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Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering
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The generation of quantum entanglement of macroscopic or mesoscopic bodies in mechanical motion is
generally bounded by the thermal fluctuation exerted by their environments. Here we propose a scheme to
establish stationary entanglement between two mechanically oscillating mirrors of a cavity. It is revealed that, by
applying a broadband squeezed laser acting as a squeezed-vacuum reservoir to the cavity, a stable entanglement
between the mechanical mirrors can be generated. Using the adiabatic elimination and master equation methods,
we analytically find that the generated entanglement is essentially determined by the squeezing of the relative mo-
mentum of the mechanical mirrors, which is transferred from the squeezed reservoir through the cavity. Numerical
verification indicates that our scheme is within the present experimental state of the art of optomechanics.
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I. INTRODUCTION

Quantum entanglement, as a cornerstone in understanding
many phenomena in quantum world [1–5], serves as a nec-
essary resource in various practical applications of quantum
information processing, such as quantum algorithms [6],
quantum teleportation [7], and quantum crytography [8]. In the
past decade, tremendous efforts have been devoted to generate
entanglement in microscopic systems [9–18]. Recently, the
generation of entanglement in macroscopic and mesoscopic
objects and the study of quantum mechanical features in these
scales have attracted much attention [19,20].

An optomechanical system supplies an ideal platform
to explore quantum features of macroscopic or mesoscopic
objects in mechanical motion [21]. Advances in this field
raise a fundamental question: Whether mechanical systems in
macroscopic scale exhibit quantum behavior? People desire to
see under what conditions it is feasible to generate nonclassical
entangled states in macromechanical oscillators. It was found
that, similar to the microscopic system case, entanglement
between remote mirrors can also be generated via optical
measurement based on the entanglement swapping idea
[22–25] and via the coherent interactions between the fields
in two adjacent cavities [26–28]. However, the emergence of
quantum effects in macroscopic objects is generally believed
to be bounded by the thermal fluctuation. Therefore, schemes
resorting to an efficient precooling to the thermal noise have
been proposed to establish a stable entanglement between the
mirrors of a cavity [29,30] and between the two dielectric
membranes suspended inside a cavity [31]. Further studies
showed that the reservoir engineering technique supplies a nice
idea to entangle the mechanical systems without resorting to
precooling. For example, it is found that a stable entanglement
between the mechanical oscillators in separated cavities [32]
and between the cavity mirror and atomic ensemble [33] can
be generated based on the cascade input-output process. Other
schemes based on engineering the squeezing characters of the
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reservoirs have also been proposed to entangle the mechanical
mirrors in separated cavities [34,35], in ring cavity [36], and
in double-cavity [37] setups. A method using multiple-tone
coherent driving to the cavity has been used to entangle two
mechanical mirrors for a single cavity [38,39].

Inspired by these obvious benefits, i.e., the robustness to
thermal noise and no precooling, of the reservoir engineering
in quantum optomechanical control [32–37], in this work we
propose a scheme to stably entangle the two mechanical mir-
rors of a single Fabry-Perot cavity via the squeezed-reservoir
engineering. Going from the master equation of the whole
system and adiabatically eliminating the degree of freedom
of the cavity field, we derive a reduced master equation
satisfied by the mechanical oscillators. Our analytic study on
the mechanical entanglement quantitatively characterized by
logarithmic negativity reveals that the entanglement generated
comes from the squeezing of the relative momentum of
the two mechanical oscillators. A temperature dependent
entanglement criterion is obtained, which shows the thermal
fluctuation tolerance of the generated entanglement. The
physical condition for achieving the maximal entanglement
is explicitly obtained from our analysis.

Our paper is organized as follows. In Sec. II we show the
model and derive the reduced master equation by adiabatically
eliminating the cavity mode. In Sec. III the entanglement
generation between the mechanical oscillators is explicitly
studied. The applicability of the adiabatic elimination is also
verified. In Sec. IV a summary is given.

II. SYSTEM AND ADIABATIC ELIMINATION

We consider a laser in frequency ωL driven cavity with two
oscillating mirrors (see Fig. 1) [38,39]. The ideal situation
without thermal noise of this system has been studied in
Ref. [40]. The Hamiltonian of the total system is (� = 1)

Ĥ = �cĉ
†ĉ +

∑
j=1,2

[ωj â
†
j âj + ηj (â†

j + âj )ĉ†ĉ] + �(ĉ† + ĉ),

(1)
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FIG. 1. (Color online) Schematic diagram of a Fabry-Perot cav-
ity with two mechanically oscillating mirrors in frequencies ω1 and
ω2. A coherent laser with frequency ωL and a broadband squeezed
laser with squeezing degree r around the central frequency ωS

are injected into the cavity to implement the stable entanglement
generation between the mechanical oscillators.

where ĉ and âj , respectively, denote the annihilation operators
of the cavity field and the two mechanical oscillators formed
by the mirrors, ηj denote the coupling strengths between the
cavity field and the oscillators due to the radiation pressure,
�c = ωc − ωL is the detuning of the laser frequency ωL

to the cavity-field frequency ωc, and � = 2
√

Pκ/ωL is the
driving amplitude with the input laser power P and the cavity
damping rate κ . The mechanical oscillators interact with two

independent reservoirs at same temperature T . The cavity is
further driven by a broadband squeezed laser with squeezing
degree r around the central frequency ωS, which acts as a
squeezed-vacuum reservoir to the cavity field. Then the total
system is governed by the Born-Markovian master equation
[41]

