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Although much work has been devoted to multivalued quantum logic synthesis, the question of whether
multivalued quantum circuits are more efficient than conventional binary quantum circuits is still open. This
article is devoted to the optimization of generic multivalued quantum circuits. Multivalued quantum Shannon
decompositions are improved so that the circuits obtained are asymptotically optimal for all dimensionality d .
The syntheses of uniformly multifold controlled Ry rotations are also optimized to make the circuits further
simplified. Moreover, the theoretical lower bound of complexity for multivalued quantum circuits is investigated,
and a quantity known as the efficiency index is proposed to evaluate the efficiency of the synthesis of various
quantum circuits. The algorithm for qudit circuits given here is an efficient synthesis routine which produces
improved results for all dimensionality d , whether the number of qudits n is small or large. The two facts, the
leading factor of the lower bound of complexity for qudit circuits is small by a factor of d − 1 in comparison
to that for qubit circuits and the asymptotic efficiency index is increased with an increase of dimensionality d ,
reveal the potential advantage of qudit circuits over generic qubit circuits. Generic n-qudit circuits with d � 5
and generic two-ququart circuits synthesized by the algorithm given here are practical circuits which are more
efficient than the most efficient qubit circuits.
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I. INTRODUCTION

Enormous progress has been made in the field of quantum
information science over the past two and a half decades.
Most approaches to quantum information processing use two-
level quantum systems (qubits). However, there is increasing
interest in exploiting multilevel quantum systems (qudits)
[1–9]. The simplest multilevel system, the three-level quantum
system, is called a qutrit, and the four-level quantum system is
called a ququart. Qudits are exciting because quantum systems
usually have multilevels, and they enable the full use of various
resources.

In quantum computing, the algorithms are commonly
described by the quantum circuit model. The process of con-
structing quantum circuits by some elementary components is
called synthesis. The complexity of a quantum circuit can be
measured in terms of the number of elementary gates required.
A large amount of work in these areas has been done for binary
quantum computing [10–21]. The controlled-NOT (CNOT) gate
is one of most widely used two-qubit elementary gates. It
has been shown that the CNOT gate with a one-qubit gates is
universal for qubit quantum circuits [10,11]. The best result so
far for the synthesis of generic qubit quantum circuits has been
given by Shende et al., which was based on quantum Shannon
decomposition (QSD) [19].

Many works also have been devoted to multivalued quan-
tum logic synthesis [22–31], but the results in this area are still
not satisfying. The results obtained cannot show the advantage
of qudits in the complexity of quantum logic synthesis. The
gate chosen as the two-qudit elementary gate of the qudit
quantum circuit is a crucial issue for multivalued quantum
computing, and there have been many proposals. In our
recent previous work, the generalized controlled-X (GCX) gate
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has been proposed as a two-qudit elementary gate for qudit
circuits [32,33]. We generalized QSD, the most powerful
technique for the synthesis of generic qubit circuits, to the
multivalued case. Based on the GCX gate, using multivalued
QSD, we improved the results of the synthesis of qudit
circuits [33], but there are still some problems. One is that
the quantum circuits built by the multivalued QSD algorithm
are not asymptotically optimal except that the dimensionality
of qudit d is a power of 2. Here, the term “asymptotically
optimal” is a specific concept which was first introduced
by Bullock et al. [23]. A qudit quantum circuit is asymptoti-
cally optimal, which means that it can be synthesized asymp-
totically by O(αd2n) two-qudit elementary gates, where α is a
constant. The other is that the multivalued quantum circuits in
Ref. [33] do not show obvious advantages over the circuits for
binary systems. The problem whether multivalued quantum
circuits can be more efficient than binary circuits is still open.

This article is devoted to optimizing multivalued quantum
circuits and to solving the problems stated above. The multi-
valued QSD for the qudit d is not a power of 2—it is optimized
so that the synthesis of quantum circuits for these qudits
also is asymptotically optimal. The synthesis of uniformly
multifold controlled Ry rotations is also optimized to make
the circuits further simplified. The theoretical lower bound
of complexity for qudit quantum circuits is investigated. A
quantity known as the efficiency index is proposed to evaluate
the efficiency of the synthesis of generic n-qudit circuits.
Results and comparisons show that the algorithm given here is
an efficient qudit synthesis routine which produces improved
results in all respects. The multivalued quantum circuits are
indeed more efficient than the binary quantum circuits.

