b
i,j ,Ua and are

dropped.
If the differences between the εa’s are the largest energy

scales in the problem, then there will be, at most, a single
partially filled orbital and we can ignore all of the other orbitals
when studying the physics of the model at temperatures less
than |εa − εb|. These energy differences can be on the order
of eV and, therefore, such an approximation will be valid over
a very large range of temperatures and energies. Similarly, if
tab
ii is a large energy scale, it may be possible to reduce the

model to one with a single orbital per unit cell [which, in this
case, is a linear combination of the orbitals in Eq. (4)]. If the
on-site interactions U in this orbital (we drop the subscript
a since there is only a single orbital under consideration) are
much larger than the interactions with nearby unit cells (nearest
neighbor, next-nearest neighbor, etc.), then we can drop the
latter. Similarly, if the nearest-neighbor hopping is much larger
than more distant hopping matrix elements, then we can drop
the latter and write the simplified model of Eq. (2). This is the
Hubbard model.

In the case of the copper-oxide superconductors, the only
orbital that is retained is the Cu dx2−y2 orbital. (However, it
has also been argued that a three-band model including O
px and py orbitals is necessary to capture the physics of the
cuprates [24].) Usually one can drop the indices in tij , Ui ,
and εi since all sites are equivalent, but we will keep them
here since during the adiabatic solution they will not all be the
same.

Due to the presumed separation of energy scales in Eq. (4),
the effective model (2) is much simpler than (4) and has a much
smaller Hilbert space. As we discuss in detail in this paper, this
simplification makes simulation of 20 × 20 or more unit cells
feasible on a quantum computer.
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B. The physics of the Hubbard model

At half-filling (one electron per unit cell) the Hubbard
model gives a simple account of Mott insulating behavior [25].
For U = 0, the ground state is metallic. There is a single
band and it is half filled; the Fermi surface is the diamond
|kx ± ky | = π/a, where a is the lattice constant. However, for
U > 0, the ground state is insulating. While this is true for
all U > 0, the physics is different in the small U 	 t and
U 
 t limits. For U 	 t , the system lowers its energy by
developing antiferromagnetic order, as a result of which the
unit cell doubles in size. There are now two electrons per
unit cell and the system is effectively a band insulator. The
antiferromagnetic moment N and the charge gap �charge are
both exponentially small (N ∼ �charge ∼ t e−ct/U ) for some
constant c. For large U , i.e., U 
 t , on the other hand,
�charge ∼ U . In this limit, it is instructive to expand about
t = 0. Then, the ground state is necessarily insulating: There
is one electron on each site and an energy penalty of U to
move any electron since some site would have to be doubly
occupied. For small but nonzero t/U , this picture is dressed
by small fluctuations in which an electron makes virtual hops
to a neighboring site and then returns. As a result of these
fluctuations, there is an effective interaction between the spins
of the electrons on neighboring sites. Since an electron can
only hop to a neighboring site if its spin forms a singlet with
the spin of the electron there (due to the Pauli principle), the
energy is lowered by such processes if neighboring spins are
antiferromagnetically correlated. We can derive an effective
Hamiltonian at energies much lower than U by taking into
account these virtual hopping processes. It takes the form

H = J
∑
〈i,j〉

Si · Sj + O(t3/U 2), (5)

where J = 4t2/U . The O(t3/U 2) terms are due to virtual
processes in which multiple hops occur [26]. If these terms
are neglected, this is the antiferromagnetic Heisenberg model.
Its ground state has an antiferromagnetic moment of order
1. The temperature scale for the onset of antiferromagnetic
correlations is ∼J , which is a much lower scale than the charge
gap ∼ U , unlike in the small-U limit, where both scales are
comparable [27]. When the subleading O(t3/U 2) terms are
kept, the system remains insulating, but the spin physics may
change considerably. The phase diagram of such spin models is
the subject of considerable current research (see, for instance,
Refs. [28,29]).

The situation is even less clear when the system is “doped,”
i.e., when the density is changed from half filling. Then an
effective model can be derived to lowest order in t/U . The
model is governed by the t − J Hamiltonian,

H = −
∑
〈i,j〉

∑
σ

tij (c†i,σ cj,σ + H.c.)

+ J
∑
〈i,j〉

Si · Sj + O(t3/U 2), (6)

together with a no-double-occupancy constraint. As a result of
this constraint, the t − J model has a smaller per site Hilbert
space than the Hubbard model, which makes it a much more
attractive target for exact diagonalization. However, the t − J

model does not capture all of the physics of the Hubbard model
(especially in the regime in which t/U is small but not so small
that higher-order in t/U terms can be neglected).

Any deviation from half filling will cause the conductivity
to be nonzero in a completely clean system, in which εi is
independent of i in Eq. (2). However, in any real material,
there will be some disorder due to impurities, and the system
will remain insulating for densities very close to half filling.
As the density deviates from half-filling, antiferromagnetic
order is suppressed and eventually disappears. If the Hubbard
model captures the physics of the cuprate superconductors,
then superconducting order [30] with dx2−y2 pairing symmetry
must occur for a density of 1 − x electrons per unit cell, with
x in the range 0.05 � x � 0.25. Moreover, on the underdoped
side of the phase diagram, 0.05 � x � 0.15, other symmetry-
breaking order parameters, such as stripe order, d-density wave
order, or antiferromagnetic order, may also develop (for recent
reviews, see, for instance, Refs. [22,23]; see also Ref. [31] for
a recent calculation finding several competing orders). On the
other hand, if the Hubbard model is not superconducting in this
doping range, then superconductivity in the cuprates must be
due to effects that are missing in the Hubbard model, such as
longer-ranged interactions, longer-ranged hopping, interlayer
coupling, and phonons.

Thus, as far as the cuprates are concerned, the principle
aim of an analysis of the Hubbard model is to determine if it
has a dx2−y2 superconducting ground state for U/t ∼ 8 over
the range of dopings 0.05 � x � 0.25. If the answer is in the
affirmative, then various properties of this superconducting
ground state can be studied. For instance, the gap and
its dependence on the doping, �(x), can be compared to
experimental measurements. If the Hubbard model does not
superconduct, then different models must be considered,
restoring terms that have been dropped in the passage to the
Hubbard model.

III. ADIABATIC PREPARATION OF THE GROUND STATE

We start the adiabatic preparation from the ground state
of some Hamiltonian whose solution is known. For the sake
of concreteness, we consider two examples. The first, in
Sec. III A, is the quadratic mean-field Hamiltonian whose
exact ground state is the BCS ground state for a d-wave
superconductor or the analogous Hamiltonian for any other
ordered state such as striped [32], antiferromagnetic [33],
d-density wave [34], etc., states. The second, discussed in
Sec. III B is the Hubbard model with hopping matrix elements
tuned so that the system breaks into disconnected 2 × 2
plaquettes. In either case, the ground state is known and there
is a gap to all excited states.

An essential point is that these initial states can be
efficiently prepared on a quantum computer. Our approach
to preparing a Slater determinant, discussed in Sec. III A2, is
both deterministic and has better scaling than the algorithm
previously proposed in Ref. [5].

We then adiabatically evolve the Hamiltonian into the
Hamiltonian of the Hubbard model with an additional weak
symmetry-breaking term (to give a gap to Goldstone modes, a
subtlety that is discussed in Sec. III A). In Sec. IV we review
the quantum circuit used to implement time evolution of the

062318-4



SOLVING STRONGLY CORRELATED ELECTRON MODELS . . . PHYSICAL REVIEW A 92, 062318 (2015)

Hubbard model and show how it can be done with O(N ) gates
and a parallel circuit depth of only O(log N ) operations per
time step.

This step is formally similar to adiabatic quantum optimiza-
tion [17], but with a different viewpoint. If no phase transition
occurs along this adiabatic evolution, then we conclude that we
guessed correctly about the phase of the system (for this value
of parameters in the final Hubbard model). However, if a phase
transition does occur, then the gap will close and we will know
that we guessed incorrectly and can repeat the procedure with a
different initial state in a different phase. Through a process of
elimination, we determine the phase of the system for a given
set of parameters and, by repeating this process for different
Hubbard model parameters, we map out the phase diagram.
In adiabatic quantum optimization [17], it is assumed that
a phase transition occurs and it is hoped that the minimum
energy at the transition point scales polynomially in system
size rather than exponentially, thereby allowing the evolution
to occur in polynomial time. In our protocol for solving the
Hubbard model, however, any gap closing, either polynomial
or exponential—corresponding, respectively, to a second- or
first-order phase transition [35]—is an invitation to repeat the
procedure with a different initial state and correspondingly
different annealing path until no gap closing occurs. When
the initial state is in the same phase as the ground state of
the Hubbard model, the adiabatic evolution can be done in
constant time up to subpolynomial factors. See Sec. V C for a
more detailed discussion of errors in adiabatic evolution; while
in most of the paper we treat the time required for adiabatic
evolution as scaling with inverse gap squared, in that section
we provide a more precise discussion of diabatic errors (i.e.,
those transitions out of the ground state that are due to a
finite time scale for the evolution) and further show how it is
possible to improve the scaling with gap by using smoother
annealing paths. We hope that one of the mean-field states
described above will be in the correct phase; if none are, this
would be very surprising physical information to learn about
the Hubbard model.

A. Adiabatic evolution from mean-field states

1. Mean-field Hamiltonians

Let us suppose that we wish to test whether the ground state
of the two-dimensional Hubbard model is superconducting for
some values of t,U and density. We can do this by seeing if
the Hubbard model is adiabatically connected to some simple
superconducting Hamiltonian. It need not be realistic; it merely
needs to be a representative Hamiltonian for a superconductor.
We can take the BCS mean-field Hamiltonian,

H MF
DSC = −

∑
〈i,j〉

∑
σ

tij (c†i,σ cj,σ + c
†
j,σ ci,σ )

−
∑
〈i,j〉

�
x2−y2

ij (c†i↑c
†
j↓ − c

†
i↓c

†
j↑) + H.c., (7)

where �
x2−y2

ij = �/2 for i = j ± x̂ and �
x2−y2

ij = −�/2
for i = j ± ŷ. This is a mean-field dx2−y2 superconductor
(DSC) with fixed, nondynamical superconducting gap of
magnitude �.

The ground state of this Hamiltonian can be written in the
form of a Slater determinant by making a staggered particle-
hole transformation on the down-spins: c

†
i↓ → (−1)ici↓. Then

the Hamiltonian takes the form

H̃ MF
DSC = −

∑
〈i,j〉

∑
σ

tij (c†i,σ cj,σ + c
†
j,σ ci,σ )

−
∑
〈i,j〉

(−1)j�x2−y2

ij (c†i↑cj↓ − c
†
j↑ci↓) + H.c. (8)

Under this transformation, the number of up-spin electrons per
unit cell is particle-hole transformed: ni↓ → 1 − ni↓ while
the number of up-spin electrons is unchanged; equivalently,
the chemical potential for up-spin electrons is flipped in sign,
μ↓ = −μ↑. Consequently, the number of down-spin electrons
is not equal to the number of up-spin electrons. In addition,

the superconducting pair field �
x2−y2

ij has become transformed
into a staggered magnetic field in the Sx direction with a dx2−y2

form factor (a d-wave spin-density wave, in the terminology of
Ref. [34]). Thus, the ground state of this quadratic Hamiltonian
is a Slater determinant of the form

|�〉 =
∏

k

(ukc
†
k,↑ + vkc

†
k+Q,↓)|0〉. (9)

Here the momenta k range over the Brillouin zone, −π
a

�
kx,y � π

a
, where a is the lattice constant, and the functions

uk,vk are given by

u2
k ≡ 1

2

(
1 − εk√

ε2
k + |�k|2

)
,

(10)

v2
k ≡ 1

2

(
1 + εk√

ε2
k + |�k|2

)
,

where εk ≡ −2t(cos kxa + cos kya) and �k ≡ �(cos kxa −
cos kya). In Sec. III A2, we show how to prepare this ground
state. For now, we simply assume that this ground state can be
prepared efficiently. In computing the properties of this state,
it is important to keep in mind that physical operators have
been transformed according to c

†
i↓ → (−1)ici↓ and to use the

appropriate transformed operators.
We now adiabatically deform this Hamiltonian into a

weakly perturbed Hubbard model. There are two reasons
why our final Hamiltonian is a weakly perturbed Hubbard
model, rather than the Hubbard model itself: (1) In the
absence of long-ranged Coulomb interactions (which are
neglected in the Hubbard model), a superconducting ground
state will have gapless Goldstone excitations, and (2) a dx2−y2

superconductor has gapless fermionic excitations at the nodes
of the superconducting gap. Although these gapless excitations
are important for the phenomenology of superconductors (e.g.,
the temperature dependence of the superfluid density and the
structure of vortices), they are a nuisance in the present context.
Hence, we weakly perturb the Hubbard model in order to
give energy gaps to Goldstone modes and nodal fermions.
However, this can be done weakly so that we do not bias the
tendency towards superconductivity (or lack thereof). If the
Hubbard model superconducts, then the scale of the dx2−y2

superconducting gap should be ∼xJ , where 〈ni〉 = 1 − x

is the average occupancy of a site and J = 4t2/U is the
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superexchange interaction. (On the other hand, if the Hubbard
model does not superconduct, then the superconducting gap
in the cuprates must be determined by some other energy
scale.) Hence, we apply a fixed dx2−y2 superconducting gap
that is much smaller than xJ in order to pin the phase of any
superconducting order that may develop. In addition, we apply
a small imaginary dxy superconducting gap to give a small gap
to the nodal fermions. Neither gap scales with system size.