Ẇ (t) = −i[Ĥ ,W (t)] + L̂mW (t) + L̂cW (t), (2)

where W (t) is density matrix of the total system,
L̂m· = ∑

j=1,2 γj [(n̄j + 1)Ď
âj ,â

†
j
· + n̄j Ďâ

†
j ,âj

·], with n̄j = 1/

[exp(ωj/kBT ) − 1] and Ďô,p̂· = 2ô · p̂ − p̂ô · − · p̂ô repre-
sents the dissipators of the two mirrors caused by their
two independent finite-temperature reservoirs, L̂c· = κ[(N +
1)Ďĉ,ĉ† · +NĎĉ†,ĉ · − (Mei2�stĎĉ,ĉ · + H.c.)], with �s =
ωS − ωL, M = cosh r sinh r , and N = sinh2 r represents the
dissipator of the cavity field caused by the squeezed-vacuum
reservoir. γj and κ are the damping rates of the cavity and
the oscillators, respectively. From Eq. (2), the steady state
value of the cavity field and the oscillators can be obtained as
〈ĉ〉ss = �/(iκ − �c) ≡ α and 〈âj 〉ss = −ηj |α|2/(ωj − iγj ).
Then Eq. (1) can be linearized into Ĥ = Ĥ0 + ĤI, where Ĥ0 =∑

j=1,2 ωj â
†
j âj + �cĉ

†ĉ and ĤI = ∑
j=1,2 ηj (â†

j + âj )(αĉ† +
α∗ĉ).

In the large damping limit κ � γj , we can adiabatically
eliminate the degree of freedom of the cavity field and get
a reduced master equation satisfied by the two mechanical
oscillator (see Appendix A)

ρ̇(t) = −i

⎡
⎣ ∑

j=1,2

ωj â
†
j âj ,ρ(t)

⎤
⎦ + L̂mρ(t) +

∑
j,k=1,2

ηjηk[(ξ+∗
j + ξ+

k )âj ρ(t)â†
k − ξ+∗

j â
†
kâj ρ(t) − ξ+

k ρ(t)â†
kâj

+ (ξ−∗
j + ξ−

k )â†
j ρ(t)âk − ξ−∗

j âkâ
†
j ρ(t) − ξ−

k ρ(t)âkâ
†
j ] + (ξ+∗

j + ξ−
k )âj ρ(t)âk − ξ+∗

j âkâj ρ(t) − ξ−
k ρ(t)âkâj

+ (ξ−∗
j + ξ+

k )â†
j ρ(t)â†

k − ξ−∗
j â

†
kâ

†
j ρ(t) − ξ+

k ρ(t)â†
kâ

†
j , (3)

where ρ(t) = Trc[W (t)], ξ±
k = �

κ+i(�±ωk ) + |α|2+�∗
κ−i(�∓ωk ) , with

� ≡ �s = �c and � = N |α|2 + Mα2e2i�t . Keeping a trace-
less structure, Eq. (3) preserves the positivity of the reduced
density matrix ρ(t).

The newly emergent third term in the right-hand side of
Eq. (3) incorporates all the dynamical effects of the cavity field
on the two mechanical oscillators. It is interesting to see that the
cavity field, as a common contact “environment,” cannot only
induce individual dissipation (with j = k) to each mirror, but
also induce incoherent interactions (with j 	= k) between the
two mirrors by the exchange of virtual phonons. Furthermore,
besides the thermal dissipation [the second and third lines of
Eq. (3)], the squeezinglike dissipation [the fourth and fifth
lines of Eq. (3)] can also be triggered. It is understandable
based on the existence of the counter-rotating terms in ĤI.
In the special case of r = 0 and single oscillating mirror,
after dropping the fast rotating squeezing-dissipation terms
[42], Eq. (3) reduces exactly to the similar form as the one
in Ref. [43]. In this case, the rates of cooling and heating

denoted by the second and third lines of Eq. (3) reduce to
(ξ+∗

j + ξ+
j )|r=0 ∝ [κ2 + (� − ωj )2]−1 and (ξ−∗

j + ξ−
j )|r=0 ∝

[κ2 + (� + ωj )2]−1, respectively. It means that an efficient
cooling is realizable when the cooling rate is larger than
the heating one by choosing red-detuning driving field (i.e.,
� > 0) [43]. When r 	= 0, the incoherent interactions and the
squeezing effect induced by the cavity field can cause the
oscillators in squeezed state (see Appendix B), which is crucial
for generating stable entanglement between the two thermally
oscillating mirrors as shown in the following.

Considering explicitly the scheme configuration in Fig. 1,
we have the physical condition that the cavity field interacts
with the two mirrors in a π -phase difference η1 = −η2 ≡
η0. Further assuming the two mirrors are identical, we get
ω1 = ω2 ≡ ω0, γ1 = γ2 ≡ γ0, and n̄1 = n̄2 ≡ n̄0. Then Eq. (3)
reduces to

ρ̇(t) = −i[Ĥeff,ρ(t)]

+
∑
j=±

γ0
[
(n̄0 + 1)Ď

âj ,â
†
j
ρ(t) + n̄0Ďâ

†
j ,âj

ρ(t)
]
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+ η2
0[(ξ+∗

0 + ξ+
0 )Ď

â−,â
†
−
ρ(t) + (ξ−∗

0 + ξ−
0 )Ď

â
†
−,â−

ρ(t)

+ (ξ+∗
0 + ξ−

0 )Ďâ−,â−ρ(t) + (ξ−∗
0 + ξ+

0 )Ď
â
†
−,â

†
−
ρ(t)],

(4)

where â± = (â1 ± â2)/
√

2 and Ĥeff = ∑
j=± ωj â

†
j âj +

[iη2
0(ξ−

0 − ξ+∗
0 )â2

− + H.c.], with ω+ = ω0 and ω− = ω0 −
2η2

0Im[ξ+
0 + ξ−

0 ]. It can be seen that the relative motion
degree of freedom of the two mirrors is decoupled to the
center-of-mass one and only the former feels the existence
of the cavity environment. The presence of the squeezing
Lindblad terms in the last terms of Eq. (4) inspires us that
a stable squeezing property could be induced to the relative
motion degree of freedom by the cavity environment, via which
a stable entanglement is hopefully attainable.

