
PHYSICAL REVIEW A 92, 062303 (2015)

Quantum metrology: Heisenberg limit with bound entanglement
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Quantum entanglement may provide a huge boost in the precision of parameter estimation. However, quantum
metrology seems to be extremely sensitive to noise in the probe state. There is an important still open question:
What type of entanglement is useful as a resource in quantum metrology? Here we raise this question in relation
to entanglement distillation. We provide a counterintuitive example of a family of bound entangled states which
can be used in quantum enhanced metrology with the precision advantage approaching the Heisenberg limit. This
shows that so-called distillability is not necessary for quantum advantage in metrology. Surprisingly, entanglement
of the applied states is very weak, which is reflected by the lack of the so-called unlockability property. Moreover
we find instances where quantum Fisher information reports the presence of entanglement where a well-known
class of nonlinear entanglement witnesses (stronger than multisetting correlation Bell inequalities) does not.
We have thus provided strong evidence that quantum metrology can be treated as additional operational face
of multipartite entanglement, independent of two other basic operational features used in quantum information
theory: nonlocality and distillability.
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I. INTRODUCTION

Estimation of a physical parameter is an important goal
in many areas of science [1]. One of intriguing aspects of
quantum mechanics in this context is quantum metrology. In its
most popular form quantum metrology has its origins in atomic
spectroscopy [2,3]; however, the idea was present even earlier
in fermionic systems [4] and, from a different perspective,
quantum optical interferometry [5] (for recent developments
along this line, see [6] and references therein). The general
search for possible improvement of estimation precision is
also of great importance in the domain of atomic clocks [7] and
interferometric measurement of a phase shift in gravitational
wave detection [8]. Since there are many quantities we cannot
measure directly, a protocol for a measurement is typically
indirect: we use an additional probe system to interact with
the one under investigation. Due to the interaction the probe
gains information about the parameter we want to measure.
Then, we inspect the probe coming out from the measurement,
and on the basis of the obtained data, we estimate the desired
parameter. Obviously, we want to obtain the highest possible
accuracy for that estimation. We can improve the accuracy
by repeating the experiment multiple times or, equivalently,
making a multipartite probe to interact with the system.

In the quantum world there is another possibility to increase
the accuracy: prepare the probe in a particular quantum state,
i.e., in the entangled state. To be more concrete, for a classical
probe that contains n particles (we can also consider it a
measurement performed n times) accuracy scales as 1/

√
n.

That is the so-called shot-noise limit (SNL). However, if the
system is in a particular entangled state, then accuracy can be
improved up to 1/n. This limit, called the Heisenberg limit
(HL) gives us the best accuracy we can get that is allowed
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by quantum mechanics. Both of these bounds can be derived
from the quantum Cramér-Rao bound and quantum Fisher
information (QFI) [9–13]. For a more general description of
the parameter estimation procedure see [14,15].

Recently, it has been shown [16,17] that local (memoryless)
noise puts limits on the accuracy, offering only a linear
improvement of the precision when compared to the shot-
noise limit. Since this no-go theorem was established, the
efforts in the quantum metrology domain have split into
optimization of the performance for a finite number of
entangled particles [18], extending the paradigm of metrology
and combining it with error correction schemes (see [19–21]),
and witnessing genuine quantum correlations with QFI. We
would like to take a different perspective: analyzing the relation
of metrology as an operational approach to studying quantum
resources to other operational paradigms [e.g., distributed
laboratories and local operations and classical communication
(LOCC) paradigm, nonlocality theory] known in the quan-
tum information domain. The main motivation here is the
following broad perspective: entanglement is a peculiar kind
of correlation of a composite quantum system. The weirdness
of these correlations can manifest itself in many different way.
But there is only one definition of entanglement. We thus
face fundamental questions: To what extent are those various
manifestations mutually interconnected, and to what extent
can they appear independently of one another?

These questions were deeply explored in quantum infor-
mation theory, for example, the relation between algebraic
entanglement and distillability [22] and the relation between
nonlocality and entanglement distillation or the Peres conjec-
ture [23–25]. However, the relation between usefulness for
quantum enhanced metrology and other operational manifes-
tations of entanglement such as nonlocality and entanglement
has not been yet explored.