The article is organized as follows: The lower bound of
complexity for qudit circuits is investigated in Sec. II. The
leading factor of the lower bound of complexity for qudit
circuits is small by a factor of d − 1 in comparison to that for
qubit circuits. The optimization of the multivalued QSD and
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uniformly multifold controlled Ry rotations, and the structure
and the GCX gate count of optimal qudit circuits, are given
in Sec. III. The efficiency of synthesis of quantum circuits is
discussed in Sec. IV. The quantity in terms of the efficiency
index is proposed in this section. The asymptotic efficiency
index is increased with an increase of dimensionality d for
these circuits. The efficiency indices of generic n-qudit circuits
with d � 5 and generic two-ququart circuits given here are
higher than those of the most efficient qubit circuits. Finally,
a brief conclusion and a discussion future work are given in
Sec. V.

II. LOWER BOUNDS OF GCX GATES

The GCX gate [denoted as GCX(m → X(ij ))] is a controlled-
U two-qudit gate which implements the X(ij ) operation on the
target qudit if and only if the control qudit is in the state |m〉,
where X(ij ) = |i〉〈j | + |j 〉〈i| + ∑

k �=i,j |k〉〈k|. The GCX gate
essentially is a CNOT gate. For a multilevel quantum system
which forms a qudit, two levels in the system form a qubit.
If a two-qubit CNOT gate is realized in two such systems, a
GCX gate is naturally obtained. The number of the GCX gates
required can be used as a unified measure for the complexity
of various quantum circuits [33]. It also offers the possibility
to compare the efficiency for the synthesis of various quantum
circuits.

In quantum computing, the quantum circuit is a unitary
transformation on the quantum states. A generic n-qudit
quantum circuit is fully determined by d2n − 1 real parameters
(up to a phase factor). Here, the qudit circuits are constructed
by using GCX gates and arbitrary one-qudit gates. The GCX

gates do not introduce any parameters, but they provide a kind
of barrier that separates one-qudit gates on the same qudit so
that they cannot merge into a resulting one-qudit gate for each
qudit gate. Intuitively, every GCX gate can be accompanied two
one-qudit gates, one for the control qudit G1 and the other for
the target qudit G2, applied after every GCX gate.

The one-qudit gate corresponds to a SU (d) group, and the
d2 − 1 parameters correspond to the bases of su(d) algebra.
Without loss of generality, we consider the GCX(d − 1 →
X(d−2,d−1)) gate and use the natural bases of u(d) algebra
|i〉〈j |, where i,j ∈ 0,1, . . . ,d − 1. There are 2(d − 1) bases
which do not commute with the GCX gate in G1—they
are |d − 1〉〈i| and |i〉〈d − 1|, where i ∈ 0,1, . . . ,d − 2, so
the gate can separate 2(d − 1) parameters in G1. There are
4(d − 1) such bases in G2—they are |d − 1〉〈i|, |d − 2〉〈i|,
where i ∈ 0,1, . . . ,d − 1 and |j 〉〈d − 1|, |j 〉〈d − 2|, where
i ∈ 0,1, . . . ,d − 3. But there are 2(d − 1) linear combinations
of them which commute with the GCX gate—they are |d −
2〉〈i| + |d − 1〉〈i|, where i ∈ 0,1, . . . ,d − 1, and |j 〉〈d − 2| +
|j 〉〈d − 1|, where j ∈ 0,1, . . . ,d − 3. The GCX gate also can
separate 2(d − 1) independent parameters in G2. Each GCX

gate can bring at most 4(d − 1) parameters. For generic n-qudit
quantum circuits, there are d2n − n(d2 − 1) − 1 parameters
which need to be brought by the GCX gates. The theoretical
lower bound of complexity for generic qudit circuits is [d2n −
n(d2 − 1) − 1]/[4(d − 1)]. The lower bound of complexity
for generic qubit circuits is (4n − 3n − 1)/4 [16]. The leading
factor of the lower bound of complexity for qudit circuits
is small by a factor of d − 1 in comparison to that for qubit

circuits, revealing the potential advantage of qudit circuits over
qubit circuits.