III. ENTANGLEMENT BETWEEN MECHANICAL
OSCILLATORS

A. Analytical criterion for the steady-state entanglement

The entanglement of our system can be measured by
the logarithmic negativity [44], which is quantified on the
covariance matrix of X̂ ≡ (x̂1,p̂1,x̂2,p̂2),

Vij = 〈�X̂i�X̂j + �X̂j�X̂i〉/2, (5)

with �X̂j = X̂j − 〈X̂j 〉, x̂j = (âj + â
†
j )/

√
2, and p̂j = (âj −

â
†
j )/

√
2i. The commutation relations [X̂i,X̂j ] = iUij with

U = (J 0
0 J) and J = ( 0 1

−1 0) defines the symplectic structure
of the system, which is further characterized by the symplectic
eigenvalues ν = (ν1,ν2) of the matrix iU · V. The Heisenberg’s
uncertainty principle exerts a constraint on νi such that νi �
1/2. Thus the Peres-Horodecki criterion [45,46] is rephrased
as that the state is separable whenever the uncertainty principle
is still obeyed by the covariance matrix under the partial
transposition [47], which connects to V as Ṽ = � · V · � with
� = diag(1,1,1,−1). If the state is entangled, then Ṽ would
violate the uncertainty principle and ν̃i would be smaller than
1/2. The logarithmic negativity just quantifies this violation
as [44]

EN = max{0,− log2[2 min(ν̃1,ν̃2)]}. (6)

In general, the analytical relations among the elements
of the obtained V(t) is hard to evaluate. Under the con-
dition that two mechanical mirrors are identical, we can
prove analytically V(t) = ( A C

CT A), where V12(t) = V21(t)

and C = ( V13(t) −V12(t)
−V12(t) V24(t) ), with V11(t) + V13(t) = V22(t) +

V24(t) = n̄0 + 1/2 (see Appendix C). Here we have as-
sumed that the oscillators are initially in thermal equi-
librium with their respective reservoirs. Thus there are
only three independent variables in V(t). Defining V(3)(t) =
(V11(t), V22(t), V12(t))T , we can calculate from Eq. (4)

V̇(3)(t) = M(3)·V(3)(t) + B(3)(t), (7)

with

M(3) =
⎛
⎝ −2γ0 0 2ω0

0 2(2ζ r
− − γ0) 2(2ζ i

− − ω0)
2ζ i

− − ω0 ω0 2(ζ r
− − γ0)

⎞
⎠, (8)

B(3)(t) =
(
φ, φ + 2ξ r − φζ r

−
γ0

, ξ i − φζ i
−

2γ0

)T

, (9)

where ζ r
− + iζ i

− = 2η2
0 |α|2

κ−i(� + ω0) − 2η2
0 |α|2

κ+i(�−ω0) , ξ r + iξ i =
η2

0(ξ−
1 + ξ+∗

1 ), and φ = γ0(2n̄0 + 1). The initial condition is

V(3)(0) = (n̄0 + 1/2, n̄0 + 1/2, 0)T .
Except for solving Eq. (7) numerically to evaluate the

entanglement, we can also obtain an analytical form of EN .
For this purpose, we need to convert V(t) into a normal
form V̄(t) = U(t)·V(t)·UT (t) by a local unitary transforma-
tion U(t) = diag(eiθσy/2,eiθσy/2), with σy the Pauli matrix.
Such transformation leaves the entanglement unchanged. The
achieved V̄(t) corresponds to the covariance matrix defined

in the rotated quadrature vector ˆ̄X ≡ ( ˆ̄x1, ˆ̄p1, ˆ̄x2, ˆ̄p2), with
ˆ̄xj = [âj e

−iθ/2 + H.c.]/
√

2 and ˆ̄pj = [âj e
−iθ/2 − H.c.]/

√
2i.

Choosing θ = arg[〈â1â1〉(t)], we get a normal form V̄(t) =
(

Ā C̄
C̄T Ā), where

Ā = diag(V̄11(t),V̄22(t)), C̄ = diag(V̄13(t),V̄24(t)) (10)

under V̄11(t) + V̄13(t) = V̄22(t) + V̄24(t) = n̄0 + 1/2. Then the
two symplectic eigenvalues of Ṽ(t) are

ν̃1,2 = {[V̄11(t) ± V̄13(t)][V̄22(t) ∓ V̄24(t)]}1/2. (11)

In terms of the center-of-mass and relative motion quadrature
operators ˆ̄Q± = ( ˆ̄x1 ± ˆ̄x2)/

√
2 and ˆ̄P± = ( ˆ̄p1 ± ˆ̄p2)/

√
2, we

have V̄11(t) ± V̄13(t) = δQ̄2
±(t) and V̄22(t) ± V̄24(t) = δP̄ 2

±(t).
Thus Eq. (11) changes into

ν̃1 = [(n̄0 + 1/2)δP̄ 2
−(t)]1/2, (12)

ν̃2 = [(n̄0 + 1/2)δQ̄2
−(t)]1/2. (13)

The identities δP̄ 2
−(t) = 2V̄22(t) − δP̄ 2

+ and δQ̄2
−(t) =

2V̄11(t) − δQ̄2
+ lead to δP̄ 2

−(t) − δQ̄2
−(t) = 2[V̄22(t) − V̄11(t)].