More concretely, we adiabatically evolve the Hamiltonian
according to

HDSC(s) = (1 − s)H MF
DSC + sHHub

−
∑
〈i,j〉

w�
x2−y2

ij (c†i↑c
†
j↓ − c

†
i↓c

†
j↑) + H.c.

−
∑

〈〈j,k〉〉
i�

xy

jk (c†j↑c
†
k↓ − c

†
j↓c

†
k↑) + H.c. (11)

Here w is a small dimensionless parameter that determines
the magnitude of a small pair field that remains throughout
the adiabatic evolution. At s = 0, it simply increases the
superconducting gap by a factor of 1 + w. At s = 1, it applies
a small pair field ∝w to the Hubbard model. If the Hubbard
model does not have a superconducting ground state, then
w �= 0 will induce a small superconducting gap ∝w. However,
if the Hubbard model does have a superconducting ground
state, then w will pin the phase of the superconducting gap,
which would otherwise fluctuate. The magnitude of the gap
will be essentially independent of w for small w. If the
Hubbard model is superconducting, then the system will
remain superconducting all the way from s = 0 to s = 1
and the gap will remain open. As long as s is varied
slowly compared to the minimum gap—which, crucially, is
independent of system size—the system will remain in the
ground state. The final line of Eq. (11) is a small imaginary
second-neighbor superconducting gap. Here �

xy

jk = u�/2 for
j = k ± (x̂ + ŷ),�xy

jk = u�/2 for j = k ± (x̂ − ŷ), and u is a
small dimensionless number that is independent of system size.
Such a term opens a small gap ∝u at the nodes (assuming that
the Hubbard model does not have a superconducting ground
state that spontaneously breaks time-reversal symmetry). We
take u� 	 xJ so that this term opens a gap at the nodes
but is otherwise too small to affect the development of
superconductivity away from the nodes.

In summary, Eq. (11) is a path through parameter space from
a simple superconducting Hamiltonian with Slater determinant
ground state to a Hubbard model that has been perturbed by
small terms that give a gap to order parameter fluctuations
and nodal excitations but otherwise do not affect the ground
state, as may be checked by decreasing the magnitude of these
perturbations.

A similar strategy can be used to test whether the Hubbard
model has any other ordered ground state, such as antifer-
romagnetic order. In this case, our starting Hamiltonian is,
instead,

H MF
AF = −

∑
〈i,j〉

∑
σ

tij (c†i,σ cj,σ + c
†
j,σ ci,σ )

−
∑

i

(−1)iN (c†i↑ci↑ − c
†
i↓ci↓). (12)

We then evolve along a path analogous to Eq. (11), but with
the symmetry-breaking terms in the last two lines replaced by
a weak staggered magnetic field. If the Hubbard model has an
antiferromagnetic ground state (for some values of t,U,x) then
the gap will not close along this path. However, if the actual
ground state of the Hubbard model is superconducting for these
values of the couplings, then the gap will become O(1/Nz/2),
where z is the dynamical critical exponent of the transition (i.e.,
the gap will close, up to finite-size effects) at the point along
the evolution at which superconductivity develops. There will
be a nonzero staggered magnetization throughout since we
never fully remove the staggered magnetic field, but there will
be a sharp signature at the point at which superconductivity
develops [35]. The presence of a staggered field, which is kept
small, may slightly shift the onset of superconductivity but
will have no other effect.

This strategy can allow us, in some of the circumstances in
which it has a clear answer, to address a question: Why does
the 2D Hubbard model have a superconducting ground state?
In particular, it is possible that the superconducting ground
state of the Hubbard model necessarily has some other type
of order coexisting with superconducting order, especially in
the underdoped regime. These secondary orders play a role in
some theories of the cuprate superconductors. If such an order
were present in the Hubbard model, evolution from a purely
superconducting initial state would necessarily encounter a
phase transition (at the point of onset of this additional order).
Therefore, we can determine not only if the Hubbard model has
a superconducting ground state, but also whether the ground
state exhibits a secondary type of long-ranged order over some
range of dopings. We return to the question “why does the
Hubbard model superconduct” when we discuss correlation
functions.

The virtue of using these mean-field Hamiltonians as
starting points for adiabatic evolution is that their physics is
fully understood. In particular, their ground states are Slater
determinants, which we can efficiently prepare, as we explain
in the next section.

2. Preparing Slater determinants

In this section we explain an efficient, simple quantum
algorithm to prepare Slater determinants. This is then used to
prepare the Hubbard ground state by adiabatic evolution from
U = 0 to U �= 0.

The standard algorithm is in Ref. [5]. This algorithm
suffers from some drawbacks. Given a projector ρ, a Slater
determinant state is a state

�SD(ρ) = �
Ne

j=1b
†
j |0〉, (13)

where |0〉 is the no particle vacuum state and each operator b
†
j

is a linear combination of a
†
i , where the a

†
i are fermion creation

operators on a given site i. We write b
†
j = ∑n

i=1 a
†
i Pij , where

Pij are complex scalars and are the entries of P, n is the
number of orbitals, and Ne is the number of electrons. Given
any matrix ρ, we can find a matrix P such that

ρ = PP †. (14)
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Then using this matrix P in the definition of the state gives
the state �SD(ρ); note that this definition fixes �SD(ρ) up
to a complex phase. The algorithm in Ref. [5] proceeds by
noting that Um = exp[i π

2 (bm + b
†
m)], acting on the vacuum,

produces the state b
†
m|0〉, up to a phase. Therefore, if the

b
†
j are suitably orthogonalized, successively acting with the

unitary Um produces the desired state. However, no explicit
method for implementing this unitary Um is given; if the unitary
is implemented by a Trotter method, this will be extremely
inefficient. We explain a simpler technique.

Let us first assume that ρ is real; the extension to the
complex Hermitian case will be straightforward. The idea is
first to prepare the Slater determinant state

�SD(ρ0) ≡ �
Ne

j=1a
†
j |0〉. (15)

This corresponds to the case that ρ is an n-by-n diagonal
matrix, with ones in the first Ne entries and zeros elsewhere.
This state has one electron on each of the first Ne states. It is a
product state that can be prepared in linear time (indeed, simply
initialize each of the first Ne spins to up and the other spins to
down). Then we act on this state �SD(ρ) with a sequence of
Givens rotations. A Givens rotation, to borrow the language
of matrix diagonalization, is a rotation matrix that acts on two
rows or columns at a time. For any given pair, i,j , define the
operator Ri,j (θ ) by

Ri,j (θ ) = exp(θc
†
i cj − H.c.). (16)

This is a simple two-qubit gate (up to Jordan-Wigner strings)
and is, therefore, more straightforwardly implemented than
the unitary Um in the standard method described above.
Define the n-by-n orthogonal matrix ri,j (θ ) by its matrix
elements as follows. Let (ri,j (θ ))k,k = 1 for k �= i,j and let
(ri,j (θ ))k,l = 0 if k �= l and k �= i,j or if k �= l and l �= i,j .
Then let (ri,j (θ ))i,i = (ri,j (θ ))j,j = cos(θ ), while (ri,j (θ ))i,j =
−(ri,j (θ ))j,i = sin(θ ). Then

Ri,j (θ )�SD(ρ) = �SD(ri,j (θ )ρri,j (θ )−1l), (17)

where again the equality holds up to the phase ambiguity.
Now, given some desired target �SD(ρ), we claim that one

can always find a sequence of at most nNe Givens rotations
that will turn the matrix ρ into the matrix ρ0. Thus, by inverting
this sequence of Givens rotations and applying that sequence
to the state �SD(ρ0), we succeed in constructing the desired
state. The Givens rotations will be ordered such that the
Jordan-Wigner strings can be canceled as in Ref. [12], so
the algorithm takes time O(Nen). To show our claim that the
sequence of Givens rotations exists, note that the effect of
a given rotation which transforms ρ to ri,j (θ )ρri,j (θ )−1 can
be achieved by transforming P to ri,j (θ )P . Consider a left
singular vector of P with singular value equal to 1; we can
find a sequence of at most n Givens rotations that rotate that
vector to be equal to the vector (1,0, . . .). As a result, all
the other singular vectors now have amplitude only on sites
2, . . . ,n. Find another sequence to transform some other left
singular vector with singular value equal to 1 into the vector
(0,1,0, . . .). Continue until all singular vectors with nonzero
singular values have amplitudes only on the first Ne sites.

The extension of this procedure to the complex case
is simple. Rather than having the Givens rotation Ri,j (θ )

depend only a single angle θ , we need to perform a rotation
exp(zc†i cj − H.c.) for some complex number z. All the time
estimates remain unchanged up to constant factors.

However, for many systems a much shorter sequence of
Givens rotations can be found. Using the same idea as in the
fast Fourier transform, if n is a power of 2, there exists a
sequence of n log2(n) Givens rotations to transform an n-by-n
matrix to the momentum basis. Thus, we can produce ground
states of a system of free fermions on a periodic lattice in
time O[n2 log(n)]. This can be easily extended to handle the
case of a periodic system with a unit cell larger than a single
site. Assume there are states |i,�x〉 where i labels an atom in
a unit cell and �x labels a lattice vector. We transform to a
momentum basis |i,�k〉, and then for each �k we initialize some
Slater determinant in the unit cell in momentum space. If the
unit cells have size O(1), the time to initialize each cell is O(1)
so the total time is still O[n2 log(n)].

A further possible optimization is that if Ne > n/2, we can
instead use Givens rotations to bring the holes to the desired
states, rather than the electrons, taking a time O[(n − Ne)n]
rather than O(Nen). As an interesting application of this,
consider creating the ground state of Ne = 3 electrons in n = 4
sites, using a hopping Hamiltonian with the sites arranged on
a ring. This can be done by initializing a state with electrons
on the first three sites and then apply a total of three different
Ri,j (θ ) operators.

3. Numerical results

We applied the Slater determinant preparation procedure to
the Hubbard model on eight sites arranged in two rows of four
sites. We started at U = 0 and εi = 0. All horizontal couplings
were set equal to 1, while to avoid having an exact ground-state
degeneracy the vertical couplings were doubled in strength to
2 (note that this requirement depends on the filling factor; for
example, at half filling we would instead prefer to remain at
vertical coupling equal to 1 to avoid degeneracies). The ground
state of this model is a Slater determinant of free fermion
single-particle wave functions that we could prepare with a
total of 14 Givens rotations for both spin up and spin down.
This was done by initializing particles in three out of four
sites in the top row of sites, and holes in the remaining sites.
Then three Givens rotations were used to create a uniform
superposition of the hole in various states in the top row.
Finally, four Givens rotations were used to create a uniform
superposition between top and bottom rows. This was done
for both spins, giving 2 × 7 = 14 rotations.

We then annealed to U �= 0 while reducing the vertical
coupling to unit strength. The results are shown in Fig. 1.
As seen, increasing the annealing time increases the success
probability, until it converges to 1. The annealing times
required to achieve substantial (say, 90%) overlap with the
ground state are not significantly different from the preparation
approach discussed next based on “joining” plaquettes. While
the eight site results cannot be directly extrapolated, we have
a variety of methods to infer the behavior of larger systems,
including free fermions, studied later in the paper, and scaling
theory.

Note that for this particular model, we know the ground-
state energy with very high accuracy from running an exact
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FIG. 1. (Color online) Success probability as a function of total
annealing time for an annealing path in the Hubbard model that
begins at U = 0 and vertical hopping equal to 2 and ends at U = 2.5t

(blue) or U = 4t (red) and all hoppings equal to 1. The initial state
is a Slater determinant state (of free fermion single-particle states).
Annealing is linear along the path. The x axis represents the total
time for the anneal. The y axis represents the probability that the
phase estimation routine returns an energy that is within 10−3 of the
ground-state energy. This probability is obtained by sampling runs of
the phase estimation circuit, giving rise to some noise in the curves.

diagonalization routine so we know whether we succeed in
projecting onto it after phase estimation. The system size is
small enough that calculating ground-state energies is easy to
accomplish on a classical computer using Lanczos methods.
Of course, on larger systems requiring a quantum computer
to simulate, we will not have access to the exact energy.
In this case, it will be necessary to do multiple simulations
with different mean-field starting states, as described at the
start of this section; then, if the annealing is sufficiently slow
and sufficiently many samples are taken, the minimum over
these simulations will give a good estimate of the ground-state
energy. Once we have determined the optimum mean-field
starting state and annealing path, we can then use this path to
recreate the ground state to determine correlation functions.