In this paper, we want to fill this gap by constructing
nondistillable states which are useful for metrology. We also
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provide states which do not violate a wide class of Bell
inequalities (hence, it is plausible that they admit a local
hidden-variable model) but offer a quantum advantage for
metrology.

Apart from the above fundamental questions, there are
some more technical issues related to our results. Namely,
it is known that genuine multipartite quantum entanglement
is necessary to surpass the SNL (see [26]); however, not
every entangled state gives the same improvement, and among
entangled states there are also states that are not suitable
for quantum metrology; that is, they do not surpass the
SNL. In particular, quantum scaling is hard to obtain in the
case of entangled states with a high noise factor (see [17]),
which we have to deal with in realistic experiments where
decoherence and preparation errors are present and perfect
NOON states seem to be far beyond our reach. Right now,
searching for optimal states fulfilling certain constraints is a
highly complicated optimization problem (see using matrix
product state (MPS) [18]). Therefore, an important question
is, What features of entanglement are needed for the state to be
useful in quantum metrology, or taking another point of view,
what type of entanglement can be detected by QFI? We believe
that to be able to break the present impasse, we need to build
a theory of “use of entanglement in metrology” analogous to
the theory of entanglement itself, and our results are the first
steps in this direction.

The states on which we focus in this paper belong to a group
of states with such a high noise factor that they are unusable
for most quantum information tasks. These highly mixed
states are bound entangled (BE) states and were predicted in
1998 [27,28] as a new kind of entanglement. Bound entangled
states are those from which no pure entanglement can be
distilled when only LOCC are available (see the Appendix
for a short introduction to the paradigm involving LOCC).
The sufficient condition for an entangled state to be bound
entangled is its positive partial transposition [27,29]. The
bound entangled states, called “black holes” of quantum
information [30], have been created in laboratories in a series
of experiments with ions, photons, and nuclear spins. Among
multipartite bound entangled states we distinguish unlockable
and nonunlockable ones. Unlockable BE states are those
in which it is possible to group parties in such way that
performing collective quantum operations in one group makes
distillation of pure entanglement between two parties from
the other group possible. The prominent example here is a
four-qubit Smolin state [31]. For this state no entanglement
can be distilled by local quantum operations and classical
communication among the parties, but a joint measurement
performed on any two of the parties enables the other two
parties to create a pure maximally entangled state between
them without coming together. Nonunlockable BE states are
those in which we cannot obtain a pure entangled state by
these means. One may say that entanglement is “more bound”
there.

The impossibility of pure entanglement distillation makes
BE states (in particular nonunlockable ones) not useful for
many quantum information and communication tasks such
as quantum teleportation or dense coding. When it comes to
quantum cryptography, on the one hand, it has been shown that
BE states may be useful [32]; on the other hand, very recent

results show that the resulting cryptographic key in some cases
may be not suitable for quantum repeater schemes [33]. In the
case of metrology, no instance of usefulness of BE states is
known so far. In [34] the authors relate QFI and BE states and
show that for certain BE states, averaged Fisher information is
higher than for separable states. However, there are no results
linking QFI and the average QFI. Even though the relation
of BE states with averaged QFI was given, the usability of
BE in the case of standard formulation of quantum metrology
(i.e., with known interaction between a system and a probe)
remained an open question.

Intuition suggests that the high degree of noise of BE
should be the reason for the negative answer for the question
regarding its usability in quantum metrology. It is, in particular,
especially tempting to expect such an answer in classes
of multiqubit states, the entanglement of which cannot be
unlocked: even if some parties get together, they cannot help
the other parties to distill entanglement.

We will show that this intuition is misleading. We will
investigate a class of mixed states that are Greenberger-Horne-
Zeilinger (GHZ) diagonal and present an example of bound
entangled states which have an advantage over product states
in the metrology of the phase shift around the z axis. Moreover,
the entanglement of those states cannot be unlocked. Our
family of states exhibits an an2 scaling (with a � 1

4 ) of the
QFI in the asymptotic limit.