III. OPTIMAL SYNTHESIS OF MULTIVALUED
QUANTUM CIRCUITS

A. Synthesis based on multivalued QSD [33]

The first phase of multivalued QSD is to use the cosine-sine
decomposition (CSD) [34]. Let the m × m unitary matrix W

be partitioned in 2 × 2 block form as

W =
( r m − r

r W11 W12

m − r W21 W22

)
, (1)

with 2r � m. Here, r is called the partition size. Let W =
U�V be the CSD of the matrix, then

U =
( r m − r

r U1 0
m − r 0 U2

)
, (2)

� =
⎛
⎝

r r m − 2r

r C −S 0
r S C 0
m − 2r 0 0 I

⎞
⎠, (3)

V =
( r m − r

r V1 0
m − r 0 V2

)
, (4)

where C and S are diagonal matrices of the
forms C = diag{cos θ1, cos θ2, . . . , cos θr} and S =
diag{sin θ1, sin θ2, . . . , sin θr}, I is the (m − 2r) × (m − 2r)
identity matrix, and � is called the cosine-sine matrix. An
n-qudit gate corresponds to a dn × dn unitary matrix. The
synthesis of qudit quantum circuits based on CSD was first
proposed by Khan et al. [27,28]. There, they chose a partition
size r = dn−1 at each recursion level. Different from Khan
et al.’s method, we choose a partition size r = [d/2]dn−1

for the first level decomposition, then r = [d/4]dn−1

for the second level decomposition, and r = [d/2k]dn−1

for the kth level decomposition, where [a] denotes the
integer part of a. After κ levels (log2 d � κ < log2 d + 1)
of decomposition, dn−1 × dn−1 block-diagonal matrices
are obtained. The block-diagonal matrices correspond to
uniformly controlled (n − 1)-qudit [u�1(Un−1)] gates; the
cosine-sine matrices correspond to uniformly (n − 1)-fold
controlled Ry[u�n−1(Ry)] rotations.

The second phase of multivalued QSDs is the further
decomposition for the uniformly controlled (n − 1)-qudit gate.
It can be decomposed into d copies of (n − 1)-qudit gates and
d − 1 copies of controlled (n − 1)-qudit diagonal [�1(�n−1)]
gates. In the d = 2 case, the uniformly controlled (n − 1)-qudit
gate is decomposed into a pair of (n − 1)-qudit gates and
a �1(�n−1) gate, and it is equivalent to the decomposition
of the block-diagonal matrix in the original QSD. So the
decomposition given here is a generalization of the QSD for
qubits.

The synthesis of a generic n-qudit gate involves three
kinds of components: (n − 1)-qudit gates, �1(�n−1) gates, and
u�n−1(Ry) rotations. The (n − 1)-qudit gates can be further
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decomposed in similar ways. So we can construct a generic
n-qudit quantum circuit by a recursive way. All the component
elements required can be efficiently synthesized based on GCX

gates.

B. Optimization of the synthesis stated above

Optimizing the decomposition of matrices. When d is
not a power of 2, there are identity submatrices in the
cosine-sine matrices of CSD. We can rearrange and change
the block-diagonal matrices of CSD to reduce the numbers
of two components, the (n − 1)-qudit gate and the �1(�n−1)
gate. The number of (n − 1)-qudit gates can be reduced to a
minimum d2.

For example, an n-qutrit gate, corresponding to a 3n × 3n

unitary matrix, can be decomposed as follows,

W1 = A�1B�0C�2D, (5)

with

�0 =
⎛
⎝C −S 0

S C 0
0 0 I

⎞
⎠, �1 =

⎛
⎝I 0 0

0 C1 −S1

0 S1 C1

⎞
⎠,

�2 =
⎛
⎝I 0 0

0 C2 −S2

0 S2 C2

⎞
⎠, (6)

A =
⎛
⎝U1 0 0

0 U2 0
0 0 U3

⎞
⎠, B =

⎛
⎝I 0 0

0 X2 0
0 0 X3

⎞
⎠,

C =
⎛
⎝V1 0 0

0 V2 0
0 0 V3

⎞
⎠, D =

⎛
⎝I 0 0

0 Y2 0
0 0 Y3

⎞
⎠, (7)

where each block matrix in the decomposition above is of size
3n−1 × 3n−1. We can rewrite it as

W1 = A′�1B
′�0C

′�2D
′, (8)

with

A′ = (I ⊗ U2)

⎛
⎝I 0 0

0 I 0
0 0 U ′

3

⎞
⎠,

B ′ = (I ⊗ X2)

⎛
⎝X1 0 0

0 I 0
0 0 I

⎞
⎠,

C ′ = (I ⊗ V2)

⎛
⎝I 0 0

0 I 0
0 0 V ′

3

⎞
⎠, D′ =

⎛
⎝Y1 0 0

0 Y2 0
0 0 Y3

⎞
⎠.