From the definition of V̄(t), we have V̄11(t) − V̄22(t) =
2Re[〈â1â1〉(t)e−iθ ]. Remembering θ = arg[〈â1â1〉(t)], we
readily obtain V̄11(t) − V̄22(t) = 2|〈â1â1〉(t)| � 0. Therefore,
we always have ν̃1 < ν̃2. Thus the nonzero entanglement in
Eq. (6) is achievable only when

ν̃1 < 1/2 ⇒ δP̄ 2
−(t) < 1/[2(2n̄0 + 1)]. (14)

Equation (14) indicates that the entanglement between the
oscillators is only determined by the variances of their relative
momentum operator ˆ̄P−(t), which is only sensitive to the
environmental temperature.

From the commutation relation [ ˆ̄Q−, ˆ̄P−] = i, we have their
uncertainty relation δQ̄2

−δP̄ 2
− � 1/4. Therefore, the squeezing

property is present when either δQ̄2
− < 1/2 or δP̄ 2

− < 1/2.
Thus we can conclude from the analytical result in Eq. (14)
that it is the squeezing in the relative momentum ˆ̄P− that is
responsible for the entanglement generation of the mechanical
oscillators. At zero temperature, i.e., n̄0 = 0, the entanglement
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between the two oscillators can be established whenever
the squeezing shows up in ˆ̄P−; while at finite temperature,
the generation of entanglement needs stronger squeezing
in ˆ̄P−.

B. Numerical verification

To verify our analytical expectation, we numerically
calculate the covariance matrix from Eq. (7) and evaluate
its entanglement. The parameters are chosen as follows:
The cavity-field frequency is ωc = 2π × 6.98 × 109 Hz, its
damping rate is κ = 2π × 6.2 × 106 Hz, the frequency of
the mechanical oscillators is ω0 = 2π × 32.1 × 106 Hz, their
damping rate is γ0 = 15 × 10−5κ , and the coupling strength
is η0 = 2π × 39 Hz. These parameters are accessible with the
recent experiment [48]. Figure 2(a) shows the entanglement
evolution in different squeezing parameter r . Obviously, when
r = 0, which corresponds to the broadband driving field
being a vacuum reservoir, no entanglement can be stimulated.
However, with the switching on the squeezing of the broad-
band driving field, a notable entanglement can be induced
asymptotically in a wide range of r . This demonstrates well
that the squeezing in the broadband driving field to the cavity
field is responsible for the entanglement generation of the two
mechanical oscillators. Figure 2(b) shows the entanglement
dynamics in different detuning � of the broadband driving
field to the coherent driving field. We can see that the best
performance of the squeezing field on generating entanglement
is achieved when the central frequency detuning � of the
squeezed field matches with the frequency of the oscillators.
We also can observe that the entanglement does not tend
to a constant value in the long-time limit, but a lossless
oscillation with tiny amplitude. This oscillation in frequency
� originates from the time-dependent dissipator introduced

FIG. 2. (Color online) Entanglement dynamics in different
squeezing parameter r when �/ω0 = 1 (a) and in different � when
r = 1 (b), where the black dot-dashed lines show the results from
the steady-state solution. The steady-state entanglement EN (blue
solid line) and the squared variance δP̄ 2

− (red dashed line) in different
squeezing parameter r when T = 0 K (c) and in different temperature
T when r = 1 (d), where the frequency detuning is chosen as � = ω0

and the green dotted lines show the value 1/[2(2n̄0 + 1)]. P = 4 μW
and other parameters are given in the main text.

by the broadband squeezed field, as shown by L̂c in Eq. (A1)
and in Eq. (7) with the explicit form of B(3)(t) in Eq. (C11). In
the following we take t = Zπ/2�, where Z is an arbitrarily
large integer to ensure the system arriving at its steady state,
to study the steady-state properties of the system. Figure 2(c)
plots the calculated steady-state quantum entanglement EN

and the squared variance δP̄ 2
−(∞) = 2V̄22(∞) − (n̄0 + 1/2)

at zero temperature (i.e., n̄0 = 0) in different squeezing
parameter r . It indicates clearly that the region where
the stable entanglement is formed matches well with the
region where δP̄ 2

− < 1/2. At finite temperature, Fig. 2(d)
shows that, whenever δP̄ 2

− < 1/[2(2n̄0 + 1)] is satisfied, a
nonzero entanglement can be established. All these results
prove the validity of the entanglement criterion (14). It is
also impressive to find from Fig. 2(d) that the dramatic
entanglement can be generated even when the environmental
temperature is in the order of magnitude of mK, where
one generally believes that the dominate thermal fluctuation
would destroy quantum effects. Here it is remarkable that the
quantum correlation is triggered alive even in this temperature
region.

Both of our analytical and numerical results reveal that the
cavity field acts as a quantum bus to transfer the squeezing
character from the broadband driving field to the relative
motion degree of freedom of the two mechanical oscillators
such that a stable nonclassical correlation can be established
between them. It suggests an interesting way to generate stable
entanglement between the mechanical mirrors by engineering
the squeezing property of the reservoir felt by the cavity field.
The physical reason why the relative-motion operator instead
of center-of-mass one is squeezed by the cavity field can be
understood in the following way. In our system configuration,
η1 = −η2 ≡ η0, under which Eq. (1) is converted to

Ĥ = �cĉ
†ĉ + ω0

∑
j=±

â
†
j âj +

√
2η0Q̂−ĉ†ĉ + �(ĉ† + ĉ).