B. Preparing of d-wave resonating valence bond
states from plaquettes

1. d-wave resonating valence bond states

An alternative approach to adiabatic state preparation has
previously been proposed in the context of ultracold quantum
gases in optical lattices. In this approach, d-wave resonating
valence bond (RVB) states are prepared [18]. RVB states
are spin-liquid states of a Mott insulator, in which the spins
on nearby sites are paired into short-range singlets. RVB
states were first introduced as proposed wave functions for
spin liquid ground states of Mott insulators [36] and then
conjectured to describe the insulating parent compounds of
the cuprate superconductors [37]. In more modern language,
they are described as Z2 topologically ordered spin-liquid
states [38]. The idea was that, upon doping, the singlet pairs
would begin to move and form a condensate of Cooper pairs.
Although the insulating parent compounds of the cuprates are
antiferromagnetically ordered, it is nevertheless possible that
the cuprate superconductors are close to an RVB spin-liquid

0

1

2

3

FIG. 2. Labeling of the sites in a plaquettes.

ground state and are best understood as doped spin liquids.
The RVB scenario has been confirmed for t − J and Hubbard
models of coupled plaquettes [39,40] and ladders (consisting
of two coupled chains) [41,42] and remains a promising
candidates for the ground state of the Hubbard model and
high-temperature superconductors [43].

Instead of starting from mean-field Hamiltonians, we build
up the ground-state wave function from small spatial motifs,
in this case four-site plaquettes, which are the smallest lattice
units on which electrons pair in the Hubbard model [39].
Following the same approach as originally proposed for ul-
tracold quantum gases, we prepare four-site plaquettes in their
ground state, each filled with either two or four electrons [18].
These plaquettes then get coupled, either straight to a two-
dimensional square lattice, or first to quasi-one-dimensional
ladders, which are subsequently coupled to form a square
lattice.

2. Preparing the ground states of four-site plaquettes

The first step is preparing the ground state of the Hubbard
model on four-site plaquettes filled with either two or four
electrons. We start from very simple product states and adia-
batically evolve them into the ground states of the plaquettes.

To prepare the ground states of plaquettes with four elec-
trons we start from a simple product state c

†
0,↑c

†
0,↓c

†
1,↑c

†
1,↓|0〉,

using the labeling shown in Fig. 2. Our initial Hamiltonian, of
which this state is the ground state, has no hopping (tij = 0),
but already includes the Hubbard repulsion on all sites. To
make the state with doubly occupied state the ground state, we
add large on-site potentials ε2 = ε3 = 2U + 3t on the empty
sites. To prepare the ground state of the plaquette we then

(1) start with tij = 0,Ui = U and a large potential on the
empty sites (here ε2 = ε3 = ε) so that the initial state is the
ground state,

(2) ramp up the hoppings tij from 0 to t during a time T1,
(3) ramp the potentials εi down to 0 during a time T2.
Time scales T1 = T2 ≈ 10t−1 and ε = U + 4t are sufficient

to achieve high fidelity. As we discuss below, it can be better
to prepare the state quickly and then project into the ground
state through a quantum phase estimation than to aim for
an extremely high fidelity in the adiabatic state preparation.
To prepare a plaquette with two electrons, we start from the
product state c

†
0,↑c

†
0,↓|0〉 and use the same schedule, except that

we choose the nonzero potentials on three sites of the plaquette
(ε1 = ε2 = ε3 = ε).

3. Coupling of plaquettes

After preparing an array of decoupled plaquettes, some
of them with four electrons and some with two electrons
depending on the desired doping, we adiabatically turn on
the coupling between the plaquettes. As a test case we use that
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FIG. 3. Coupling of two plaquettes.

of Ref. [18] and couple two plaquettes (see Fig. 3), one of
them prepared with two electrons and one with four electrons.

Naively coupling plaquettes by adiabatically turning on the
intraplaquette couplings t24 and t35 will not give the desired
result, since the Hamiltonian is reflection symmetric but an
initial state with two electrons on one plaquette and four on the
other breaks this symmetry. No matter how slowly the anneal
is done, the probability of preparing the ground state will not
converge to 1. We thus need to explicitly break the reflection
symmetry by either first ramping up a small chemical potential
on a subset of the sites or—more easily—not completely
ramping down the nonzero εi values when preparing plaquette
ground states. Consistent with Ref. [18], we find that a time
T3 ≈ 50t−1 is sufficient to prepare the ground state with high
fidelity.

See Fig. 4 for success probabilities depending on times T1

to ramp up hopping in a plaquette, T2 to ramp down ε in a
plaquette, and T3 to join the plaquettes. The specific couplings
in these figures are an initial potential 8t on the empty sites
in the plaquette with four electrons, chemical potential 8t

on the empty sites in the plaquette with two electrons, and
chemical potential t on the occupied site in the plaquette with
two electrons. See Fig. 5 for a plot of the spectral gaps for an
example annealing schedule.

Going from two plaquettes to the full square lattice is
straightforward: We bias some plaquettes with small values
of εi to break any reflection and rotation symmetries and

FIG. 4. (Color online) Probability of preparing ground state as a
function of times T1,T2,T3 in units of t−1, following the annealing
schedule described above. During time T3, a uniform potential ε was
ramped from t to 0 on the plaquette with two electrons to break the
symmetry between plaquettes.

FIG. 5. Energy levels during annealing. y axis is energy; x axis
is time. From time 0 to time 16 (in units of t−1) the hopping is
ramping up; time 16 to time 36 the nonuniform ε in each plaquette
is ramping down (leaving a uniform ε = 1 on the plaquette with two
electrons); time 36 to time 76 is joining plaquettes. All levels remain
nondegenerate except for a degeneracy that appears at the end of the
anneal. After time 76 plaquettes are separated, as described below.

then switch on interplaquette hoppings and switch off the bias
potentials. The time scale here is a priori unknown. According
to Ref. [18] the ground state on ladders can be prepared within a
relatively short time T ≈ 200t−1 − 500t−1. In two dimensions
we expect that similar time scales may be sufficient unless we
encounter a quantum phase transition to a different phase.

4. Decoupling plaquettes

As proposed in the context of analog quantum simulation,
the pairing of holes on plaquettes can be tested by adiabatically
decoupling plaquettes [18]. We start by preparing one plaquette
with four electrons and a second plaquette with two electrons.
We then couple them as described above to end up with a
system with two holes relative to the half-filled Mott insulator.
After adiabatically decoupling the two plaquettes again we
measure the number of electrons on each plaquette. If holes
bind in the ground state, they will end up on the same plaquette,
and we measure an even electron number per plaquette. If they
do not bind, each hole will prefer to be on a different plaquette
to maximize its kinetic energy and we will end up with three
electrons per plaquette.

As shown in Fig. 6, the probability of finding three
electrons on a plaquette goes to zero for U = 2t and U = 4t

when increasing the time Ts over which we ramp down the
interplaquette hopping. This indicates pairing and is consistent
with the known critical value of U ≈ 4.5t for pairing on
four-site plaquettes. On the other hand, for U = 6t and U = 8t

we see an increase in the probability of finding three electrons
per plaquette, indicating the absence of pairing.

C. Trotter errors and accelerating adiabatic preparation
by using larger time steps

In practice, it suffices for our annealing preparation to
obtain a state with sufficiently large overlap onto the ground
state that phase estimation will then project onto the ground
state with a reasonably large probability. We can thus tolerate
some errors in our annealing path. For this reason, we annealed
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FIG. 6. (Color online) Shown is the probability P33 of finding
three electrons on each of the plaquette after decoupling two
plaquettes with a total of six electrons as a function of the time Ts

(in units of t−1) over which the plaquettes were nearly adiabatically
separated. A decrease of P33 indicates pairing of holes in the ground
state of a plaquette.

using a larger time step, before doing the phase estimation with
a smaller time step.

In fact, this approach of annealing at a larger time step can
be turned into an approach which uses a larger time step but
still produces a state with very large overlap with the ground
state. Note that the larger Trotter-Suzuki step means that we,
in fact, evolve under a modified Hamiltonian, proportional
to the logarithm of the unitary describing a single time step.
As the time step decreases, this Hamiltonian becomes closer
to the desired Hamiltonian. It is then possible to evolve with
a larger time step, following the adiabatic path in parameter
space, and then at the end of the path one can “anneal in the
time step,” gradually reducing the time step to zero.

In our simulation of the anneal using joining two plaquettes,
the system was rather insensitive to Trotter errors. We used a
relatively large time step, equal to 0.25t−1 for the annealing,
and used a much smaller time step for the phase estimation
that made the errors negligible there.

A time step of 0.05t−1 for phase estimation yielded relative
errors below 10−3 and 0.003t−1 yielded relative errors below
10−5. The larger time step used for the adiabatic preparation
prevents us from obtaining 100% overlap with the ground
state even in the limits of very long annealing times; however,
as seen, we still obtain very high overlaps in the range of
80%–96%.

IV. IMPLEMENTING UNITARY TIME EVOLUTION
OF THE HUBBARD MODEL

A. Circuits for the individual terms

For the Hubbard model, we need to implement unitary
evolution under two types of terms: hopping terms, c

†
p,σ cq,σ ,

and repulsion terms, c†p,σ cp,σ c
†
q,σ cq,σ . These terms are a subset

of those needed for earlier electronic structure calculations [6].

TABLE I. An overview of the quantum gates used in this paper.
Note that Y gates do not represent Pauli Y ; rather, they represent
a Clifford operator that interchange Y and Z spin orientations. The
phase gate T (θ ) can be replaced with an Rz(θ ) rotation, up to a global
phase that can be kept track of classically.

Name Symbol Matrix representation

Hadamard H
[

1/
√

2 1/
√

2
1/

√
2 −1/

√
2

]

Y -basis change Y
[

1/
√

2 i/
√

2
i/

√
2 1/

√
2

]

Phase gate T (θ)
[

1 0
0 e−iθ

]

Z rotation Rz(θ)
[
eiθ/2 0

0 e−iθ/2

]

Controlled NOT (CNOT)

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

In addition we need to implement unitary evolution under a
pairing term c

†
p,σ c

†
q,σ ′ + H.c.

To establish notation, we summarize in Table I the gates
used in the quantum circuits shown in this paper.

1. The repulsion and chemical potential terms

The repulsion term is an example of what is called an
Hpqqp term and evolution under this term is given in Fig. 7.
A chemical potential term, c

†
p,σ cp,σ , which we call an Hpp

term, is not needed for the final Hamiltonian but is useful for
annealing. The circuit for this term is shown in Fig. 8. Since all
the repulsion terms in the Hubbard model and all the chemical
potential terms commute with each other, they can be applied
in parallel, thus needing only O(N ) gates and O(1) parallel
circuit depth.

2. The hopping and pairing terms

The unitary evolution under the hopping term, which we
call an Hpq term, is given by the circuit in Fig. 9 and has
also been considered previously. It also will be useful to be
able to implement evolution under a superconducting pairing
term, �c

†
p,σ c

†
q,σ ′ + H.c. This term is similar to the hopping

term since both are quadratic in the fermionic operators. The
hopping and pairing term circuits will be very similar to each

Rz(θ/2)

Rz(θ/2) Rz(−θ/2)

FIG. 7. Quantum circuit to implement time evolution for a time
step θ under the term Hpqqp = np,σ nq,σ ′ = c†p,σ c

†
q,σ ′cq,σ ′cp,σ . Top and

bottom lines represent qubits for p,σ and q,σ ′.
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T (θ)

FIG. 8. Quantum circuit to implement time evolution for a time
step θ under the chemical potential term np,σ = c†p,σ cp,σ .

other, with the changes involving changing some of the basis
change gates. The pairing term will be needed for the adiabatic
evolution from the BCS mean-field Hamiltonian suggested in
Sec. III A1. Also, it will be needed to measure superconducting
correlations present in the Hubbard state: In this case the
measurement will be of the correlation function between two
different superconducting pairing terms on two pairs of sites
separated from each other. Measurement are discussed more
later, but our general procedure for measurement will require
knowledge of the unitary which implements evolution under
the term.

