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We address the issue of reducing the resource required to compute information-theoretic quantum correlation
measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems.
We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of
local measurements. We find that the determination allows us to obtain a closed form of quantum discord and
quantum work deficit for several classes of states, with a low error. We show that the computational error caused
by the constraint over the complete set of local measurements reduces fast with an increase in the size of the
restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We
perform quantitative analysis to investigate how the error scales with the system size, taking into account a set
of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource
required to optimize quantum work deficit is usually higher than that required for quantum discord. We also
demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit
mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having
nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained
optimization can be used with advantage in analyzing such systems in quantum information-theoretic language.
For bound entangled states, we show that the error is significantly low when the measurements correspond to the
spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord
and quantum work deficit for these bound entangled states.
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I. INTRODUCTION

Entanglement [1] as a measure of quantum correlations
existing between subsystems of a composite quantum system
has been shown to be indispensable in performing several
quantum information tasks [2,3]. To deal with challenges
such as decoherence due to system-environment interaction,
entanglement distillation protocols [4] to purify highly en-
tangled states from a collection of states with relatively low
entanglement have also been invented. In parallel, various
counterintuitive findings such as substantial nonclassical ef-
ficiency of quantum states with vanishingly small entangle-
ment and locally indistinguishable orthogonal product states
[5–8] have motivated the search for quantum correlations not
belonging to the entanglement-separability paradigm. This
has led to the possibility of introducing more fine-grained
quantum correlation measures than entanglement, such as
quantum discord (QD) [9], quantum work deficit (QWD) [10],
and various “discordlike” measures [11,12], opening up a
new direction of research in quantum information theory.
Although establishing a link between the measures of quantum
correlations belonging to the two different genres has also
been tried [13], a decisive result is yet to be found in the
case of mixed bipartite quantum states. Note, however, that
all these measures reduce to von Neumann entropy of local
density matrix for pure states. In recent years, the interplay
between entanglement distillation and quantum correlations
such as QD and QWD has been under focus [14]. However,
proper understanding of the relation between such measures
and distillable as well as bound entanglement [15–21] is yet
to be achieved.

There has been a substantial amount of work in determining
QD for various classes of bipartite as well as multipartite
mixed quantum states [22–24]. A common observation that

stands out from these works is the computational complexity
of the task, due to the optimization over a complete set of
local measurements involved in its definition [9]. For general
quantum states, the optimization is often achieved via numeri-
cal techniques. It has recently been shown that the problem of
computing quantum discord is NP complete, thereby making
the quantity computationally intractable [25]. The lack of a
well-established analytic treatment to determine QD has also
restricted the number of experiments in this topic [26]. Despite
considerable efforts to analytically determine QD for general
two-qubit states [22,23], a closed-form expression exists only
for the Bell diagonal (BD) states [22].

A number of recent numerical studies have shown that for
a large fraction of a very special class of two-qubit states, QD
can always be calculated by performing the optimization over
only a small subset of the complete set of local projection
measurements [27,29], thereby reducing the computational
difficulty to a great extent. These states are constructed of
the three diagonal correlators of the correlation matrix, and
any one of the three magnetizations, which is similar for
both the qubits. The subset, in the present case, consists of
the projection measurements corresponding to the three Pauli
matrices σx, σ y , and σ z. Curiously, the assumption that QD
can be optimized over this subset for the entire class of such
states results only in a small absolute error in the case of
those states where the assumption is not valid [27,29]. This
property also allows one to determine closed form for QD for
the entire class of such two-qubit states within the margin of
small absolute error in calculation [27–29].