(15)
It indicates that only the relative coordinate of the oscillators
feels the existence of the cavity field, while the center-of-
mass coordinate as a dark mode is immune to the cavity field.
Thus the squeezing character of the reservoir is transferred
to relative quadrature operators via its interaction with the
cavity field (see Fig. 6). This again justifies the validity of
our analytic result in (14). The mediation role of the common
cavity field here relates to the scheme in Ref. [39], where an
effective squeezing of the two mechanical modes is achieved
by applying two coherent driving fields to the cavity, while in
ours it is transferred from the broadband squeezed reservoir
via the cavity field.

Since the entanglement originates from the squeezing in
ˆ̄P−, a largest entanglement is achievable when δP̄ 2

−(∞) has a
smallest value. To get the best performance of our scheme
on entanglement generation, we now explore the optimal
condition of the system parameters on entanglement gener-
ation. Figure 3(a) shows the calculated δP̄ 2

−(∞) as a function
of r in different driving power P , which indicates that the
optimal value of r to get the smallest δP̄ 2

−(∞) is dependent on
the driving power P . Via dδ2P̄ 2

−(∞)/dr = 2dV̄22(∞)/dr =
0, we have the optimal r to make δ2P̄ 2

− smallest (see
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FIG. 3. (Color online) (a) The squared variance δP̄ 2
− as a function

of r when P = 0.01 (red dotted line), 0.1 (green dashed line),
and 2 μW (blue solid line). (b) The optimal squeezing ropt (black
solid line) to obtain the smallest δP̄ 2

−(∞) and the corresponding
steady-state entanglement E

opt
N (purple dashed line) as a function

of the driving power P . The black circles are calculated from
numerical solution and the black solid line is calculated from Eq. (16).
Parameters as T = 0 K, �/ω0 = 1 have been used and the others are
shown in the main text.

Appendix C 2)

ropt = 1

2
arctanh

{
� · Re[(2i�I − M(3))−1 · B2e

2i�t ]

� · [M(3)]−1 · B1

}
. (16)

Figure 3(b) shows ropt obtained from numerical calculation
and from Eq. (16) and the corresponding optimal steady-state
entanglement as a function of the pumping power P . As
we can see, with the increase of P , ropt decreases and the
optimal entanglement generated increases and saturates at
a moderate pumping power. This indicates that a moderate
pumping suffices the generation of a maximal entanglement
between mechanical oscillators.

Before closing our discussion, we verify the validity of the
adiabatic elimination used in the derivation of Eq. (4). Figure 4
plots δP̄ 2

− calculated from Eqs. (2) and (4), which corresponds
to the cases without and with the adiabatic elimination,
respectively. It shows that the adiabatic elimination works well
in a wide parameter regime, e.g., at large cavity decay rate
and small and moderate pumping power. This result proves
the validity of our above calculation, where the parameters
used are within the permissible scope of the adiabatic
elimination.

FIG. 4. (Color online) δP̄ 2
−(∞) evaluated from Eq. (2) with (blue

solid line) and from Eq. (4) without the adiabatic elimination (red
dashed line) when P = 4 μW in (a) and γ0/κ = 1 in (b). Parameters
T = 0 K, �/ω0 = 1, and r = 1 have been used and the others are
shown in the main text.

IV. CONCLUSIONS

In summary, we have proposed a scheme to generate
stable entanglement between the two mechanically oscillating
mirrors of a cavity by engineering the squeezing character of
the reservoir felt by the cavity. Via adiabatically eliminating
the degree of freedom of the cavity field, a reduced master
equation satisfied by the two mechanical oscillators is derived
microscopically. From this master equation, we have analyti-
cally found that the generated entanglement of the two mirrors
originates from the squeezing of the relative momentum of the
two mirrors. Our result reveals that the cavity field acts as a
quantum bus to transfer the squeezing character of its reservoir
to the relative momentum of the two mechanical oscillators
such that a stable entanglement is established in their steady
state. The numerical verification indicates that our proposal is
realizable with the present experimental technique of cavity
optomechanics.
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APPENDIX A: THE DERIVATION OF THE REDUCED
MASTER EQUATION

Working in the interaction picture and further introducing
a squeezing transformation, we can recast Eq. (2) into
[49,50]

˙̄W (t) = −i[ ˆ̄HI(t),W̄ (t)] + L̂mW̄ (t) + L̂vacW̄ (t), (A1)

where W̄ (t) = Ŝ exp(iĤ0t)W (t) exp(−iĤ0t)Ŝ†, with Ŝ =
exp[r(ĉ2 − ĉ†2)/2], L̂vac· = κĎĉ,ĉ† ·, ˆ̄HI(t) = Â†(t)ĉ + H.c.,
with Â(t) = ∑

j η̃j (t)[âj e
−iωj t + H.c.] and η̃j (t) = ηj (α∗

√
Ne−i�t + α

√
N + 1ei�t ). Note that �c = �s ≡ � has been

used in the above transformation.
Governed by the dissipator L̂vac, the cavity field rapidly

approaches the steady state (|0〉〈0|)c in the large damping
limit (κ � γj ). It means that W̄ (t) approximately factorizes
as W̄ (t) � Trc[W̄ (t)] ⊗ (|0〉〈0|)c. Seeing the cavity field as
“a reservoir,” we can adiabatically eliminate its degree of
freedom and obtain a reduced master equation satisfied by the
two oscillators. Explicitly, in the dissipation picture W̃ (t) =
exp[−L̂vact]W̄ (t), Eq. (A1) can be recast into ˙̃W (t) = [ ˆ̃LI(t) +
L̂m]W̃ (t), where ˆ̃LI(t)· = −i exp(−L̂vact)[ ˆ̄HI(t),·] exp(L̂vact).
Under the Born approximation W̃ (t) = ρ̃(t) ⊗ (|0〉〈0|)c and
the Markovian approximation, we obtain