For the case � real, we wish to implement unitary evolution
by exp[−iθ (c†p,σ c

†
q,σ ′ + H.c.)]. Let us write Xp,σ to denote the

Pauli X operator on the qubit corresponding to spin orbital p,σ

and similarly Yp,σ and Zp,σ to denote Pauli Y and Z operators
on that spin orbital. Using the identity that c† = (1/2)(X + iY )
and c = (1/2)(X − iY ), up to phase factor associated with the
Jordan-Wigner strings, we wish to implement

exp

[
−i

θ

2
(Xp,σ Xq,σ − Yp,σ Yq,σ ′)ZJW

]
, (18)

where ZJW denotes the product of the Pauli Z operators on the
spin orbitals intervening between p,σ and q,σ ′. In general, we
wish to implement this unitary operation controlled by some
ancilla. In fact, this circuit is the same as the circuit used to
implement the term c

†
p,σ cq,σ ′ + H.c., up to a sign change on

the second spin rotation, as shown in Fig. 10.
For � imaginary, we wish to implement

exp

[
−i

θ

2
(Xp,σ Yq,σ + Yp,σXq,σ ′ )ZJW

]
. (19)

This circuit is similar to the other pairing and hopping circuits,
except that in the first half of the circuit, we apply a Hadamard
to the first qubit and a Y -basis change to the second, and in the
second half we apply the Y -basis change to the first qubit and
the Hadamard to the second.

B. Optimizing the cost of the Jordan-Wigner transformation

In order to implement the unitary time evolution in the Hub-
bard model, we use a Jordan-Wigner transformation to turn the
model into a spin model. The depth of the circuits described in
the previous section will depend upon the particular ordering

of spin-orbitals chosen for this Jordan-Wigner transform. We
choose to order so that all qubits corresponding to spin up
appear first in some order and then all qubits corresponding
to spin down. Since the hopping terms preserve spin, this
simplifies the Jordan-Wigner strings needed. For a given spin,
we order the sites in the “snake” pattern shown in Fig. 11.

With this snake pattern, we group the hopping terms into
four different sets, as shown. The terms in any given set all
commute with each other. The two horizontal sets of terms have
no Jordan-Wigner string required, since they involve hopping
between neighboring sites with the given ordering pattern, and
so these terms can all be executed in parallel. The vertical
terms do not commute with each other. However, they nest as
in Ref. ([12]) so that all vertical terms in a given set can be
executed with O(N ) gates using a depth O(

√
N ), where we

assume that the geometry is roughly square so the the number
of sites in a given row is

√
N .

For periodic boundary conditions, we must also handle the
terms going from the left to the right boundary or from the
top to the bottom boundary. The terms going from the left to
the right boundary can be executed in parallel with each other.
Each term naively requires a depth proportional to the length of
a given horizontal row to calculate the Jordan-Wigner string.
Assuming a square geometry, this length is O(

√
N ). We can

use a tree to calculate the fermionic parity of the sites in the
middle of the string, reducing the depth to log(N ) if desired.
For the terms from top to bottom edge, there are Jordan-Wigner
strings of length O(N ), but these terms nest and so can all
be executed in parallel, reducing the depth to O[log(N )].
The fermionic parity on the sites on the middle rows (those
other than the top and bottom row) can be calculated using a
tree, again in depth O[log(N )]. The total depth can then be
O[log(N )

√
N ]. In fact, using a tree to compute parities, the

total depth can be reduced to polylogarithmic in N .
Another way to reduce the cost of the Jordan-Wigner

transform in this geometry is in Ref. [8]. This method does
require additional qubits.

V. FINDING THE GROUND STATE BY QUANTUM
PHASE ESTIMATION

The annealing algorithm generates a state with good overlap
with the ground state if the rate is sufficiently slow. Section V C
discusses optimized paths that increase the overlap. However,
in fact, it is not necessary to obtain a perfect overlap with the
ground state; if the overlap with the ground state is reasonably
large, then we can apply quantum phase estimation to the
state and have a reasonably large chance of projecting onto
the ground state. Since the time for the simplest annealing

H H Y Y †

Z H Rz(θ) H Y Rz(θ) Y † Z

FIG. 9. Quantum circuit to implement time evolution for a time step θ under the hopping term c†p,σ cq,σ + c†q,σ cp,σ . Top and bottom lines
represent qubits for p,σ and q,σ .
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H H Y Y †

Z H Rz(θ) H Y Rz(−θ) Y † Z

FIG. 10. Quantum circuit to implement time evolution for a time step θ under the pairing term c†p,σ c
†
q,σ ′ + cq,σ ′cp,σ . Top and bottom lines

represent qubits for p,σ and q,σ ′.

path scales inversely with the gap squared, while the time
to use quantum phase estimation to measure energies more
accurately than the gap (and thus to determine whether or not
one is in the ground state) scales inversely with the gap, up
to logarithmic corrections, using quantum phase estimation
to project an approximate state onto the ground state may be
preferred. The gap will depend upon the annealing path; since
we use a symmetry-breaking field until nearly the end, the gap
only closes at the end of the anneal. In this section we first
give a simple improvement to quantum phase estimation that
leads to a reduction in depth. We then give some numerical
estimates for annealing times for free fermion systems (the
simplest case where one can estimate annealing times for a
large system numerically).

A. Reducing the number of rotations
in quantum phase estimation

While this general setting of using adiabatic preparation
and quantum phase estimation has been considered many
times before, we briefly note one simplification of the quantum
phase estimation procedure. If the gate set available consists of
one- or two-qubit Clifford operations, then this simplification
provides a slightly larger than twofold reduction in depth;
more importantly, it provides a fourfold reduction in the
number of arbitrary rotations, which are expected to be the
most costly operations to implement. This simplification is
not in any way specific to the Hubbard model and could
be applied in other settings, such as in quantum chemistry.
The usual approach to quantum phase estimation is to build

FIG. 11. (Color online) Snake pattern for ordering of sites. The
arrow shows order of sites. Dashed and solid lines represent hopping
terms. The hopping terms are grouped into four different sets, two sets
of vertical and two sets of horizontal hoppings, as shown by different
colorations and dash patterns.

controlled unitaries to implement the unitary evolution (by
using the ancilla to control the unitaries described above).
In this case, if the ancilla qubit is in the |0〉 state, then no
quantum evolution is implemented, while if the ancilla qubit
is in the |1〉 state, then quantum evolution by U = exp(−iH t)
is implemented (up to Trotter-Suzuki error). Then quantum
phase estimation estimates the eigenvalues of this unitary U .
The simple modification that we propose is that, instead, if the
ancilla qubit is in the |0〉 state, then we implement evolution by
exp(iH t/2), while if the ancilla qubit is in the |1〉 state, then
we implement evolution by exp(−iH t/2). Since the difference
between these two evolutions is the same exp(−iH t), then the
same phase estimation procedure on the ancilla will return
the identical result for the energy (again up to Trotter-Suzuki
error).

This approach means that we have then only to implement
unitary evolution for half the time (i.e., t/2 rather than t),
so assuming the same time step for each Trotter step means
that the number of Trotter steps required is halved. However,
to analyze whether this improves the gate depth, we need
to determine how the gate depth might change in a given
Trotter step. First, let us review the usual method of making
circuits controlled to implement phase estimation, and then we
explain how to do it for the modification considered here. As an
example, let us consider a circuit to implement a hopping term,
as in Fig. 9. The usual technique (see references before) to
make this circuit controlled (so that if the ancilla is |0〉, then the
identity operation is performed, while if the ancilla is |1〉, then
evolution under the hopping term is performed) is to modify the
two Rz(θ ) gates, making them both controlled by an ancilla.
A controlled rotation by angle θ implements no rotation if
the ancilla is in the |0〉 state and implements a rotation by
angle θ if the ancilla is in the |1〉 state. Different quantum
computing architectures may make different elementary gates
available. If we have access to arbitrary Z rotations by angle
θ and to Clifford operations, then the controlled rotation by
angle θ is implemented by rotating the target by angle θ/2,
then applying a controlled NOT from the ancilla to target,
then rotating the target again by angle −θ/2, and then again
applying a controlled NOT from the ancilla to target, so that
the net rotation is θ/2 − θ/2 = 0 if the ancilla is in the |0〉
state and is θ/2 + θ/2 = θ if the ancilla is in the |1〉 state.
Thus, the controlled rotation is implemented by doing two
arbitrary angle rotations and additionally applying two Clifford
operations for a total of four gates given the gate set mentioned
above.

A crucial point is that the only gates which need to be
made controlled are the Rz(θ ) gates. The other gates in Fig. 9
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do not need to be modified in any way. The property still
holds when we consider our proposed method of implementing
evolution by either exp(iH t/2) or exp(−iH t/2), depending on
the ancilla. In this method, we need to modify the Rz(θ ) gates
to implement a rotation by either a positive or negative angle;
we term this a “uniformly controlled rotation”: a rotation by
angle +θ if the ancilla is in the |0〉 state and a rotation by
angle −θ if the ancilla is in the |1〉 state. This can be done
by applying a controlled NOT from the ancilla to target, then
rotating the target, then again applying a controlled NOT from
the ancilla to target. This requires one arbitrary angle rotation
and two Clifford operations.

Thus, we find that the total number of gates required to
implement the appropriately controlled version of Fig. 9 has
been reduced by 1, as one fewer arbitrary rotation is required,
while the same Clifford operations are required. So the depth
of a single Trotter step is slightly reduced. Since the number
of Trotter steps has been halved, we find indeed a slightly
larger than twofold reduction in depth, as claimed. Further,
the number of arbitrary rotations is reduced by four. We have
described this construction for the hopping term; however,
for any term, the usual technique is to replace arbitrary
single-qubit rotations by controlled rotations, while we suggest
instead replacing them with uniformly controlled rotations.

B. Annealing time for free fermions

To make some estimate of the cost of adiabatically
preparing a good approximation to the ground state, it is worth
considering the case of free fermions. For any system of free
fermions with translation symmetry and k sites per unit cell, the
annealing problem decouples into many different problems,
one for each Fourier mode, each problem describing annealing
of a k-dimensional subspace. For k = 2, this is a Landau-Zener
problem. For a single such Landau-Zener problem, the anneal-
ing time is expected to scale as 1/�2, where � is the gap of the
Hamiltonian. However, we have many Landau-Zener problems
in parallel, and we want all Fourier modes to reach the ground
state. The problem is least serious if the Fermi surface consists
just of isolated points (such as in one dimension or for a
semimetal in higher dimensions), as there are only a few
Fourier modes with small gap. For systems with a Fermi
surface, the density of states at the Fermi surface is larger,
meaning that there are more modes with small gap. However,
the probability of a diabatic transition for a Landau-Zener sys-
tem is exponentially small in the ratio of the gap squared to the
Landau-Zener velocity. Hence, even if there are a large number
of modes with gap �, this should require only a logarithmic
slowdown in the adiabatic velocity to have a small probability
of a diabatic transition. However, one must also worry about
effects due to the end points of the evolution. See, however,
Sec. V C for a detailed discussion of improved annealing
strategies that overcome some of the effects of the end points.

To put some numbers onto these generalities, we considered
a system of spinless free fermions at half filling in one
dimension with periodic boundary conditions (this, of course,
is the most advantageous case with only two modes with
minimum gap). For each Fourier mode, we compute the
evolution using numerically exact techniques (this is a two-
dimensional quantum mechanics problem); to determine the

probability of the entire system being in the ground state,
we multiply the probabilities for each mode. We follow the
annealing path

Hs =
∑
i even

(c†i ci+1 + H.c.) + s
∑
i odd

(c†i ci+1 + H.c.), (20)

starting at a fully dimerized state at s = 0 and moving to a
uniform state at s = 1, where c† (ci) creates (annihilates) a
spinless fermion on site i. We followed a uniform annealing
schedule and used a time discretization with negligible Trotter
error. We chose sizes which were not a multiple of 4 to avoid
having an exact zero mode.

For a system 1002 sites, with an annealing time t = 1000,
the probability of ending in the ground state is 0.54 . . ..
Thus, the expected time to end in the ground state is
roughly 2000 plus a roughly additional two phase estimation
steps on average. Reducing the annealing time to t = 500,
the probability of ending in the ground state is 0.306 . . .,
taking slightly less expected annealing time, but more phase
estimation steps on average. Increasing to 2002 sites, the
situation is worse. For t = 1000, the probability of ending in
the ground state is 0.13 . . ., so the expected time is over 7500,
plus over seven phase estimation steps on average. Because
the system is translationally invariant with period 2 for all s,
the probability of ending in the ground state is a product over
momentum vectors of the probability of ending in the ground
state in each momentum vector. Each of these probabilities
can be calculated by evolving a 2-by-2 matrix. In all cases,
the dominant contribution to the smallness of the probability
to end in the ground state was from the lowest energy mode.
Thus, small changes in the low-energy density of states can
lead to dramatic changes in the success probability.