The first immediate implication of our result is that metrol-
ogy is not related to the fundamental concept of entanglement
theory, which is distillation of entanglement, as we can get
a quantum advantage from states that cannot be distilled.
Furthermore, we know that bound entangled states usually do
not display nonlocality (although there are exceptions [23,24],
they are quite hard to find). This poses a question of whether
nonlocality is necessary for metrology and suggests that the
two operational tasks, metrology and nonlocality, may be
independent of each other. We show that some of our states
do not violate Bell inequalities for all multisetting correlation
Bell inequalities, which strongly suggests that metrology is not
fundamentally related to another central operational feature
of entanglement, which is nonlocality. Last but not least, we
did the above nonlocality check by showing that some of our
states are not detected by a strong nonlinear entanglement
witness [35], which illustrates the power of QFI as a tool
for entanglement detection: the sub-shot noise can report
entanglement even when the other well-known tool does not.

One may ask how our states, although highly noisy, can
surpass the no-go result [17] according to which quantum
scaling cannot be obtained in the presence of generic local
noise. The reason is the different structure of the noise in our
case. In particular, our states do not have full rank, unlike in
the case of generic local noise.

II. QUANTUM FISHER INFORMATION FOR
GHZ-DIAGONAL STATES

We consider a class of n-qubit states that are diagonal in
the generalized GHZ basis:

ρ =
2n−1−1∑

i=0

(λ+
i |φ+

i 〉〈φ+
i | + λ−

i |φ−
i 〉〈φ−

i |), (1)
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where for simplicity we assume that λ+
i � λ−

i . States ρ

constitute a superset of states studied in [36–38] in the context
of separability and distillability conditions. By generalized
GHZ basis we mean

|φ±
i 〉 = 1√

2
(|i〉 ± |ī〉), (2)

where for an n-qubit system i ∈ {0,1, . . . ,2n−1 − 1}. Here we
put an n-digit binary representation of i in |i〉 and its negation
in |ī〉. Note that in the range of indices (i.e., {0,1, . . . ,2n−1 −
1}) the n-digit binary representation of i always starts with
zero. For example, for a four-qubit system we have |φ±

2 〉 =
1√
2
(|0010〉 ± |1101〉).
We study the usefulness of states ρ for quantum metrology

in terms of Fisher information (FI). FI quantifies the amount of
information on an unknown parameter θ that may be extracted
by measurements. For a probe state ρ(θ ) which depends on
the parameter θ and the positive operator-valued measurement
(POVM) with elements {Eμ} and values μ, FI reads

F =
∑

μ

1

P (μ|θ )
[∂θP (μ|θ )]2, (3)

where P (μ|θ ) = Tr[ρ(θ )Eμ] are conditional probabilities and
POVM values μ estimate the parameter θ . FI gives a lower
bound, referred to as the Cramér-Rao bound, for a standard
deviation of the estimator for a fixed value of the parameter θ

[39,40]:

�θest =
√

〈(μ − θ )2〉 � 1√
F

. (4)

The maximum value of FI which may be achieved by
measurement optimization [10–13] is given by the quantity
called quantum Fisher information. It depends only on the
initial state of the probe system and a form of evolution which
links the estimated parameter θ and the final state of the probe
system θ �→ ρ(θ ). In the case of multipartite separable states,
the maximal value of QFI scales linearly with the system
size (SNL). This is reflected by the separability condition for
quantum Fisher information FQ (see [34]); that is, for any
separable state ρsep, the following holds:

FQ(ρsep) � n. (5)

On the contrary, the highest scaling, i.e., the quadratic one
(HL), FQ(ρ) ≈ n2 may be achieved only by entangled states
ρ. For more information, see [9].