˙̃ρ(t) = L̂mρ̃(t) + Trc

∫ ∞

0
dτ ˆ̃LI(t)

ˆ̃LI(t − τ )ρ̃(t)(|0〉〈0|)c,

(A2)
where ρ̃(t) = Trc[W̃ (t)] and ˆ̃LI(t)· = −i[Â+(t)Ĉ−(t) +
Â−(t)Ĉ+(t) − H.c.]·, with Â+(t)· = Â†(t)·, Â−(t)· = Â(t)·,
Ĉ−(t)· = exp(−L̂vact)(ĉ·) exp(L̂vact), and Ĉ+(t)· = exp
(−L̂vact)(ĉ†·) exp(L̂vact). Making a time derivative to Ĉ−(t),
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we have dĈ−(t)/dt = −e−L̂vact [L̂vac,ĉ·]eL̂vact . One can easily
check [L̂vac,ĉ·] = κĉ·. Thus

Ĉ−(t) = e−κt (ĉ·), (A3)

which also induces

Ĉ†
−(t) = e−κt (·ĉ†). (A4)

With the similar manner, we have dĈ+(t)/dt =
−e−L̂vact [L̂vac,ĉ

†·]eL̂vact . From the commutation relation
[L̂vac,ĉ

†·] = 2κ · ĉ† − κĉ†·, it can be recast into

dĈ+(t)/dt = −2κ Ĉ†
−(t) + κ Ĉ+(t). (A5)

In the form of Eq. (A4), we can obtain

Ĉ+(t) = eκt (ĉ†·) + (e−κt − eκt )(·ĉ†), (A6)

which also results in

Ĉ†
+(t) = eκt (·ĉ) + (e−κt − eκt )(ĉ·). (A7)

From the obtained forms of Eqs. (A3), (A4), (A6), and (A7),
we have the nonzero correlation functions of the cavity field
as the following:

〈Ĉ−(t)Ĉ+(t − τ )〉 = 〈Ĉ+(t)Ĉ†
+(t − τ )〉

= 〈Ĉ†
−(t)Ĉ†

+(t − τ )〉 = 〈Ĉ†
+(t)Ĉ+(t − τ )〉 = e−κτ , (A8)

where 〈·〉 = Trc[·(|0〉〈0|)c].
Substituting Eq. (A8) into Eq. (A2) we can obtain

Trc

∫ ∞

0
dτ ˆ̃LI(t)

ˆ̃LI(t − τ )ρ̃(t)(|0〉〈0|)c

=
∫ ∞

0
dτe−κτ [Â(t)ρ̃(t)Â†(t − τ ) − Â†(t)Â(t − τ )ρ̃(t)

+ H.c.]. (A9)

Remembering the form of Â(t) and returning back to the
Schrödinger picture, we have∫ ∞

0
e−κτ e−iĤ0t Â(t)ρ̃(t)Â†(t − τ )eiĤ0t dτ

=
∑
j,k

ηjηk[(âj + â
†
j )ρ(t)(ξ+

k â
†
k + ξ−

k âk)], (A10)

with ξ±
k = �

κ±i(ωk+�) + |α|2+�∗
κ±i(ωk−�) and � = N |α|2 +

Mα2e2i�t . In obtaining Eq. (A10), the integral identity∫ ∞
0 exp[−κτ − iωτ ]dτ = 1/(κ + iω) has been used. The

other terms in Eq. (A9) can be calculated in the similar
manner. Then the final form the reduced master equation (3)
can be obtained.

APPENDIX B: DYNAMICAL EVOLUTION OF
THE SYSTEM

The dynamics of the system can be studied readily by the
derived reduced master equation (4), from which we can see
clearly that the center-of-mass motion is decoupled to the
cavity mode, while the relative motion is strongly affected
by the optomechanical coupling. For the relative motion,
not only the thermal dissipation, but also the squeezinglike
dissipation is triggered. To verify the validity of Eq. (4),

FIG. 5. (Color online) Dynamical evolution of the mean phonon
number calculated with (solid lines) and without (dashed lines) the
adiabatic elimination in different values of r . Parameters T = 2.5 mK,
�/ω0 = 1, and γ0/κ = 1.5 × 10−3 have been used and the others are
shown in the main text.

we plot in Fig. 5 the evolution of the mean phonon number
n̄pn = Tr[â†

j âj ρ(t)] (j = 1,2) in different values of r obtained
from Eq. (2) and from Eq. (4). We find that the steady-state
phonon number increases with the increase of r . This is due
to the strength of the radiation pressure acting on the mirrors,
which comes from the increase of the photon number in the
cavity by the squeezed-vacuum reservoir. In addition, faint
oscillations appear in the long-time limit when r 	= 0, which
originates from the time-dependent dissipator introduced by
the broadband squeezed field. Furthermore, we find that the
adiabatic elimination performs well during time evolution
except for small deviation in the short-time scale. Figure 6 plots
the fluctuation dynamics of the relative motion quadrature
operators P̂− = (â− − â

†
−)/

√
2i and Q̂− = (â− + â

†
−)/

√
2.