For 1002 sites, the lowest eigenvalue of the free fermion
hopping matrix is 0.0188 . . ., so the gap � of the Hamiltonian
is twice that. Hence, in this case, the phase estimation time
could be much smaller than the annealing time.

Since rather large Trotter time steps of order 0.25 are
sufficient to obtain reasonable overlap with the ground state,
we find that about 104 steps are sufficient to prepare the ground
state. Using a parallel circuit each step can be performed with
a small circuit depth that increases only logarithmically with
the system size. Hence, a parallel circuit depth of about 106

gates is sufficient to prepare the ground state.

C. Improved annealing paths

There are broadly two strategies for reducing the error in
the annealing path. The typical objective in such optimizations
is to find a function, f (s), that satisfies f : [0,1] �→ [0,1] and
f (0) = 0 and f (1) = 1 such that the diabatic leakage out of the
ground state caused by Udiab := eiT

∫ 1
0 E0(s)dsT e−iT

∫ 1
0 H (f (s))ds

is minimized for a fixed value of T . Here we use the convention
that T is the time ordering operator, T is the total evolution
time allotted, and s = t/T is the dimensionless time, and the
phase factor is included to ensure that limT →∞ Udiab = Uadiab

is well defined.
The first strategy is known as local adiabatic interpola-

tion [44]. The idea of local adiabatic interpolation is to choose
f (s) to increase rapidly when the eigenvalue gap of H (f (s)) is
large and increase slowly when the gap is small. This strategy
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can substantially reduce the time required to achieve a fixed
error tolerance, but does not improve the scaling of the diabatic
errors in the state preparation, which scale as O(1/T ) for
Hamiltonians that are sufficiently smooth.

The second strategy, known as boundary cancellation,
is often diametrically opposed to local adiabatic optimiza-
tion [45]. The idea behind it is instead of moving at a speed
designed to minimize diabatic transitions, you choose a path
designed to maximize cancellations between them. There are
several strategies for exploiting this, but the simplest strategy
is to choose f (s) such that ∂k

s f (s)|s=0,1 = 0 for k = 1, . . . ,m.
Then if f (s) is at least m + 2 times differentiable and H (f (s))
does not explicitly depend on T , then the error in the adiabatic
approximation is, at most [46],

2

∣∣∣∣ max
s

∥∥∂m+1
s H (f (s))

∥∥
�(s)m+2T m+1

∣∣∣∣ + O(1/T m+2), (21)

where �(s) is the gap at the given value of s. Equation (21)
therefore implies that if

f (s) =
∫ s

0 ym(1 − y)mdy∫ 1
0 ym(1 − y)mdy

, (22)

then the upper bound on the asymptotic scaling is improved
from O(1/T ) to O(1/T m+1). Furthermore, if a diabatic error
of δ is desired, then it suffices to take

T = O

(
max

s

∥∥∂m+1
s H (f (s))

∥∥ 1
m+1

�(s)1+ 1
m+1 δ

1
m+1

)
. (23)

This implies that even in the limit of small δ the cost
of adiabatic state preparation is not necessarily prohibitive
because m can be increased as δ shrinks to achieve improved
scaling with the error tolerance. Furthermore, the scaling of
the error with the minimum gap becomes near-quadratically
smaller than would be otherwise expected (for δ sufficiently
small).

The above argument only discusses the scaling of the
evolution time under the assumption that m is fixed. If m

grows as δ shrinks, then there may be m-dependent prefactors
that are ignored in the above analysis. If the Hamiltonian is
analytic in a strip about [0,1] and it remains gapped throughout
the evolution, then Lidar et al. show that, for fixed T , the error
grows at most polynomially with m [45]. Calculus then shows
that the optimal value of m scales logarithmically with the error
tolerance and hence such contributions are subpolynomial.

These two strategies are often mutually exclusive when the
avoided crossing does not occur near the boundary because if
H (s) is analytic, then Ḣ (s) will have to be larger away from the
boundary to compensate for the fact that it is nearly constant
in the vicinity of the boundary. This can cause the Hamiltonian
to move rapidly through the avoided crossing, which increases
the annealing time required. However, the minimum gap often
occurs at the end of the evolution when transforming from
the initial Hamiltonian (such as the free Fermion model,
plaquette preparation, or other tractable approximation) to
the interacting theory. This means that the two strategies are
often compatible here and that boundary cancellation methods
will often be well suited for high-accuracy state preparation.
Further adiabatic optimizations could also be achieved by

altering (22) to approximate the local-adiabatic path in the
region away from from s = 0,1.

We are, of course, concerned about the evolution time re-
quired to perform Uadiab ≈ Udiab since it dictates the resources
needed to prepare the ground state ψ0 within a fixed error by
adiabatic evolution starting from the free fermion ground state
ψ

f

0 f . A related problem is the problem of implementing the
projector onto the ground state, P0 = |ψ0〉〈ψ0| within a fixed
error; we wish to be able to do this for a method described in
Sec. VII B. Given the projector P

ff

0 = |ψff

0 〉〈ψff

0 | we have
P0 = UadiabP

ff

0 U
†
adiab; we describe later how to measure P

ff

0
and so by conjugating this measurement by Uadiab we can
measure P0.

At first glance, the use of a Trotter decomposition may
appear to be problematic for adiabaticity because the time-
dependent Hamiltonian that describes the decomposition is
discontinuous. Such discontinuities are not actually problem-
atic, as can be seen by using the triangle inequality∣∣(Uadiab − UTS

diab

)∣∣ψff

0

〉∣∣
�

∥∥Uadiab − UTS
diab

∥∥
�

∥∥Uadiab − Udiab

∥∥ + ∥∥Udiab − UTS
diab

∥∥, (24)

where UTS
diab is a quantum circuit approximation to the finite

time evolution Udiab. This shows that the error in the state
preparation is at most the sum of the adiabatic error and the
error in simulating the adiabatic evolution. We have a similar
bound for error in measuring P0:∥∥UadiabP

ff

0 U
†
adiab − UTS

diabP
ff

0 U
TS†
diab

∥∥
� 2

(∥∥Uadiab − Udiab

∥∥ + ∥∥Udiab − UTS
diab

∥∥). (25)

In order to make the entire simulation error at most δ, it
suffices to set both sources of error to δ/2. This creates an
issue because the cost of simulation scales at least linearly
with T , which, in turn, scales with 1/δ. There is a wide array
of different Trotter-based formulas that can be used in the
simulation but in all such cases the Trotter number (and, in
turn, the simulation cost) scales [47] for integer k > 0 as

T 1+1/2k/δ1/2k , which, using (21) is O(δ
−(2k+m+2)

2k(m+1) ) For any fixed
m, the value of k that leads to the best scaling with δ can found
by numerically optimization. However, if we approximate this
optimal value by taking 2k = m for even m, then the cost
of the Trotterized simulation is O(δ−2/m), which leads to
subpolynomial (but not polylogarithmic) scaling of the total
cost of simulation in 1/δ if 2k = m and the Hamiltonian is
sufficiently smooth because the cost of a Trotterized simulation
grows exponentially with k, unlike the error in the adiabatic
approximation.

This shows that the cost of implementing P0 or prepar-
ing ψ0 within error δ,T0, is subpolynomial in 1/δ. Since
O[ε−1 log(1/ε)] repetitions of this circuit are needed and since
errors are subadditive, it follows that taking δ ∝ ε2/ log(1/ε)
suffices to make the total error at most ε. Thus, the cost of
implementing P0 scales as ε−1+o(1), where the o(1) term is
the amalgamated costs of the adiabatic preparation and the
logarithmic term from phase estimation.

It also should be noted that high-order Trotter-Suzuki
formulas may not be needed in practice, as numerical evidence
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suggests that small Trotter numbers typically suffice for the
small Hubbard models that we have considered. This means
that low-order methods may often be preferable to their
higher-order brethren. Tight error bounds for the second-order
Trotter-Suzuki formula are given in the Appendix.

VI. MEASURING OBSERVABLES

In this section we discuss the measurement of interesting
physical observables. The total energy, which could be
measured by phase estimation, is the least interesting quantity.
We instead focus on densities and density correlations, kinetic
energies, Green’s functions, and pair correlation functions.

Such computations will allow us to understand the physics
of the ground state. For instance, if the ground state is
superconducting, then we can compute the correlation function
of the pair field by the methods described in this section. Its
long-distance behavior determines the condensate fraction. We
can also compute the expectation value of the kinetic energy;
its variation with doping can help determine whether the
system becomes superconducting as a result of kinetic energy
gain compared to the nonsuperconducting state. Finally,
more complex correlation functions, which would be very
difficult—if not impossible to determine in experiments—
could determine how these superconducting properties vary
in response to perturbations that enhance or suppress effects
such as spin or charge fluctuations.

A. Local observables and equal-time correlations

1. Measuring the density, double occupancy, and spin
and density correlations

The densities ni,σ are trivially measured by measuring the
value of the qubit corresponding to the spin orbital (i,σ ).
Similarly, double occupancies ni,↑ni,↓ can be determined by
measuring two qubits, while density correlation functions

ninj = (ni,↑ + ni,↓)(nj,↑ + nj,↓) (26)

and spin correlation functions

Sz
i S

z
j = 1

4 (ni,↑ − ni,↓)(nj,↑ − nj,↓) (27)

can be determined directly by measuring the values of four
qubits.

By simultaneously measuring all qubits in the computa-
tional basis (eigenvectors of the Pauli-Z operator), we can
determine density, double occupancy, and all spin and density
correlations. As an example, suppose we have recorded this
sequence of measurement outcomes over several runs (for each
run, for every qubit we measure the Pauli-Z operator and we
record the measurement outcomes). Given this data, suppose
we now wish to estimate a correlation function such as

〈ψ0|ni,↑nj,↑|ψ0〉
for a pair of sites i �= j . This is equal to the expectation value
of

Zi,↑ + 1

2

Zj,↑ + 1

2
.

Given the outcomes of the measurements of Zi,↑,Zj,↑, we
simply add 1 to each measurement, multiply the results, and

|0 H Z(θ) H
U

FIG. 12. (Color online) General phase estimation circuit to com-
pute the expectation value of any unitary which can be given as a
controlled black box. The Z(θ ) produces a rotation about the Z axis
by angle θ ; by varying this, real and imaginary parts of the expectation
value can be measured.

divide by four. We then average this over runs. For example, if
we consider a two-site Hubbard model at half filling and U = 0,
we find that the two measurement outcomes Zi,↑ and Zj,↑ are
perfectly anticorrelated (since there is only one electron with
spin up which has equal probability to be on either of the two
sites) and so the average of the product will not equal the
product of the averages.

2. General strategy for other observables

Next, we note that there is a general strategy used to
measure the expectation value of any unitary operator U ,
assuming that we can build a circuit that implements a
controlled version of this unitary, controlled by some ancilla.
Namely, we apply a one-bit phase estimation using the phase
estimation circuit of Fig. 12. This is a standard trick; see,
for example, Fig. 9 in Ref. [16]. Since we have circuits
that implement unitary evolution under various Hamiltonian
terms, this enables us to measure these terms. For example,
to measure a term c

†
p,σ cq,σ , we measure the expectation value

of the unitary exp[−iθ (c†p,σ cq,σ + H.c.)]. Since the operator
c
†
p,σ cq,σ + H.c. has eigenvalues −1,0,+1, the most efficient

results are obtained from the phase estimation when we choose
θ = π (which perfectly distinguishes in a single measurement
between eigenvalue 0 and eigenvalues ±1) or θ = π/2 (which
perfectly distinguishes the case of eigenvalue +1 from the case
of eigenvalue −1).

However, for the observables we consider, there, in fact, are
much simpler ways of measuring the correlation functions. We
give two different strategies. The first strategy involves replac-
ing rotations in some of our unitary gates with measurements
and we call it the “stabilizer strategy”; the second introduces
a new gate called an “FSWAP.”

3. The stabilizer strategy

The stabilizer strategy is a method for measuring observ-
ables of the form exp[−iθ (O1 + O2 + · · · )] or of the form
O1 + O2 + · · · , where each Oi is a product of some number
of Pauli operators, and [Oi,Oj ] = 0. This form includes many
operators of interest to us, including terms in the Hamiltonian
such as the kinetic energy as well as other terms such as pair
correlation. We call this the stabilizer strategy because of our
use of products of Paulis which commute with each other; no
assumption is made that any state is a stabilizer state.