(9)

where U ′
3 = U−1

2 U3, X1 = X−1
2 U−1

2 U1, V ′
3 = V −1

2 X−1
2 X3V3,

and Y1 = V −1
2 X1. For matrices A, B, C, D, and D′, each

corresponds to two �1(�n−1) gates and three (n − 1)-qutrit
gates; for A′, B ′, and C ′, each matrix corresponds to one
�1(�n−1) gate and two (n − 1)-qutrit gates. The optimal
synthesis of a generic n-qutrit circuit gate involves nine
(n − 1)-qutrit gates and five �1(�n−1) gates, three (n − 1)-

TABLE I. Numbers of three components for optimal n-qudit
quantum circuits.

d

Component 3 4 5 6 7 8

(n − 1)-qudit gate 9 16 25 36 49 64
�1(�n−1) 5 12 17 28 41 56
u�n−1(Ry) 3 6 10 15 21 28

qutrit gates and three �(�n−1) gates less than that in the
original synthesis.

For example again, taking d = 6, the n-qudit circuit,
corresponding to a 6n × 6n unitary matrix, can be decomposed
as follows,

W2 = A�1B�2C�3D�0E�4F�5G�6H, (10)

with

�0 =
(

C −S

S C

)
, (11)

where each block matrix in Eq. (11) is of size 6n

2 × 6n

2 , and

�1 =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0
0 C1 −S1 0 0 0
0 S1 C1 0 0 0
0 0 0 I 0 0
0 0 0 0 C2 −S2

0 0 0 0 S2 C2

⎞
⎟⎟⎟⎟⎟⎠

,

�2 =

⎛
⎜⎜⎜⎜⎜⎝

C ′
1 −S ′

1 0 0 0 0
S ′

1 C ′
1 0 0 0 0

0 0 I 0 0 0
0 0 0 C ′

2 −S ′
2 0

0 0 0 S ′
2 C ′

2 0
0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎠

, (12)

�3 =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0
0 C ′′

1 −S ′′
1 0 0 0

0 S ′′
1 C ′′

1 0 0 0
0 0 0 I 0 0
0 0 0 0 C ′′

2 −S ′′
2

0 0 0 0 S ′′
2 C ′′

2

⎞
⎟⎟⎟⎟⎟⎠

,

A = diag{A1,A2,A3,A4,A5,A6},
B = diag{I,B2,B3,I,B5,B6},

(13)
C = diag{C1C2,C3,C4,C5,C6},
D = diag{I,D2,D3,I,D5,D6},

m

=
mm

m′ j

(a) (b)

( )ijX ( )ijH ( )ijH

FIG. 1. (a) GCZ gate and (b) transformation between the GCX gate
and GCZ gate.
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1U

1 2

Δ 2U Δ 3U 4U Δ 5U 6U Δ 7U

(12)
yR

Δ8U

2 0(01)
yR (12)

yR

9U

2

FIG. 2. Structure of a generic n-qutrit circuit. Here, the small square (�) denotes uniform control, and the slash (/) represents multiple
qutrits on the line.

where each block matrix in Eqs. (12) and (13) is of
size 6n−1 × 6n−1. The second half of the expression in
Eq. (10), E�4F�5G�6H , has the same form as the first half,
A�1B�2C�3D. The first half can be rewritten as

A�1B�2C�3D = A′�1B
′�2C

′�3D
′, (14)

with

A′ = (I ⊗ A2)diag{I,I,A′
3,I,A

′
5,A

′
6},

B ′ = (I ⊗ B2)diag{B ′
1,I,I,B

′
4,B

′
5,I },

(15)
C ′ = (I ⊗ C2)diag{I,I,C ′

3,I,C
′
5,C

′
6},

D′ = diag{D′
1,D2,D3,D

′
4,D5,D6}.

Here, A′
3 = A−1

2 A3, A′
5 = A−1

2 A5, A′
6 = A−1

2 A6, B ′
1 =

B−1
2 A−1

2 A1, B ′
4 = B−1

2 A−1
2 A4, B ′

5 = B−1
2 B5, C ′

3 =
C−1

2 B−1
2 B3C3, C ′

5 = C−1
2 C5, C ′

6 = C−1
2 B−1

2 B6C6, D′
1 =

C−1
2 C1, and D′

4 = C−1
2 C4. The second half of the expression

can be processed in the same way. The optimal synthesis
of a generic n-qudit circuit gate with d = 6 involves
36 (n − 1)-qudit gates and 28 �1(�n−1) gates, eight
(n − 1)-qudit gates and eight �1(�n−1) gates less than that in
the original synthesis.