The squeezing is achievable when either δP̂ 2
−(t) < 1/2 or

δQ̂2
−(t) < 1/2. The results indicate that the quadrature op-

erators can be squeezed in long-time limit, which originates
from the transfer of squeezing properties from the reservoir.
We also observe that behaviors of the quadrature operators
are antiphase with each other and the oscillations keep in a
frequency 2�.

FIG. 6. (Color online) Fluctuation dynamics of δP 2
− in (a) and

δQ2
− in (b) calculated with (blue solid lines) and without (red dashed

lines) the adiabatic elimination. Insets are results in the long-time
regime. Parameter r = 1 has been used and the others are the same
in Fig. 5.
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APPENDIX C: COVARIANCE MATRIX OF THE MECHANICAL OSCILLATORS

1. The covariance matrix

Defining a vector V(F)(t) = (V11(t), V22(t), V33(t), V44(t), V12(t), V13(t), V14(t), V23(t), V24(t), V34(t))T and under the conditions
ω1 = ω2 = ω0, γ1 = γ2 ≡ γ0, η1 = −η2 ≡ η0, and n̄1 = n̄2 ≡ n̄0, we can derive its time evolution equation from Eq. (4),

V̇(F)(t) = M · V(F)(t) + B(t), (C1)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2γ0 0 0 0 2ω0 0 0 0 0 0
0 2(ζ r

− − γ0) 0 0 2(ζ i
− − ω0) 0 0 −2ζ i

− −2ζ r
− 0

0 0 −2γ0 0 0 0 0 0 0 2ω0

0 0 0 2(ζ r
− − γ0) 0 0 −2ζ i

− 0 −2ζ r
− 2(ζ i

− − ω0)
ζ i
− − ω0 ω0 0 0 ζ r

− − 2γ0 −ζ i
− −ζ r

− 0 0 0
0 0 0 0 0 −2γ0 ω0 ω0 0 0

−ζ i
− 0 0 0 −ζ r

− ζ i
− − ω0 ζ r

− − 2γ0 0 ω0 0
0 0 −ζ i

− 0 0 ζ i
− − ω0 0 ζ r

− − 2γ0 ω0 −ζ r
−

0 −ζ r
− 0 −ζ r

− −ζ i
− 0 ζ i

− − ω0 β1 2(ζ r
− − γ0) −ζ i

−
0 0 ζ i

− − ω0 ω0 0 −ζ i
− 0 −ζ r

− 0 ζ r
− − 2γ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B(t) = (φ, φ + 2ξ r , φ, φ + 2ξ r , ξ i, 0, −ξ i, −ξ i, −2ξ r , ξ i)T ,

where ζ r
− + iζ i

− = 2η2
0 |α|2

κ−i(�+ω0) − 2η2
0 |α|2

κ+i(�−ω0) , ξ r + iξ i = η2
0(ξ−

1 + ξ+∗
1 ), and φ = γ0(2n̄0 + 1). Considering that the mechanical

oscillators are initially in thermal states with the same temperature as their reservoirs, we have Vii(0) = n̄0 + 1
2 and Vij (0) = 0

for i 	= j .
First, according to Eq. (C1), we have

d

dt
V(4)(t) ≡ d

dt

⎛
⎜⎝

V11(t) − V33(t)
V22(t) −V44(t)
V12(t) −V34(t)
V14(t) −V23(t)

⎞
⎟⎠ =

⎛
⎜⎜⎝

−2γ0 0 2ω0 0
0 2(ζ r

− − γ0) 2(ζ i
− − ω0) −2ζ i

−
ζ i
− − ω0 ω0 ζ r

− − 2γ0 −ζ r
−

−ζ i
− 0 −ζ r

− ζ r
− − 2γ0

⎞
⎟⎟⎠ · V(4)(t). (C2)

From the initial condition V(4)(0) = (0,0,0,0)T , its dynamical solution can be solved as V(4)(t) = (0,0,0,0)T , which indicates

V11(t) = V33(t), V22(t) = V44(t), (C3)

V12(t) = V34(t), V14(t) = V23(t). (C4)

Further defining V(2)(t) = (V5(t),V6(t))T with V5(t) = V12(t) + V14(t) and V6(t) = V11(t) + V13(t) − V22(t) − V24(t), and

according to Eq. (C1), we have V̇(2)(t) = (
−2γ0 −ω0

4ω0 −2γ0
) · V(2)(t). Under the initial condition V(2)(0) = (0,0)T , its dynamical

solution can be obtained as V(2)(t) = (0,0)T , which indicates

V14(t) = −V12(t), (C5)

V11(t) + V13(t) = V22(t) + V24(t). (C6)

Last, defining V7(t) = V11(t) + V13(t), we have

V̇7(t) = −2γ0V7(t) + γ0(2n̄0 + 1) (C7)

under the initial condition V7(0) = n̄0 + 1
2 . Its solution reads V7(t) = n̄0 + 1

2 , which is time independent. Thus

V11(t) + V13(t) = n̄0 + 1
2 . (C8)

With the relations (C3), (C4), (C5), (C6), and (C8), we have the final form of the covariance matrix

V(t) =
(

A C
CT A

)
, (C9)

C =
(

n̄0 + 1
2 − V11(t) −V12(t)

−V12(t) n̄0 + 1
2 − V22(t)

)
. (C10)
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2. The solution of the covariance matrix