If we can measure each Oi , then we succeed in measuring
the desired operator. Since they commute, we may measure
them in any order without needing to recreate the state
after measurement. As each Oi is a product of Paulis, there
is some unitary in the Clifford group which maps it onto
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H H Y Y †

H |M H Y |M Y †

FIG. 13. (Color online) Hpq Measurement.

a Pauli Z operator on some given qubit. Hence, we can
measure that Oi by applying that Clifford unitary, then doing
a Z-basis measurement, and finally undoing the Clifford
unitary. Applying this procedure to terms in the Hamiltonian,
for which we have previously given circuits to implement
exp[−iθ (O1 + O2 + · · · )] using sequences of controlled Z-
basis rotations conjugated by Clifford gates, the measurement
circuit amounts to replacing each controlled Z-basis rotation in
the evolution circuit with a Z-basis measurement. For example,
if we apply this procedure to the Hpq unitary evolution shown
in Fig. 9, we arrive at the circuit shown in Fig. 13. Summing
the value of the two Z measurements (treating the answers
as ±1 for each measurement) and then dividing by two (this
division occurs because the controlled unitaries rotate by an
angle equal to half the coupling strength) gives a measurement
of the expectation operator of the hopping operator. In fact,
we find that the same measurements are needed to measure
the pairing operator for � real, since, as we have noted, the
pairing operator for � real is implemented by the same unitary
as the hopping operator, up to a sign change in the second
controlled rotation. Thus, the two measurements we have
given simultaneously measure the two commuting operators
c
†
p,σ cq,σ ′ + H.c. and c

†
p,σ c

†
q,σ ′ + H.c. (to measure the pairing

operator, one must instead consider the difference of the two
Z measurements).

4. The FSWAP strategy for the kinetic energy
and Green’s functions

For the kinetic energies we will have to measure one-body
Green’s functions c

†
i,σ cj,σ + c

†
j,σ ci,σ . To do this, we first swap

qubit j with its neighboring qubits until it is neighboring qubit
i in the normal ordering and is at one of the positions k = i ± 1.
Taking into account the fermionic nature of the electrons we
need to use a new fermionic swap gate FSWAP with matrix

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎠. (28)

The circuit expressed in standard gates is

F =

H H
.

(29)

We next change the basis to be able to better mea-
sure the kinetic energy on the bond, which is then

−tpq(c†p,σ cq,σ + c
†
q,σ cp,σ ). This basis change is a simple

circuit,

H
,

(30)

giving the unitary
⎛
⎜⎜⎝

1/
√

2 0 0 1/
√

2
−1/

√
2 0 0 1/

√
2

0 1/
√

2 1/
√

2 0
0 −1/

√
2 1/

√
2 0

⎞
⎟⎟⎠. (31)

An example circuit containing several measurements in
parallel is shown in Fig. 14.

We may then measure the Z eigenvalues of the two qubits
and call them s1 and s2. If we measure s1 = −1, there is one
particle on the two sites. We then have as estimators for the
Green’s function c

†
p,σ cq,σ ′ + c

†
q,σ ′cp,σ ,

s2δs1,−1, (32)

and for the kinetic energy −tpq(c†p,σ cq,σ + c
†
q,σ cp,σ ) the

estimator,

−tpqs2δs1,−1. (33)

Note that if we have N qubits we can do N/2 measurements
simultaneously, as long as no qubit is involved in two
measurements.

Conversely, if the first qubit is +1, there are either 0 or
2 particles on the bond. In the presence of a pairing term,
which breaks particle number conservation, we can measure

F

F

F

F

H

H

H

H

FIG. 14. (Color online) Example of a circuit for parallel mea-
surements of a number of Green’s function values between different
sizes.
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nontrivial values for the pair field operator c
†
p,σ c

†
q,σ ′ + H.c. as

s2δs1,1.

5. The FSWAP strategy for the pair correlation functions

Pair correlation functions in their most general form are
built from the general two-body terms c

†
i,σ c

†
j,−σ ck,−σ ′cl,σ . This

expectation value can be measured after fermion-swapping
the qubits to be adjacent and then performing two Green’s
function measurements. We first use FSWAP gates to move the
qubits i, k, j , and l to four adjacent positions, which we label 1
to 4. We then apply the same circuit as for the Green’s function
measurements to both pairs (1,2) and (3,4) and measure the
Z component of each qubit m(=1, 2, 3, or 4) as sm. The
expectation value is then expressed as 〈c†i,σ ck,σ c

†
j,σ ′cl,σ ′ 〉 =

〈s2s4δs1,−1δs3,−1〉.
Care must be taken if two indices are the same, e.g., if i = k

in above term. In that case, things simplify since

〈c†i,↑ci,↑c
†
j,↓cl,↓〉 = 〈ni,↑c

†
j,↓cl,↓〉 (34)

and the measurement just becomes

〈ni,↑c
†
j,↓cl,↓〉 = 〈ni,↑s4δs3,−1〉. (35)

Similarly, if i = k and j = l we get

〈c†i,↑ci,↑c
†
j,↓cj,↓〉 = 〈ni,↑nj,↓〉 (36)

and the measurement is straightforward.
For the Hubbard model we are interested in singlet pairing

and the specific terms we want are

�ij,kl = 1
2 (c†i,↑c

†
j,↓ − c

†
i,↓c

†
j,↑)(ck,↑cl,↓ − ck,↓cl,↑). (37)

Multiplying this out and sorting by spin, we get

�ij,kl = − 1
2 (c†i,↑ck,↑c

†
j,↓cl,↓ + c

†
i,↑cl,↑c

†
j,↓ck,↓

+ c
†
j,↑ck,↑c

†
i,↓cl,↓ + c

†
j,↑cl,↑c

†
i,↓ck,↓), (38)

which can be measured by individually measuring all terms.
Note that even though there may be N4 different choices

for the four indices, we do not need to measure all of these
four-point functions. As pairs are expected to be tightly bound
in the Hubbard model, choosing i close to j and k close to l,
but choosing the pairs (i,j ) and (k,l) at as large a distance as
possible on a given lattice is sufficient to check for long-range
pair correlations. In fact, we can measure c

†
i,↑c

†
j,↓ + H.c. (or

c
†
i,↑c

†
j,↓ − H.c.) for N/2 pairs (i,j ) simultaneously because

the operators commute; then, averaging the result over pairs
extracts the long-wavelength pair correlation. To measure these
with minimum depth, one can use nesting strategies similar to
those discussed for measuring hopping terms in Sec. IV B.

B. Dynamic correlation functions and gaps

1. Dynamic response in the time domain

The measurement of dynamic correlation functions

CA,B(t) = 〈ψ0|A(t)B(0)|ψ0〉
≡ 〈ψ0|e+itH A†e−itH B|ψ0〉 (39)

for time-independent Hamiltonians such as the Hubbard model
are typically presented not in the time domain but after a

Fourier transform in the frequency domain:

SA,B(ω) =
∫ ∞

−∞
dtCA,B(t)eiωt . (40)

The standard way of measuring them has been explained in
several references, most explicitly in Ref. [16]. For unitary
operators A,B, the product A†e+itH Be−itH is a unitary and
can be measured using the circuit of Fig. 12. One simple
improvement is to note that it is not necessary to control the
evolutions eitH ,e−itH and it suffices to control A†,B; then, if
the ancilla bit is |0〉 so that the operators A†,B are not done,
the product eitH e−itH is equal to the identity as desired. The
uncontrolled time evolution will require only half as many
arbitrary angle rotations as the controlled time evolution for
many gate sets (see Sec. V A for discussion of implementing
controlled time evolution).

A further improvement is to note that the final evolution
e−itH just gives an overall phase acting on the ground state
and so can be replaced by Z rotation of the ancilla without
being implemented, giving another factor of two reduction in
depth. A final improvement combines the idea in Ref. [16]
of controlling one operation and anticontrolling another with
one of the ideas in Sec. V A of implementing either forward
or backward evolution in time. We prepare the ancilla in the
state |+〉. If the ancilla is |0〉, we implement eitH/2B and if
the ancilla is |1〉 we implement e−itH/2A. The measurement of
the ancilla in the X basis gives the desired expectation value.
The controlled time evolution, by either eitH/2 or e−itH/2

depending on whether the ancilla is |0〉 or |1〉, can be done as
described in Sec. V A. This requires half the number of time
steps as that required to implement the uncontrolled evolution
by eitH , assuming that the same time step is used for both
evolutions; the only additional cost is an additional CNOT gate
for each arbitrary angle Z rotation in the evolution, and since
these are Clifford gates the cost is much smaller than the cost
of an arbitrary angle rotation for many gate sets.

2. Dynamic response in the frequency domain by phase estimation

A dynamic correlation function of an operator with its
adjoint, such as

CA(t) = 〈ψ0|A†(t)A(0)|ψ0〉
≡ 〈ψ0|e+itH A†e−itH A|ψ0〉, (41)

can be simplified after a Fourier transform into the frequency
domain:

SA(ω) =
∫ ∞

−∞
dt eiωt CA(t)

=
∫ ∞

−∞
dt eiωt 〈ψ0|e+itH A†e−itH A|ψ0〉

=
∫ ∞

−∞
dt eiωt

∑
n

〈ψ0|e+itH A†e−itH/�|ψn〉〈ψn|A|ψ0〉

=
∫ ∞

−∞
dt

∑
n

ei[ω−(En−E0)]t 〈ψ0|A†|ψn〉〈ψn|A|ψ0〉

=
∑

n

|〈ψn|A|ψ0〉|2δ[ω − (En − E0)]. (42)
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Instead of performing a “simple sampling” and measuring
CA(t) for all times t and then Fourier transforming it and
hoping to get these δ functions resolved a new and better
approach is to do “importance sampling” and measure the
energies of the eigenstates |n〉 with eigenenergies En directly
with the weight |〈ψn|A|ψ0〉|2 with which they appear in the
above sum.

This can be achieved by phase estimation. If we apply
phase estimation to the state A|ψ0〉, then eigenstate |ψn〉 will
be picked just with the weight A |〈ψn|A|ψ0〉|2 and a histogram
of the measured energies thus directly measures the dynamic
structure factor SA(ω).

The retarded correlation function

χA(t) = θ (t)〈ψ0|[A†(t),A(0)]|ψ0〉 (43)

can then be obtained as follows. First, we write the retarded
correlation function in terms of its real and imaginary
parts, χA(ω) = χ ′

A(ω) + iχ ′′
A(ω). The imaginary part of the

retarded correlation function, χ ′′
A(ω) is then obtained from the

fluctuation-dissipation theorem: χ ′′
A(ω) = (1 − e−βω)SA(ω); at

zero temperature, β = ∞, and the second term in parentheses
vanishes. The real part χ ′

A(ω) is then obtained by the Kramers-
Kronig relation:

χ ′
A(ω) = P

∫ ∞

−∞

dω′

π

χ ′′
A(ω)

ω′ − ω
. (44)

By choosing A = Zp,σ we can measure the local dynamical
spin-density correlations. Explicitly we find that

〈Zp,σ (0)Zp′,σ ′(t)〉 = 4〈np,σ (0)np′,σ ′(t)〉
− 2np,σ (0) − 2np′,σ ′(t) + 1. (45)

Since np′,σ ′(t) = np′,σ ′(0) the last three terms do not depend
on t and only contribute a constant, which does not give any
contribution to the interesting finite-ω structure factor. Local
dynamical charge and spin correlations are straightforwardly
calculated from the spin-density correlations.

Similarly, local single-particle excitations can be measured
by choosing

A = c†p,σ + cp,σ =
∏
q<p

Zq,σ Xq,σ . (46)

Whether a particle or a hole excitation is realized in the excited
state that is picked out by phase estimation can easily be
determined by measuring the total particle number of that
state.

Using circuits similar to the preparation of Slater deter-
minants, we can measure dynamical correlation functions not
only locally but for arbitrary single-particle wave functions.
In particular, using momentum eigenstates one can obtain the
momentum-resolved electron and hole spectral functions as
measured in angle-resolved photoemission (ARPES).

VII. NONDESTRUCTIVE MEASUREMENTS

For the small systems that we have explicitly simulated,
the time needed to adiabatically prepare a good estimate of
the ground state is small compared to the phase estimation
time. However, this will change as one increases the system
size, and the time to adiabatically prepare the ground state will

ultimately dominate, at least if one uses an annealing path that
linearly interpolates between initial and final Hamiltonian. The
reason is the time to adiabatically prepare the ground state is
expected to scale as �−2 for a system with spectral gap �,
while resolving energies to accuracy � with phase estimation
takes time 1/� and, thus, for small �, the phase estimation is
faster. We note that the improved higher-order annealing paths
in Sec. V C do alleviate this problem.

This problem is slightly alleviated by the fact that we
are content to prepare by annealing a state with significant
overlap (say, 1/2 overlap) with the ground state, as then phase
estimation will give us a significant chance of projecting
onto the ground state. However, once we have prepared a
ground state ψ0 by a combination of annealing and phase
estimation, it will be desirable to measure properties of the
state without destroying it. Here we present two approaches for
such nondestructive measurements. Section VII A discusses
an approach based on the Hellman-Feynman theorem, which
not only is nondestructive but also scales better in the error
than the simple way of repeatedly preparing the ground state
and measuring. An alternate approach based on “recovering”
the state after measurements may be more useful in some
circumstances and is discussed in Sec. VII B.