The numbers of the three components needed to construct
optimal generic multivalued quantum circuits are listed in
Table I. A cosine-sine matrix for a qudit system can involve
several sets of u�k(Ry) rotation. To reduce the number of
(n − 1)-qudit gates to its minimum d2 is essential for the
asymptotic optimality of the synthesis. The number of GCX

gates in these d2 (n − 1)-qudit gate components account for
the vast majority of GCX gate counts of an n-qudit gate if
n is large. For example, the number of GCX gates in nine
2-qutrit gate components account for 68.02% of the GCX gate
count of a generic 3-qutrit circuit, whereas the number of GCX

gates in nine 7-qutrit gate components account for 99.87%
of the count of a generic 8-qutrit circuit. The numbers of
two other components may be neglected if n is enough large.
Hence, the synthesis obtained here is asymptotically optimal,
which means that the generic n-qudit circuit can be synthesized
asymptotically by O(αd2n) GCX gates.

Optimizing the uniformly multifold controlled Ry rotations.
The optimization of the qubit u�n−1(Ry) rotations has been
given in Ref. [19] by using controlled-Z (CZ) gates. To
optimize the qudit u�n−1(Ry) rotations, we need a high-
dimensional counterpart to the CZ gate. The multivalued
extension of the Z operation is a one-qudit operation Z[m]

which is specified by Z[m] = ∑
k �=m |k〉〈k| − |m〉〈m|. There

are only d different forms of the Z[m] operation for a qudit (d =
0,1, . . . ,d − 1, respectively), whereas there are d(d − 1)/2
forms of the X(ij ) operation for the qudit. As the GCX gate, the
generalized controlled-Z (GCZ) gate [denoted as GCZ(m − m′)]
is defined as a controlled two-qudit gate which implements the
Z[m′] operation on the target qudit if and only if the control
qudit is in the state |m〉. It is specified by GCZ(m − m′) =∑

ij �=mm′ |ij 〉〈ij | − |mm′〉〈mm′|. As the qubit case, the control
qudit and target qudit of the GCZ gate are changeable, and using
two generalized Hadamard gates, the GCX and GCZ gates can be
transformed into each other. The generalized Hadamard gate
H (ij ) is a one-qudit gate specified by H (ij ) = ∑

k �=i,j |k〉〈k| +

TABLE II. The GCX gate count for the synthesis of qudit quantum circuits obtained using the multivalued QSD. In each cell, the upper line
denotes the count before optimization [33], and the bottom line denotes the optimized count.

d

n 3 4 5 6 7 8

2 44
26

108
90

272
176

510
355

828
618

1176
980

3 692
344

2232
1926

10256
5216

25860
15565

52740
53856

85456
72716

4 6860
3458

37800
32886

336144
136576

1158720
577705

2965788
1797210

5551504
4735948

5 83924
32028

613248
534582

10796560
3445576

51109320
20902225

166400964
88346400

355955600
303759820

6 1011932
291638

9854970
8587062

345689872
86295576

2.25 × 109

752674425
9.32 × 109

4.33 × 109
2.28 × 1010

1.95 × 1010

7 12157748
2634932

1.58 × 108

1.35 × 108
1.11 × 1010

2.16 × 109
9.90 × 1010

2.71 × 1010
5.22 × 1011

2.12 × 1011
1.46 × 1012

1.25 × 1012

8 1.46 × 108

23744984
2.52 × 109

2.20 × 109
3.55 × 1011

5.39 × 1010
4.36 × 1012

9.75 × 1011
2.92 × 1013

1.04 × 1013
9.34 × 1013

8.00 × 1013
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TABLE III. The asymptotic efficiency indices for the optimal
synthesis of multivalued quantum circuits.