In this paper we discuss a setup where a phase shift around
the z axis is estimated. Probe state ρ undergoes evolution
according to Uθ = exp [−iθZ], where Z is a Hermitian
generator of the form Z = (σ (1)

Z + · · · + σ
(n)
Z )/2. The index

(i) denotes a qubit on which σZ acts. In such a case, QFI for
the probe state ω = ∑

i λi |φi〉〈φi | is given by [12]

FQ = 2
∑
i,j

(λi − λj )2

λi + λj

|〈φi |Z|φj 〉|2. (6)

For states of the form (1), this formula simplifies to

FQ =
∑

i

w2
i

(λ+
i − λ−

i )2

λ+
i + λ−

i

, (7)

where wi = [#0(i) − #1(i)] is the difference between number
of zeros and ones in a binary representation of i (e.g., in a
four-qubit system w0 = 4, w1 = 2, w2 = 2, etc.). This is easy
to check when we observe that operator Z is diagonal in the
standard basis with zi,i = wi,z2n−1−i,2n−1−i = −wi and that
the only nonzero terms are those with 〈φ+

i |Z|φ−
i 〉 = wi/2.

III. BOUND ENTANGLED GHZ-DIAGONAL STATES

Since here we are interested in bound entangled states, we
derive the criterion for a state to be BE.

Proposition 1. A GHZ-diagonal state is nonunlockable
bound entangled for every 1 : (n − 1) cut if its eigenvalues
λ±

i (we assumed that λ+
j � λ−

j ) satisfy

min
i∈
j

(λ+
i + λ−

i ) � λ+
j − λ−

j (8)

for every j ∈ 0,1, . . . ,2n−1 − 1, where


j = {NOT2,3,...,n(j )} ∪ {NOTk(j )|k ∈ {1,2, . . . ,n}}. (9)

NOTk(j ) is a negation on the kth bit of the binary representa-
tion of j .

For the proof see the Appendix.

IV. THE FAMILLY OF ρn,k STATES

Let us now introduce a subset of GHZ-diagonal states. It
contains states ρn,k that are BE and, as we show next, are
useful for quantum metrology. The considered states ρn,k are
parameterized by two numbers: n, which is the number of
qubits in the system, and k, which characterizes the structure
of the states as follows:

ρn,k = λP +
n,k + λ

2
(Q+

n,k + Q−
n,k), (10)

where the projector P +
n,k = ∑

i: #1(i)<k or #1(i)>n−k |φ+
i 〉〈φ+

i |
and Q±

n,k = ∑
i: #1(i)=k or #1(i)=n−k |φ±

i 〉〈φ±
i |, with the linear

factor λ = 1/
∑k

i=0(n
i
) following directly from the normaliza-

tion condition Tr(ρn,k) = 1. Here the notation #1(i) means the
number of ones in the binary representation of the number
i. For instance, #1(i = 7) = 3 since the binary representation
“1101” of the number 7 contains three ones. The exemplary
state ρn,k with n = 4,k = 2 is

ρ4,2 = 1

11

∑
i∈I1

|φ+
i 〉〈φ+

i | + 1

22

∑
i∈I2

|φ+
i 〉〈φ+

i | + |φ−
i 〉〈φ−

i |,

(11)

where I1 = {0,1,2,7} and I2 = {3,4,5,6}.
Proposition 2. For any n,k the state ρn,k passes the positive

partial transpose test (PPT) with respect to local transposition
on any single-qubit system, and as such, it is bound entangled.

For the proof see the Appendix. States ρn,k are, however,
non positive partial trace (NPPT) in the m : (n − m) cuts for
m � 2.

In the case of the states under consideration, with the
assumption k < 
 n

2 �, the equation for quantum Fisher infor-
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FIG. 1. (Color online) Precisely calculated QFI and the limit it
achieves at infinity for two different values of k. Blue and purple
lines show how F

n,k
Q change for k = 3 and k = 2, respectively, and

dashed lines are limits that these functions achieve at infinity. The
gray region denotes better than classical metrology.

mation (7) takes the form

F
n,k
Q = λ

k−1∑
j=0

(n − 2j )2

(
n

j

)
. (12)

It simply comes from counting the number of states with given
w. In Fig. 1 we show how QFI approaches the limit of nk for
k = 2 and k = 3. We see that if k does not grow with n,
the usual shot-noise classical limit is kept. However, things
dramatically change when we put the dependence of k on n.
In what follows, we shall utilize this fact, proving the central
result of the paper.