A. Hellman-Feynman based approach

According to the Hellman-Feynman theorem, the derivative
of the ground-state energy E0(λ) with respect to a perturbation
λO is just the expectation value of the operator O in the ground
state |�0(λ)〉:

d

dλ
E0(λ) = d

dλ
〈�0(λ)|H + λO|�0(λ)〉

= 〈�0(λ)|O|�0(λ)〉. (47)

An alternative and superior way of measuring expectation
values of arbitrary observables O is to adiabatically add a
small perturbation λO to the Hamiltonian H .

This opens a way to measuring observables without
destroying the ground-state wave function |�0(0)〉 of H . We
adiabatically evolve the ground-state wave function |�0(0)〉 to
|�0(λ)〉 by slowly increasing λ to its final (small) value and
then perform another quantum phase estimation to determine
the energy E0(λ). The ground-state expectation value can be
estimated through

〈�0(0)|O|�0(0)〉 = d

dλ
E0(λ)|λ=0

= E0(λ) − E0(0)

λ
+ O(λ2). (48)

For example, to measure a Green’s function we add a
“hopping” term λ(c†p,σ cq,σ + c

†
q,σ cp,σ ) to the Hamiltonian.

In order to obtain an estimate with an error ε, we need to
choose λ = O(ε), and then measure the energy to an accuracy
λε = O(ε2). Phase estimation then requires time O(ε−2),
which scales the same as repeated preparation with destructive
measurements and thus only gets a constant improvement.

The scaling can be improved by using a symmetric
estimator for the derivative

〈�0(0)|O|�0(0)〉 = E0(λ) − E0(−λ)

2λ
+ O(λ3), (49)
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which reduces the approximation error. To get the energy to
accuracy ε, this allows a larger value of λ = O(ε1/2), which
requires phase estimation only to an accuracy of O(ε3/2), and a
time scaling as O(ε−3/2). In general, using a kth-order estima-
tor for the derivative requires O(k) energy measurements, but
with an error scaling as O(λk), we can choose λ = O(ε1/(k−1))
and require time O(kε−1−1/(k−1)). Asymptotically, for small ε

we can thus estimate the expectation value nondestructively
with an effort scaling as O(− log ε

ε
), obtaining a near-quadratic

speedup.
In the Hellman-Feynman approach, there may be no need to

do an adiabatic evolution. In many cases we could simply start
in the state ψ0, then apply a phase estimation to expectation
value of H + λO, and then apply another phase estimation
to estimate the ground-state energy of H . The absolute value
squared of the overlap between the ground state of H and the
ground state of H + λO is equal to 1 − O(λ2/�2), and so
for λ 	 � the overlap is close to unity. So, with probability
close to 1, the energy given by phase estimation of H + λO

will, in fact, be the desired ground-state energy, and with again
probability close to 1 the second phase estimation will return
to the ground state of H .

B. Nondestructive measurements with quadratic speedup

This annealing procedure becomes less useful for operators
O which require a complicated quantum circuit. Suppose we
wish to measure the expectation value of a time-dependent
correlation such as O = Sz(t)Sz(0), where t > 0 and where
Sz(t) = exp(iH t)Sz exp(−iH t). In this case, the quantum
circuit to measure O (given below) is much more complicated;
thus, the Hamiltonian H + εO becomes significantly more
costly to do phase estimation on.

In this section, we explain a technique to measure arbitrary
projection operators in a nondestructive fashion. We then
further explain a quadratic speedup of this approach. Our initial
approach gives many independent binary measurements with
outcome probability determined by the expectation value of
the operator. This requires a number of samples proportional
to the square of the inverse error. On the other hand, the
improved approach exploits phase estimation to speed this
up quadratically (up to log factors).

As we have explained previously, we have quantum circuits
that implement projective measurements of all the operators
we are interested in, such as number operator, hopping
operator, and so on. Further, we have a general technique for
implementing a projective measurement of any unitary that
can be controlled.

1. Recovery map

Suppose we wish to implement a projective measurement
with k possible outcomes for some given k. We describe these
outcomes by projectors Q1, . . . ,Qk , with

∑
i Qi = I , and we

refer to this measurement as “measuring Q”. The ground
state ψ0 can be written as a linear combination of states in
the range of each of these projectors,

ψ0 =
∑

i

aiφi, (50)

where

Qiφi = φi, (51)

and |φi | = 1. Assume for the moment that we can also
implement a measurement P0 which projects onto the ground
state ψ0 (we describe how to do this to sufficient accuracy
below). Then the algorithm for nondestructive measurement
is, first, begin in the ground state. Then measure Q. Then
measure P0. If the result is that one indeed is in the ground
state, then we have restored the ground state; at this point we
can either remeasure the projector Q to obtain better statistics
or make some other measurement of a different observable.
If instead the measurement of P0 reveals that we are not in
the ground state, we remeasure Q and then remeasure P0. We
repeat this process of remeasuring Q and remeasuring P0 until
we are in the ground state. The basic idea is similar to that in
Ref. [48].

The rest of this section is focused on calculating the
probability of returning to the ground state; most readers
may wish to skip to the next section, which gives the more
important quadratic speedup. The main reason for introducing
the recovery map in this section is that it can be used after the
quadratic speedup (see below). Let us compute the probability
of returning to the ground state in this process. If the initial
measurement of Q gives outcome i then the resulting state
is φi ; since |〈ψ0|φi〉|2 = |ai |2, we have a probability |ai |2 of
returning to the ground state after measuring P0. We now
analyze the case that this measurement of P0 reveals that we
are not in the ground state; then the resulting state is equal to

1√
1 − |ai |2

(1 − P0)φi = 1√
1 − |ai |2

φi − ai√
1 − |ai |2

ψ0,

(52)

up to a phase. Then the probability that the subsequent
measurement of Q gives outcome j is equal to∣∣∣∣

〈
φj

∣∣∣∣ 1√
1 − |ai |2

φi − ai√
1 − |ai |2

ψ0

〉∣∣∣∣
2

= |δi,j − ajai |2
1 − |ai |2 ,

(53)

and the resulting state is exactly equal to φj . Repeating this,
we find that after every measurement of Q with outcome i,
the probability that the measurement of P0 will return to the
ground state is |ai |2, while if we do not return to the ground
state the probability that the next measurement of Q will give
outcome j is given by Eq. (53).

The transitions are then governed by a Markov chain with
transition probabilities

Ti←i = (1 − |ai |2)2 = 1 − 2|ai |2 + |ai |4, (54)

Tj←i,j �=i = |ai |2|aj |2, (55)

T0←i = |ai |2, (56)

where Tj←i is the probability that, starting in state φi , a
measurement of P0 reveals that one is not in the ground state,
and then a measurement of Q gives outcome j , while T0←i is
the probability that, starting in state φi , a measurement of P0

reveals that one is in the ground state. The initial measurement
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of Q at the start of the Markov chain gives state φi with
probability |ai |2. We would like to work out the expected
number of measurements before the algorithm terminates back
in the ground state.

To do this calculation, we reinterpret the probabilities,
saying that with probability 2|ai |2 the system makes some
transition; half the time this transition leads to state 0, while
the other half the time the system makes a transition from
state i to some state j , and state j is chosen with probability
proportional to state |aj |2. See the factor −2|ai |2 in Eq. (54),
which we interpret as the negative of the probability of there
being a transition; note also that j may equal i, so some of the
“transitions” do not actually lead to a change in state: This is
the factor of |ai |4 in Eq. (54). This reinterpretation makes sense
only if |ai |2 � 1/2, of course, but it will allow us to compute
the expected time exactly and as the expected time is analytic,
this calculation will then work for all |ai |2. The advantage
of this reinterpretation is that if a transition occurs, and if the
transition leads to a state other than 0, then the probability that
that state is equal to j is proportional to |aj |2, which is the
same probability distribution as the chain began in.

Starting in state i, the expected number of steps before a
transition is 1/2|ai |2. Thus, averaging over states i with initial
probability distribution |ai |2, the expected number of steps
before a transition is k/2, where k is the number of possible
outcomes of measurement Q. Half of these transitions return
to state 0, while the other half do not, leading to some state
j �= 0 with probability distribution proportional to |aj |2. Thus,
the average number of steps before returning to the ground state
is

Nsteps = k. (57)

Note that both the number of phase estimations required and
the number of measurements of Q required are equal to k.

2. Quadratic speedup

Suppose we wish to measure a projector Q. Define unitaries
U = 2Q − 1 and V = 2P0 − 1. Assume that P0 has rank
1. Applying any sequence of projections P0 or Q to the
ground state ψ0 gives some state in the space spanned by
the nonorthogonal basis vectors ψ0,Qψ0. Hence, we work in
this two-dimensional space for our analysis (the degenerate
cases that Qψ0 = ψ0 or Qψ0 = 0 can be handled easily too
and one can verify that the final result will be correct in these
cases also). In this subspace, in the nondegenerate case, we
can write

V =
(

1 0
0 −1

)
, (58)

U =
(

2 cos2(θ ) − 1 −2 cos(θ ) sin(θ )
−2 cos(θ ) sin(θ ) 2 sin2(θ ) − 1

)
, (59)

where the angle θ is such that 〈ψ0|Q|ψ0〉 = cos2(θ ). We
emphasize that the above two equations are written in
the orthogonal basis ψ0,Z[Qψ0 − cos2(θ )ψ0], where Z is
some normalization factor. Thus, the unitary UV restricted
to the subspace has eigenvalues

exp(±2iθ ). (60)

We now build a quantum circuit that adds an additional ancilla
that controls both U and V and hence controls whether UV is
applied. We then implement phase estimation using this ancilla
to determine the eigenvalues of UV . We use the ground-state
ψ0 as input to the phase estimation circuit. Let T0 be the time
required to implement UV . Using the ancilla to control (UV )n,
for various powers of n, one is able to measure the eigenvalue
of UV to accuracy ε in a time proportional to T0ε

−1 log(ε−1);
in this case, we take n of order ε−1.

In fact, UV has two distinct eigenvalues, and the phase
estimation will return one of the two answers randomly.
However, since the eigenvalues differ only in sign, and the
desired expectation value 〈ψ0|Q|ψ0〉 is equal to cos2(θ ), both
eigenvalues give the same answer for this expectation value.

After implementing this phase estimation to the desired
accuracy, we then are left with some state in the given subspace.
If we then wish to recover the ground state (to recover some
other observable), we can apply the recovery map above by
alternating measurements of Q and P0 until the ground state
is restored.

3. Measuring P0

The above procedure relies on the ability to measure P0.
The key is to define an operation that will only identify
whether one is in the ground state, without revealing additional
information. If instead the measurement gives several bits of
information on the energy of the state, the procedure does
not work; intuitively, each φi is a coherent superposition of
different energy eigenstates and making this more detailed
measurement destroys this information.

We now describe how to do this; we call this procedure a
“coherent phase estimation.” We have the ability to perform
a phase estimation on the Hamiltonian H to determine the
energy of a state. This phase estimation is given by a quantum
circuit, in which several control bits are initialized in a
state |0〉. Then a Hadamard is applied to each control bit.
Then the control bits are used to control the application
of the Hamiltonian for a set period of time. Finally, the
Hadamard is reapplied, and the control bits are measured in the
computational basis. Then classical postprocessing is applied
to extract the energy of the state. This process can be performed
in serial (using only one control bit) or in parallel; the parallel
approach uses more control bits but reduces the depth of the
circuit. The measurement of the energy is not deterministic;
however, one can employ a larger number of control bits to
increase the accuracy.

To measure P0, we use this phase estimation in its parallel
form, but do not measure the outcomes of the control bits.
We initialize an additional “outcome” bit to |0〉. We then
use a unitary quantum circuit to implement the classical
postprocessing done to determine the energy, storing that
energy value coherently. Then a unitary quantum circuit
determines if that energy is near the ground-state value (which
we have determined in advance by a phase estimation before
doing any measurements), and if so, it flips the value of the
outcome bit. Finally, we uncompute, reversing the classical
postprocessing and phase estimation steps, and then at the
end we measure the outcome bit. This procedure is essentially
that in Ref. [48]. While this procedure does not implement

062318-20



SOLVING STRONGLY CORRELATED ELECTRON MODELS . . . PHYSICAL REVIEW A 92, 062318 (2015)

a projective measurement, but rather implements a positive
operator-valued measure (POVM), if sufficient numbers of
control bits are used, the measurement can be arbitrarily close
to the desired projective measurement.