d 3 4 5 6 7 8

Rasy 1.81 1.95 2.48 2.89 3.19 3.53

(|i〉〈i| + |i〉〈j | + |j 〉〈i| − |j 〉〈j |)/√2. The circuit representa-
tion of a GCZ gate and its transformation relation with the GCX

gate are shown in Fig. 1.
The statements and Fig. 14 in Appendix C of Ref. [33]

still hold for qudit u�n−1(Ry) rotations if all GCX(m →
X(ij )) gates are replaced with GCZ(m − j ) gates. Thus a
set of qudit u�n−1(Ry) rotations may be implemented with
2dn−2(d − 1) GCZ gates, of which d − 1 GCZ(m − j ) gates
(m = 1,2, . . . ,d − 1, respectively) may be moved furthest to
the right (or the left). The rightmost d − 1 GCZ gates produce
a diagonal gate which may be absorbed into the neighboring
uniformly controlled (n − 1)-qudit gate. The reason why the
d − 1 GCZ gates are able to be moved furthest to the right
whereas only one CZ gate is able to move as that in the qubit
case is that the controlled gates with different control basis
states can be exchanged with one another. This saves d − 1
two-qudit elementary gates for each set of qudit u�k(Ry)
rotations, totally saving the (d2(n−1) − 1)nuR/(d + 1) GCX

gates for a generic n-qudit circuit, where nuR is the number of
u�n−1(Ry) components in the circuit and is given in Table I.
In the practical process of optimization, it should optimize
u�n−1(Ry) rotations first, then optimize the decomposition of
the matrices.

C. Structure and GCX gate count of optimal circuits

The optimal quantum circuit of generic n-qudit circuits
involves d2 (n − 1)-qudit gates, which are separated by
�1(�n−1) gates or circuits for a cosine-sine matrix. It involves
d2 − 2κ �1(�n−1) gates and 2κ − 1 circuits for a cosine-sine
matrix. In a multivalued case, a circuit for the cosine-sine
matrix usually involves several sets of u�n−1(Ry) rotations.
The structure of a generic n-qutrit circuit is illustrated in Fig. 2.

The GCX gate count of the optimal multivalued quantum
circuits given here is tabulated in Table II. For comparison,
the count before optimization is also given. The results are
improved after optimization, especially for the case d, which
is not a power of 2. The optimized circuits have asymptotic
optimal features for all dimensionality d, whereas the circuits

TABLE V. The CDNOT gate count for the synthesis of ququart
quantum circuits [29].

n 2 3 4 5 6 n

Gate count 60 1200 20160 326400 5.2 × 106 (5/16)42n − (5/4)4n

before optimization are not asymptotically optimal, except for
d, which is a power of 2.

IV. EFFICIENCY OF SYNTHESIS
OF QUANTUM CIRCUITS

To evaluate the efficiency of the synthesis of generic n-qudit
circuits based on GCX gates, we propose a quantity known as
the efficiency index (R), which is defined by R = d2n/Nn,
where Nn is the number of GCX gates required to synthesize
the n-qudit circuit. The quantity R is the average number of
parameters carried by each GCX gate. The larger the quantity
R, the more efficient is the synthesis of the circuit. For
quantum circuit synthesis which is asymptotically optimal,
there is an asymptotic efficiency index Rasy which is the
efficiency index when n is enough large. The asymptotic
efficiency indices for optimal synthesis given here are listed
in Table III. From the table, it can be seen that the Rasy is
increased with an increase of dimensionality d.

There are several previous works on the synthesis of
multivalued quantum circuits based on elementary gates.
Based on the controlled-increment (CINC) gate, the synthesis
by using the spectrum decomposition algorithm is investigated
in Refs. [23,25]. It is asymptotically optimal, which has a
leading factor of 2 for the CINC account of the synthesis.
Using the GCX gate as the two-qudit elementary gate instead
of the CINC gate, the synthesis is greatly simplified [33]. The
simplified synthesis still has a leading factor of 2, but for the
GCX account. So its Rasy is equal to 0.5 for all dimensionality
d, which less than all values of Rasy in Table III.

Based on the CINC gate, the syntheses by using the CSD with
balanced partitions are investigated in Ref. [28]. The circuits
synthesized by this method are simpler than those synthesized
by using the spectrum decomposition if n is small, but they
are not asymptotically optimal, except that d is a power of 2.
The results of this work are given in Table IV. It needs d − 1
GCX gates to synthesize a CINC gate [33]. Comparing the data
in Table II and those in Table IV, and considering that the
CINC gate itself has a complex structure, it can be seen that

TABLE IV. The CINC gate count for the synthesis of qudit quantum circuits obtained by using CSD with balanced partitions [28].

d

n 3 4 5 6 7 8

2 36 72 280 420 588 784
3 3360 4464 69720 60960 381780 142240
4 20088 40824 670320 1563660 4928616 4750256
5 1382952 685440 252347440 38074200 1.0 × 1010 3.1 × 108

6 8254764 22254984 2.5 × 109 3.7 × 109 1.4 × 1011 3.9 × 1010

7 127837404 357389712 1.4 × 1011 1.8 × 1011 1.1 × 1013 2.5 × 1012

8 465572880 2.9 × 109 8.8 × 1011 4.2 × 1012 9.8 × 1013 8.0 × 1013
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TABLE VI. The CNOT counts of n-qubit quantum circuits based on QSD.