The time-dependent inhomogeneous term (9) can be separated into

B(3)(t) = B0 + NB1 + M(B2e
2i�t + c.c.),

B0 =
(
φ, φ + ζ+ − φζ r

−
γ0

,
γ0ζ

i
+−φζ i

−
2γ0

)T

,

(C11)
B1 = (0, 2ζ r

+, ζ i
+)T ,

B2 = (
0, ζ̄+,

iζ̄−
2

)T
.

where ζ r
+ + iζ i

+ = 2η2
0 |α|2

κ−i(�+ω0) + 2η2
0 |α|2

κ+i(�−ω0) and ζ̄± = 2η2
0α

2

κ+i(�+ω0) ± 2η2
0α

2

κ+i(�−ω0) . With this separation, the dynamical solution of Eq. (7)
can be constructed as

V(3)(t) = −Y · D−1·(I − eDt )·Y−1·(B0 + NB1) − M[Y·(D − 2i�I)−1·(Ie2i�t − eDt ) · Y · B2

+ c.c.] + Y·eDt ·Y−1·V(3)(0), (C12)

where D = Y−1 · M(3) · Y and I is a unit matrix. The solution (C12) asymptotically approach [51]

V(3)(∞) = −[M(3)]−1 · (B0 + NB1) − M[(M(3) − 2i�I)−1 · B2e
2i�t + c.c.], (C13)

which is a periodically oscillating function in frequency 2�. From Eq. (C13) we can easily check

V̄22(∞) = � · V(3)(∞), (C14)

where � = (sin2(θ/2) cos2(θ/2) − sin θ ).
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Heikkilä, and M. A. Sillanpää, Nat. Commun. 3, 987 (2012).
[49] J. I. Cirac, Phys. Rev. A 46, 4354 (1992).
[50] P. Zhou and S. Swain, Phys. Rev. A 58, 1515 (1998).
[51] W.-J. Gu, G.-x. Li, and Y.-P. Yang, Phys. Rev. A 88, 013835

(2013).

062311-9

http://dx.doi.org/10.1088/1367-2630/10/9/095009
http://dx.doi.org/10.1088/1367-2630/10/9/095009
http://dx.doi.org/10.1088/1367-2630/10/9/095009
http://dx.doi.org/10.1088/1367-2630/10/9/095009
http://dx.doi.org/10.1007/s11433-014-5580-4
http://dx.doi.org/10.1007/s11433-014-5580-4
http://dx.doi.org/10.1007/s11433-014-5580-4
http://dx.doi.org/10.1007/s11433-014-5580-4
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevLett.101.200503
http://dx.doi.org/10.1103/PhysRevA.87.022318
http://dx.doi.org/10.1103/PhysRevA.87.022318
http://dx.doi.org/10.1103/PhysRevA.87.022318
http://dx.doi.org/10.1103/PhysRevA.87.022318
http://dx.doi.org/10.1103/PhysRevA.87.033829
http://dx.doi.org/10.1103/PhysRevA.87.033829
http://dx.doi.org/10.1103/PhysRevA.87.033829
http://dx.doi.org/10.1103/PhysRevA.87.033829
http://dx.doi.org/10.1103/PhysRevLett.102.020501
http://dx.doi.org/10.1103/PhysRevLett.102.020501
http://dx.doi.org/10.1103/PhysRevLett.102.020501
http://dx.doi.org/10.1103/PhysRevLett.102.020501
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1103/PhysRevA.68.013808
http://dx.doi.org/10.1364/JOSAB.31.002821
http://dx.doi.org/10.1364/JOSAB.31.002821
http://dx.doi.org/10.1364/JOSAB.31.002821
http://dx.doi.org/10.1364/JOSAB.31.002821
http://dx.doi.org/10.1088/1367-2630/11/10/103044
http://dx.doi.org/10.1088/1367-2630/11/10/103044
http://dx.doi.org/10.1088/1367-2630/11/10/103044
http://dx.doi.org/10.1088/1367-2630/11/10/103044
http://dx.doi.org/10.1209/epl/i2005-10317-6
http://dx.doi.org/10.1209/epl/i2005-10317-6
http://dx.doi.org/10.1209/epl/i2005-10317-6
http://dx.doi.org/10.1209/epl/i2005-10317-6
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1088/1367-2630/17/10/103037
http://dx.doi.org/10.1088/1367-2630/17/10/103037
http://dx.doi.org/10.1088/1367-2630/17/10/103037
http://dx.doi.org/10.1088/1367-2630/17/10/103037
http://arxiv.org/abs/arXiv:1204.2036
http://arxiv.org/abs/arXiv:1506.02765
http://dx.doi.org/10.1088/1367-2630/10/9/095007
http://dx.doi.org/10.1088/1367-2630/10/9/095007
http://dx.doi.org/10.1088/1367-2630/10/9/095007
http://dx.doi.org/10.1088/1367-2630/10/9/095007
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevLett.99.093901
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1038/ncomms1993
http://dx.doi.org/10.1103/PhysRevA.46.4354
http://dx.doi.org/10.1103/PhysRevA.46.4354
http://dx.doi.org/10.1103/PhysRevA.46.4354
http://dx.doi.org/10.1103/PhysRevA.46.4354
http://dx.doi.org/10.1103/PhysRevA.58.1515
http://dx.doi.org/10.1103/PhysRevA.58.1515
http://dx.doi.org/10.1103/PhysRevA.58.1515
http://dx.doi.org/10.1103/PhysRevA.58.1515
http://dx.doi.org/10.1103/PhysRevA.88.013835
http://dx.doi.org/10.1103/PhysRevA.88.013835
http://dx.doi.org/10.1103/PhysRevA.88.013835
http://dx.doi.org/10.1103/PhysRevA.88.013835