Performing this measurement of P0 does require additional
qubits. The number of qubits required scales proportional to
the number of bits of accuracy desired; however, since this
accuracy is of order �, if � is only polynomially small in
system size, then this requires only logarithmically many
extra bits. Additionally, the more accurately we implement
a projective measurement rather than a POVM, the more
control bits are required, but this overhead also only scales
logarithmically.

An alternate method of implementing P0 is to note that
we can easily implement the projector onto the ground state
of the Hamiltonian at the start of the annealing process
if our initial Hamiltonian is of a sufficiently simple form,
such as a free fermion Hamiltonian or a Hamiltonian with a
product ground state. For a general free fermion Hamiltonian,
we can use Givens rotations to rotate to the case that the
ground state simply has some spin orbitals occupied and
some empty; we then measure whether we have the desired
pattern or not. Call this projector P

ff

0 . Then, if Uadiab is the
unitary which describes the approximately adiabatic evolution
from the free Fermion Hamiltonian onto the desired final
Hamiltonian, we can approximate P0 ≈ UadiabP

ff

0 U
†
adiab. The

accuracy of this approximation depends upon the annealing
path; see the discussion in Sec. V C, which shows that we
can use this strategy to achieve a (near) quadratic speedup.
The improved annealing paths discussed there are most useful
for the particular approach here, where we need very high
accuracy in the annealing; in all other applications in the
paper, we need only moderate accuracy in the annealing,
sufficient to get a large overlap with the ground state so
that phase estimation can then project onto the ground state
with reasonably large probability. We therefore only use the
improved annealing paths for the approach discussed here.

VIII. CONCLUSIONS

In this paper we have presented a comprehensive strategy
for using quantum computers to solve models of strongly
correlated electrons, using the Hubbard model as a prototypical
example. Similar strategies can be used for generalizations of
the Hubbard model and other discrete quantum lattice models,
including, but not limited to, the t − J model, frustrated mag-
nets, or bosonic models coupled to (static) gauge fields, which
all suffer from negative sign problems in quantum Monte Carlo
simulations on classical computers. We go beyond previous
papers [5,14–16] that discussed simulations of the Hubbard
model on quantum computers by giving complete details of
all steps needed to learn about the properties of the Hubbard
model.

In particular we presented a strategy to prepare trial ground
states starting from various mean-field states or RVB states
on decoupled plaquettes. While finding the ground state of
quantum lattice models is QMA hard [3,49,50], this is a
statement about the worst case. We expect that, as experience
has shown, many experimentally relevant models have ground
states with either no long-range order (so-called quantum

liquids) or with broken symmetries that are qualitatively well
described by mean-field theories. In fact, if a model has such
peculiar properties that it is hard to find its ground state
on a quantum computer, then also a material described by
that model will have a hard time reaching its ground state.
Quick low-temperature thermalization in experiments is thus
an indication that the ground state of the model describing
its properties should also be easy to prepare on a quantum
computer. The opposite is the case, e.g., for (classical) spin
glasses, where finding the ground state is NP-hard but also
spin glass materials never thermalize nor reach the ground
state.

We have furthermore presented an efficient and determinis-
tic quantum algorithm to prepare arbitrary Slater determinants
as initial state, which scales better than the algorithms of
Refs. [5,16]. This can be used to prepare ground states of
various candidate mean-field Hamiltonians, from which an
adiabatic evolution to the ground state of the Hubbard model
can be attempted.

To implement time evolution under the Hubbard and mean-
field Hamiltonians we have given explicit quantum circuits for
all terms and discussed the size of the Trotter time step required
to achieve sufficiently small errors. We discuss how time
evolution under the individual terms in the Hubbard model can
be efficiently parallelized, ultimately requiring O(N ) qubits
and gates with only O(log N ) parallel circuit depth for one
time step, which allows efficient simulations of very large
systems. We gain additional constant factors over previous
approaches, by optimizing the phase estimation algorithm to
reduce the required number of (expensive) rotation gates by
a factor of four, assuming that our gate set consists of one-
or two-qubit Clifford operations and arbitrary single-qubit
rotations. We furthermore propose to use a larger Trotter time
step for the adiabatic state preparation (whose time scale is
controlled by the inverse gap squared), to prepare a very good
(but not perfect) guess for the ground state, and then refine this
to the exact ground state by doing only the final quantum phase
estimation (whose time scale is shorter since it is controlled
by the inverse gap) with a small time step.

We have finally discussed approaches to obtain a quadratic
speedup in measurements by proposing two nondestructive
measurement strategies, one based on the Hellman-Feynman
theorem and another based on recovering the ground state
after a (destructive) measurement of a single qubit. We also
introduce a new approach of measuring dynamic structure
factors and spectral functions directly in frequency space,
using ideas similar to ARPES experiments.

Estimating the gate counts required to simulate the Hubbard
model, we find that even on lattices with more than N ≈ 1000
sites—which should be large enough to learn most interesting
properties—can be simulated on small scale quantum comput-
ers using only a few thousand qubits and a parallel circuit depth
of about 106 gates. This number is based on our estimate of a
few thousand time steps with a circuit depth of not more than a
few hundred gates each. The scaling of the number of Trotter
steps depends upon the gap. We expect that the gap will scale
roughly inversely with the linear size or perhaps the square of
the linear size. Many interacting systems have this scaling. This
means that even with logical gate times of the order of 1 μs,
the ground state of the Hubbard model can be prepared within
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a few seconds. We thus believe that scale quantum computers
will be a very powerful tool for the investigation of many
problems in the field of strongly correlated electron models
that are currently out of reach of any classical algorithm.
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APPENDIX: ERROR BOUNDS FOR TIME-DEPENDENT
TROTTER FORMULAS

Simulating the dynamics of time-dependent Hamiltonians
on quantum computers is a more subtle issue than simulating
time-independent dynamics and results proven for the time-
independent case do not necessarily transfer over. This issue
is significant here because of issues surrounding simulating
adiabatic state preparation. Bounds for the error in high-order
Trotter formulas are known; however, the scaling of these
bounds with the number of terms in the Hamiltonian is
known to be loose. Since the Hamiltonians needed for our
purposes have a large number of terms, tighter estimates of
the error scaling may be important for determining the cost of
performing adiabatic state preparation for Fermionic systems.

It may be tempting to think that we can neglect the errors in
the Trotter formula that are incurred by approximating H (t) by
a piecewise constant Hamiltonian because the time derivatives
of the Hamiltonian are small for a slow adiabatic evolution,
but this is not necessarily true because adiabatic theorems only
require that the derivatives of the Hamiltonian are small rela-
tive to an appropriate power of the minimum eigenvalue gap.
This means that in some circumstances adiabatic evolution
may actually involve a rapid passage. Furthermore, since we
are interested in high-accuracy state preparation even though
such errors may be small they will not necessarily be negligible
compared to our target error tolerance.

In this section we analyze these errors in more detail. In
particular, we examine the error in the second-order order
Trotter-Suzuki formula

T e−i
∫ 1

0 H (u)du ≈
m∏

j=1

e−iHj (1/2)/2
1∏

j=m

e−iHj (1/2)/2, (A1)

where we approximate the evolution from time 0 to 1 by a
single second-order Trotter-Suzuki step. The bounds that we
present are a generalization of those in Ref. [11] to the time-
dependent case. Bounds for the Trotter formula are given in
Ref [51].

Our main result is that∥∥∥∥∥∥T e−i
∫ 1

0 H (u)du −
m∏

j=1

e−iHj (1/2)/2
1∏

j=m

e−iHj (1/2)/2

∥∥∥∥∥∥
� 1

24
maxs‖H ′′(s)‖ + 1

12
‖[H ′(1/2),H (1/2)]‖

+
m∑

j=1

∥∥∥∥∥∥
⎡
⎣
⎡
⎣Hj (1/2),

∑
k>j

Hk(1/2)

⎤
⎦,Hj (1/2)

⎤
⎦
∥∥∥∥∥∥

+
∥∥∥∥∥∥
⎡
⎣
⎡
⎣∑

k>j

Hk(1/2),Hj (1/2)

⎤
⎦,

∑
�>j

H�(1/2)

⎤
⎦
∥∥∥∥∥∥. (A2)

This result reduces to the bound of [11] and agrees with the
asymptotic error scaling predicted in Ref. [52], up to a use of
the triangle inequality and a small multiplicative factor, if H

is time-independent.
We prove the bound in two steps. First, we show that

‖T e−i
∫ 1

0 H (u)du − e−iH (1/2)‖
� 1

24 maxs‖H ′′(s)‖ + 1
12‖[H ′(1/2),H (1/2)]‖. (A3)

Then we use the bound of Ref. [11] that∥∥∥∥∥∥e−iH (1/2) −
m∏

j=1

e−iHj (1/2)/2
1∏

j=m

e−iHj (1/2)/2

∥∥∥∥∥∥

�
m∑

j=1

∥∥∥∥∥∥
⎡
⎣
⎡
⎣Hj (1/2),

∑
k>j

Hk(1/2)

⎤
⎦,Hj (1/2)

⎤
⎦
∥∥∥∥∥∥

+
∥∥∥∥∥∥
⎡
⎣
⎡
⎣∑

k>j

Hk(1/2),Hj (1/2)

⎤
⎦,

∑
�>j

H�(1/2)

⎤
⎦
∥∥∥∥∥∥. (A4)

Equation (A2) then follows from the triangle inequal-
ity. We remark that in Ref. [11], a typographical error
led to ‖[[A,H (x)],H (x)]‖ � ‖[[A,B],A]‖ + ‖[[A,B],B]‖
being replaced with ‖[[A,H (x)],H (x)]‖ � ‖[[A,B],A]] +
[[A,B],B]‖ in the language of that paper in appendix B
[see text above Eq. (B3) of that paper]. This pair of missing
‖ symbols propagated to later works although it does not
affect any of the scaling results cited in later papers. In the
above equation, we have corrected this error, so that the right
hand-side is a sum of two distinct norms for each j , rather than
a norm of a sum.

To show Eq. (A3), we write H ′,H ′′, . . . to denote the
first, second, . . . derivatives of H with respect to time.
By Taylor’s theorem, H (u) = H (1/2) + (u − 1/2)H ′(1/2) +∫ u

1/2(u − s)H ′′(s)ds. Hence, T e−i
∫ 1

0 H (u)du is

T e
−i

∫ 1
0 [H (1/2)+(u−1/2)H ′(1/2)+∫ u

1/2 H ′′(s)(u−s)ds]du
,

and thus∥∥T e−i
∫ 1

0 H (u)du − T e−i
∫ 1

0 [H (1/2)+(u−1/2)H ′(1/2)]du
∥∥

�
∫ 1

0

∥∥∥∥
∫ u

1/2
H ′′(s)(u − s)ds

∥∥∥∥du

� 1

24
maxs‖H ′′(s)‖. (A5)

We next bound the difference∥∥T e−i
∫ 1

0 [H (1/2)+(u−1/2)H ′(1/2)]du − e−iH (1/2)
∥∥.
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Transforming to the interaction representation gives

T e−i
∫ 1

0 [H (1/2)+(u−1/2)H ′(1/2)]du

= e−i(1/2)H (1/2)
[
T e−i

∫ 1
0 (u−1/2)H ′

u(1/2)du
]
e−i(1/2)H (1/2),

where we define

H ′
u(1/2) ≡ e−i(1/2−u)H (1/2)H ′(1/2)ei(1/2−u)H (1/2).

So by a unitary rotation,

∥∥T e−i
∫ 1

0 [H (1/2)+(u−1/2)H ′(1/2)]du − e−iH (1/2)
∥∥

= ∥∥T e−i
∫ 1

0 (u−1/2)H ′
u(1/2)du − 1

∥∥
= ∥∥T e−i

∫ 1
0 (u−1/2)H ′

u(1/2)du − T e−i
∫ 1

0 (u−1/2)H ′(1/2)du
∥∥. (A6)

Note that ‖H ′
u(1/2) − H ′(1/2)‖ can be written as∥∥∥∥

∫ 1

0
∂x

[
e−i( 1

2 −u)(1−x)H ( 1
2 )H ′

(
1

2

)
ei(1/2−u)(1−x)H ( 1

2 )

]
dx

∥∥∥∥,

which can be used to show that ‖H ′
u(1/2) − H ′(1/2)‖ � |u −

1/2|‖[H ′(1/2),H (1/2)]‖, and so∥∥T e−i
∫ 1

0 (u−1/2)H ′
u(1/2)du − T e−i

∫ 1
0 (u−1/2)H ′(1/2)du

∥∥
�

∫ 1

0
|u − 1/2|2‖[H ′(1/2),H (1/2)]‖du

= 1

12
‖[H ′(1/2),H (1/2)]‖. (A7)

Equation (A3) then follows from Eqs. (A5)–(A7) and the
triangle inequality.
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