2 3 4 5 6 n Rasy

l = 1 [19] 6 36 168 720 2976 (3/4) × 42n–(3/2) × 4n 1.33
l = 1,optimal 5 31 147 635 2635 (2/3) × 42n–(3/2) × 4n + 1/3 1.50
l = 2 [19] 3 24 120 528 2208 (9/16) × 42n–(3/2) × 4n 1.78
l = 2,optimal [19] 3 20 100 444 1868 (23/48) × 42n–(3/2) × 4n + 4/3 2.09

the synthesis of quantum circuits given in this article are much
more efficient than those in Ref. [28], even if the n is very small.

Li et al. proposed a two-ququart gate, termed the controlled-
double-NOT (CDNOT) gate, for four-level quantum systems.
Based on the CDNOT gate, they investigated the synthesis of
ququart quantum circuits by using the QSD method [29],
and the results are tabulated in Table V. A CDNOT gate is a
two-ququart controlled gate which implements the σx ⊗ I2

operation on the target ququart if and only if the control
ququart is in the state |m〉, m ∈ 2,3, where σx is a Pauli matrix.
The σx ⊗ I2 operation is equivalent to two X operations,
X(02) and X(13), so a CDNOT gate is equivalent to two GCX

gates. The Rasy of this synthesis is 1.60, still less than that
in Table III for ququart 1.95. From the discussion above,
it can be seen that our algorithm given here is an efficient
multivalued synthesis routine which produces improved results
for all dimensionalities d, and for both the small n case and
the asymptotic case.

The syntheses of generic n-qubit circuits based on QSD
and their asymptotic efficiency indices are listed in Table VI.
The qubit counterpart of the optimal synthesis for the generic
n-qudit circuits given here are the qubit circuits based on QSD
with a recursion bottom out at the one-qubit circuit (l = 1)
and the optimization for u�n−1(Ry) rotations (the second line
of Table VI), where its Rasy is 1.50, less than all asymptotic
efficiency indices in Table III. For the qubit case, there is a
most efficient synthesis for generic two-qubit circuits which
reaches its theoretical lower bound of complexity with three
CNOT gates. The best result for the synthesis of generic n-qubit
circuits is based on QSD with a recursion bottom out at the
two-qubit circuit (l = 2) and two additional optimizations (the
fourth line of Table VI), where its Rasy is 2.09. Now, the
asymptotic efficiency indices of the generic n-qudit circuits
with d � 5 are greater than this value. Moreover, the generic
two-ququart circuit is more efficient than the most efficient
generic four-qubit circuit.

V. CONCLUSION AND FUTURE WORK

We have optimized the synthesis of generic multivalued
quantum circuits. The optimal circuits are asymptotically
optimal for all dimensionality d, so that we can build efficient
quantum circuits when the qudit d is not a power of 2 as
well as when d is a power of 2. It is of great significance to
make full use of various resources. The algorithm given here is
an efficient qudit synthesis routine which produces improved
results in all respects.

Multivalued quantum circuits do have advantages over
binary quantum circuits. The generic n-qudit circuits with
d � 5 and generic two-ququart circuits given here are practical
circuits which are more efficient than the most efficient qubit
circuits. The leading factor of the lower bound of complexity
for qudit circuits is small by a factor of d − 1 in comparison to
that for qubit circuits, and the asymptotic efficiency index
is increased with an increase of dimensionality d, further
revealing the advantages and benefits of qudit circuits over
generic qubit circuits.

There is still plenty of room for improvement in the
synthesis of multivalued quantum circuits. One of most
important improvements is to optimize the two-qudit quantum
circuits. Since our algorithm given here is recursive, more
efficient generic qudit circuits can be obtained from more
efficient two-qudit circuits. Qudit systems also can play an
important role in duality computers [35,36].
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