Proposition 3. Quantum Fisher information F
n,k
Q given by

Eq. (12) satisfies

F
n,k
Q � (n − 2k)2 k

n + 1
(13)

for any n and k < n
2 . In particular, putting k(n) = an (a < 1

2 )
we obtain following asymptotic behavior

lim
n→∞

F
n,k(n)
Q

a(1 − 2a)2n2
� 1. (14)

For the proof see the Appendix.

FIG. 2. (Color online) Asymptotic behavior of the quantum
Fisher information for ρn,k states for the case when k = an. The
dependence on n is calculated for three different values of a: 1/8
(blue dots), 1/4 (green dots), and 3/8 (red dots). The gray region
denotes better than classical metrology.

Optimizing the denominator in formula (14) gives a = 1
4 .

Hence, the Fisher information scales in this case not worse
than ∼ n2

16 . In the end, this results in an upper bound for the

scaling of the measurement precision (4) by 2
√

2
n

as opposed to

its shot-noise lower bound 1√
n

. Asymptotic behavior of F
n,k(n)
Q

is illustrated in Fig. 2 for three different values of a.

V. CORRESPONDENCE WITH BELL INEQUALITIES

One of the fundamental features of quantum states caused
by quantum entanglement is the lack of local realism. It is
known that some entangled states satisfy all Bell inequalities
since the explicit hidden-variable model can be constructed
for them (see [41] for some states with A nonpositive
partial transpose and [42] for PPT states). It, however, does
not follow automatically that the states are fully locally
realistic. As was shown recently [43], there exist entangled
states whose nonlocality can be revealed only by using a
sequence of measurements (i.e., when each party performs
sequentially more than one measurement on the system; for
formal definitions see [44,45]; it was formerly discussed in
Refs. [46,47]). One of the fundamental open questions of
quantum physics is whether all entangled quantum states are
nonlocal at least in the latter weaker sense.

Here we find that the Fisher information treated as a
separability test may outperform the efficiency of some strong
Bell inequality tests (see [48,49]). Even more, we prove it
by showing that it outperforms a much stronger nonlinear
entanglement witness based on the correlation tensor of the
state [35]. This entanglement witness has the form of the
following inequality:

‖T ‖2
HS =

3∑
k1,...,kn=1

T 2
k1···kn

� 1, (15)

satisfied by any separable state where T is a correlation
tensor of the state (see the Appendix). Now we want to
compare this test with our present separability test which
is shot-noise-limit bound for Fisher information. We have
calculated the factor (15) for some states from the class
ρn,k or some states from the class ρn,k . We obtained that
for k = 2 and k = 3 and n respectively from the sets {7,8}
and {8,9,10}, the Fisher information criterion outperforms
separability condition (15); that is, it detects entanglement
while the latter does not (implying also fulfilment of the
specific Bell inequalities), which can be seen in Fig. 3.

This is surprising since quantum metrology involves only
two settings of binary Pauli observables per site. We believe
that the possible power of QFI lies in its differential character.
Indeed, the above observation suggests the need for deep study
of nonlocality in the context of metrology, which has, to our
knowledge, not been pursued so far. In particular, one of the
questions that may be raised is the possible role of metrology
as a necessary condition for standard or even weaker, i.e.,
sequential, nonlocality. In fact, it may be that some of the
presented states even allow for the general (not only a finite
number of settings, like here, but with continuum settings)
single-measurement hidden-variable model, even though they
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FIG. 3. (Color online) Comparison of the Fisher information
criterion and correlation condition in the power of entanglement
detection. Here we plot FQ/FCl and C(n) for states in the form
ρn,2. Tests detect entanglement when their values exceed 1. The
most interesting region is where the Fisher information criterion
detects entanglement for states which do not violate any correlation
Bell inequality with dichotomic observables and 2n−1 × 2n−1 ×
2n−2 × · · · × 2 settings [48,49] (i.e., FQ/FCl > 1 and C(n) < 1). For
comparison we also plot value of the Klyachko-Mermin (KM)
inequality. For the analyzed states it performs much worse than C(n).

exhibit sequential nonlocality. Metrology may be just a first
signature of that.

VI. DISCUSSION AND CONCLUSIONS

We have shown by explicit construction that there exist
bound entangled states that can be useful for quantum metrol-
ogy and can reach the accuracy scaling exactly according to
the Heisenberg limit. The result has been shown for a very
noisy entanglement which is not only unlockable but even
essentially weaker since, as long as some qubit is kept as an
elementary subsystem, no collection of the remaining qubits
into groups can result in free entanglement.

The most natural question here is about the maximal value
of the linear factor in the sub-shot-noise limit for bound
entanglement cn2. We have found here that c is not less than
1
8 . The question is whether it can reach the optimal pure
GHZ-state value and only the speed of the convergence is
an issue or if there is a threshold imposed on c from the
bound-entanglement property.

The character of the results opens new directions of
possible research. The fact that Fisher information outperforms
strong Bell inequalities as a multiparty entanglement witness
naturally suggests the need for further analysis of the interplay
of the role of nonlocality in the sub-shot-noise limit. The
natural question (especially in the context of recent results
on nonlocality [43]) to answer would be, Is there any family
of quantum states that allows for a general Local Hidden
Variables (LHV) model but can be used to obtain sub-shot-
noise (i.e., better than classical) quantum metrology? This
question is related to another question (especially in the context
of both general requirements in quantum metrology [26] and
recent results on nonlocality [43]) regarding whether there is
any chance for sub-shot-noise metrology for states obeying the
PPT condition with respect to any cut. While the present result
may be generalized to get the sub-shot-noise metrology with
bound entanglement with the PPT property under an arbitrary
sublinear fraction of qubits, further improvement to PPT under

any cut does not seem to be possible for GHZ-diagonal states.
We believe, however, that our result can be generalized to
Dicke-type states, where a possible chance for a positive
answer to the above question may be more likely.

The next important question that naturally arises, especially
because of the unlockability property, is, What is the general
role of error correction in the case of metrology? In fact, the
noise can never be filtered out from bound entanglement, and
this is the reason why the corresponding binding entanglement
channels are resistant to any error correction and have a
quantum capacity of zero [50,51]. This is what makes the
present results quite nonintuitive.

As a by-product, it seems that the phenomenon presented
here may reopen the fundamental question of quantum compu-
tational tasks at a high noise rate even on the level of quantum
correlations beyond entanglement [52]. Indeed, as opposed
to the quantum games theory based on “kinematical” aspects
of quantum physics, quantum metrology exploits dynamics
explicitly and, as such, may be closer to the perspective of
quantum algorithmic tasks.
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APPENDIX

1. Bound entanglement

We start this short introduction to bound entanglement
with a description of the local operation and classical com-
munication (LOCC) paradigm. In this paradigm we consider
several separated laboratories which share an entangled state.
Any local quantum operation may be performed in the
laboratory. Moreover classical bits may be exchanged between
laboratories; however, any transfer of the quantum system is
prohibited. For example, laboratories may perform a sequence
of measurements on their local parts of the shared state, where
the choice of measurement depends on the classical message
obtained from other laboratories. Restriction to classical com-
munication is interesting for two reasons: from a practical point
of view, classical communication is much easier than quantum
communication, but more important, classical communication
cannot convey any quantum information. Therefore, in the
LOCC paradigm no “new” entanglement can be established
between laboratories.

Many results of quantum information theory (e.g., state
teleportation, the advantage in distributed computation, etc.)
are based on the assumption that separated laboratories share
pure maximally entangled states. Since it is hard to meet this
condition because of imperfection during state transmission,
it is important to know how to obtain pure entanglement from
a noisy state. Entanglement distillation protocols [53] address
this problem, providing a way to obtain pure entanglement
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FIG. 4. The pictorial structure of an exemplary (four-qubit) GHZ
diagonal state written in the standard basis (the numeration of the
basis is explicitly provided). Only the elements depicted by an X
are nonzero. Partial transposition with respect to a given qubit is
represented by the group of elementary transpositions represented
by arrows of the same length starting from the longest arrow that
corresponds to the transposition with the first qubit. Note that partial
transpositions with respect to different qubits commute. Hence, a
transposition with respect to a given subset of qubits corresponds
just to a composition of several operations, each consisting of all
arrows of one kind. For example, the state transposed partially with
respect to the first and the last qubits results from the application
of the operation corresponding to the longest arrow followed by the
operations corresponding to all the smallest arrows.

from a much large amount of noisy entanglement. Formally,
state ρ is distillable if there exist an n such that ρ⊗n

may be transformed by the use of LOCC to pure bipartite
entanglement.

However, not every entangled state is a resource in
entanglement distillation. This leads to the notion of bound
entanglement: algebraic entanglement which is not distillable.
Bound entangled states may be thought of as quantum
information black holes. They require entanglement for their
preparation, but no pure entanglement can be extracted from
them. It was shown that nonpositive partial transposition is a
necessary condition for distillability [27]. The first examples
of entangled PPT states were provided in [54].

The phenomenon of bound entanglement shows that not
all entangled states are equivalent according to the LOCC
paradigm. Bound entanglement cannot be a resource in many
information theoretical tasks. The area of its application
is still not fully recognized. One of the important long-
standing questions was if bound entanglement may exhibit
nonlocality [25], and it was recently answered in [24].

2. Proof of proposition 1

First, let us recall that the GHZ-diagonal family has a
diagonal-antidiagonal form, and the partial transpose with
respect to each qubit looks eminently simple here (see Fig. 4
for illustration). To prove the statement of proposition 1,

first, we show that the state is PPT for every 1 : (n − 1)
cut. A GHZ-diagonal state written in the standard basis
contains nonzero elements only on the diagonal and antidiago-

nal: ρi,i = ρ2n−1−i,2n−1−i = λ+
i +λ−

i

2 and ρi,2n−1−i = ρ2n−1−i,i =
λ+

i −λ−
i

2 . Partial transposition with respect to the kth-qubit
influences only antidiagonal elements (in the standard basis)
of the density matrix such that

λ+
i − λ−

i → λ+
j − λ−

j , (A1)

where

i =
{

NOT2,3,...,n(j ) if k = 1,

NOTk(j ) elsewhere.
(A2)

The state after the transposition remains diagonal-
antidiagonal, and its eigenvalues are

�k±
i = 1

2 [(λ+
i + λ−

i ) ± (λ+
j − λ−

j )]. (A3)

They are positive when

λ+
i + λ−

i � |λ+
j − λ−

j |. (A4)

Finally, the state is PPT with respect to every one-qubit partial
transpositions when

min
i∈
j

(λ+
i + λ−

i ) � |λ+
j − λ−

j | (A5)

for 
j = {NOT2,3,...,n(j )} ∪ {NOTk(j )|k ∈ {1,2, . . . ,n}},
which comes from condition (A2). If the state is PPT for
a given 1 : (n − 1) cut, no entanglement can be distilled
between these two parties. Since we put n − 1 parties together
in this cut, every collective quantum operation is allowed for
this group. It is easy to see that this setup is less restrictive
than the unlocking protocol. That means that two-particle
entanglement cannot be unlocked for any two particles of the
discussed states.

3. Proof of proposition 2

To prove that ρn,k is BE we have to show that it satisfies (8)
for every n (number of qubits) and k (maximal number
of ones in a binary representation of indices i associated
with nonzero eigenvalues). From condition (A2) we can see
that, for a given i, 
j contains numbers for which a binary
representation has only three possible numbers of ones: j + 1,
j − 1, n − j − 1. Let us discuss separately three different
possibilities: (a) For #1(j ) < k or #1(j ) > n − k, in 
j we can
have only those i with #1(i) � k or #1(i) � n − k. Therefore,
mini∈
j

(λ+
i + λ−

i ) = λ and |λ+
j − λ−

j | = λ and (8) is satisfied.
(b) If #1(j ) = k or #1(j ) = n − k, then in 
k we have i

with #1(i) ∈ {k − 1,k + 1,n − k − 1}. In 
n−k there are i

satisfying #1(i) ∈ {k − 1,n − k − 1,n − k + 1}. In both cases
mini∈
j

(λ+
i + λ−

i ) = λ and |λ+
j − λ−

j | = 0 and (8) is satisfied.
(c) If #1(j ) > k or #1(j ) < n − k, in 
j we can have only
those i with #1(i) � k or #1(i) � n − k, with at least one i for
which these inequalities are sharp. So mini∈
j

(λ+
i + λ−

i ) = 0
and |λ+

j − λ−
j | = 0, which also satisfy (8). With the above we

have checked all the transpositions for any given n,k and have
seen that, indeed, (8) is always satisfied, which proves that ρn,k

states are nonunlockable BE.
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4. Proof of proposition 3

Here we derive (13) for the quantum Fisher information in
the form (12): First, we bound the QFI from below:

F
n,k
Q =

∑k−1
j=0(n − 2j )2

(
n

j

)
∑k

j=0

(
n

j

)

� (n − 2k)2

∑k−1
j=0

(
n

j

)
∑k

j=0

(
n

j

) . (A6)

Consider the last factor Sn,k :=
∑k−1

j=0 (n

j)∑k
j=0 (n

j)
. One can estimate its

inverse S−1
n,k as follows:

S−1
n,k =

∑k
j=0

(
n

j

)
∑k−1

j=0

(
n

j

) =
∑k−1

j=0

(
n

j

) + (
n

k

)
∑k−1

j=0

(
n

j

)

= 1 +
(
n

k

)
∑k−1

j=0

(
n

j

) � 1 +
(
n

k

)
(

n

k−1

) = n + 1

k
, (A7)

and hence, the original factor satisfies Sn,k � k
n+1 , from which

the lower bound (13) immediately follows. The limit (14)
immediately results from (13).

5. Nonlinear correlation entanglement witness
and Bell inequalities

It has been shown [35] that given any n-qubit state, one
can use its correlation tensor Tk1···kn

= Tr[(σk1 ⊗ · · · ⊗ σkn
)ρ],

where σ0 = I and indices 1,2,3 refer to Pauli operators
{σX,σY ,σZ}, to build a nonlinear entanglement test of the form

‖T ‖2
HS =

3∑
k1,...,kn=1

T 2
k1,...,kn

� 1. (A8)

Remarkably, the above can be used as a sufficient condition
for checking a wide class of Bell inequalities. Indeed, the
necessary and sufficient condition for the 2n−1 × 2n−1 ×

2n−2 × 2n−3 × · · · × 2 setting correlation Bell inequali-
ties [48,49] (which are a generalization of the class [55–57]
including the Mermin-Klyshko inequality [58,59]) can be
written as

C(n)(ρ) = max
2∑

k1,...,kn=1

T 2
k1,...,kn

� 1, (A9)

where the maximum is taken over all possible sequences of
pairs of orthogonal vectors {êki

,ki = 1,2}ni=1. Formula (A9)
guarantees that there is no Bell inequality with dichotomic
measurements and 2n−1 × 2n−1 × 2n−2 × 2n−3 × · · · × 2 set-
tings which is violated by the state. Clearly, one has C(n)(ρ) �
||T ||2HS , which reflects the dependence mentioned above. We
have found the analytical formulas for the correlation tensor
elements {Tk1...kn

} (they are complicated and will be analyzed
elsewhere) and calculated the upper bound ||T ||2HS from (A8).
It happens that for some specific states ρn,k it is smaller
than 1, although quantum Fisher information still detects
entanglement (see the main text).

6. Sub-shot-noise limit with much weaker bound entanglement

The states

ρn,k,m = λ′P +
n,k + λ′

2

m∑
j=k

(Q+
n,j + Q−

n,j ), (A10)

where λ′ = [
∑k+m

j=0 (n
j
)]−1, satisfy the PPT test for any cut j :

n − j with j � m + 1. The corresponding Fisher information
is bounded by

F
n,k,m
Q � (n − 2k)2 k(k + 1) · · · (k + m)

m(n − k)(n − k − 1) · · · [n − (k + m)]
.

(A11)

Putting linear scaling of k(n) = cn and sublinear scaling of
m(n) = n1−ε (which makes the corresponding entanglement
much weaker than that of previous states where only one-qubit
cuts obey the PPT test) in the above leads to the sub-shot-noise
behavior of the Fisher information F

n,k(n),m(n)
Q ∼ n1+ε.
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