Optimization over such a small subset of the complete set
of local projection measurements is logical in the situations
where a constraint over the allowed local measurements is
at work. The knowledge of such a subset may be important
in quantum estimation theory [30], in relation to quantities
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that are nonlinear functions of the quantum states, such as the
QD, where estimation of the parameter values to determine the
optimal projection measurement depends on the the number of
measurements required to obtain the desired quantity within a
manageable range of error. Also, the existence of such subsets
has the potential to be operationally as well as energetically
advantageous in experimental determination of the QD and
similar measures for a given quantum state. However, the
investigation of the existence of such special subsets of allowed
local projectors in the computation of quantum correlations
such as QD and QWD, as of now, are confined only to
special classes of quantum states in C2 ⊗ C2 systems [27–29].
A natural question that arises is whether such subsets of
local projectors can exist for general bipartite quantum states.
The possible scaling of the absolute error resulting from the
limitation on the number of allowed local projectors in the
subset is also an interesting issue.

In this paper, we investigate the issue of simplifying the
optimization of quantum correlation measures such as QD and
QWD in the case of general two-qubit mixed states of different
ranks with positive as well as nonpositive partial transpose
(NPPT) [31] by using a restricted set of local projection
measurements. We provide a mathematical description of the
optimization of quantum correlation measures over a restricted
set of allowed local projection measurements, and discuss the
related statistics of computational error. Using a set of plausible
definitions of the restricted set, we show that the absolute error,
resulting due to the constraint over the set of projectors, dies
out considerably fast. Using the scaling of the error with the
size of the restricted subset, we demonstrate that even a small
number of properly chosen projectors can form a restricted
set leading to a very small absolute error, thereby making the
computation of quantum correlation measures considerably
easier.

Our method also helps us to find expressions with negligible
error for QD and QWD of several important classes of quantum
states. We demonstrate this in the case of two-qubit “X”
states [32], which occur, in general, in ground or thermal
states of several quantum spin models. Hence, our approach
provides a way to study cooperative phenomena present in
such systems with less numerical difficulty, as demonstrated
here for anisotropic XY model in the presence of external
transverse field [33]. We extend the study to the paradigmatic
classes of bound entangled (BE) states, where the computation
of QD and QWD using a special restricted subset is discussed,
and their analytic forms with small error are determined. The
results indicate that the error resulting from the restricted
measurement in the case of states with positive partial
transpose (PPT) is less compared to the states with nonpositive
partial transpose (NPPT). Such constrained optimizations can
be a powerful tool to study physical quantities in higher
dimensions, and to obtain closed forms of QD and QWD.

The paper is organized as follows. In Sec. II, we provide
a mathematical description of the computation of quantum
correlation measures by performing the optimization over a
constrained set of local projection measurements, defining the
corresponding absolute error in calculation. In Sec. III, we
discuss a set of constructions of the subset in relation to the
statistics of the error for general two-qubit mixed states in
the state space. We also consider a general two-qubit state in

the parameter space, and show how symmetry of the state
helps in defining the restricted subset. We demonstrate how
our method can be used to determine closed-form expressions
of quantum correlation measures, and comment on the applica-
bility of the method in real physical systems such as quantum
spin models. In particular, we show that the constrained
optimization technique performs quite well in analyzing the
anisotropic XY model in transverse field in terms of quantum
correlation measures. In Sec. IV, the results on the quantum
correlations in BE states are presented. Section V contains the
concluding remarks.

II. DEFINITIONS AND METHODOLOGY

In this section, after presenting an overview of the quantum
correlation measures used in this paper, namely, QD and QWD,
we introduce the main concepts of the paper, i.e., constrained
QD as well as QWD by restricting the optimization over a small
subset of the complete set of allowed local measurements.
We also discuss the corresponding error generated due to the
limitation in measurements.

A. Quantum discord

For a bipartite quantum state ρAB , the QD is defined as
the minimum difference between two inequivalent definitions
of the quantum mutual information. While one of them,
given by I (ρAB ) = S(ρA) + S(ρB) − S(ρAB), can be identified
as the “total correlation” of the bipartite quantum system
ρAB [34], the other definition takes the form J→(ρAB) =
S(ρB ) − S(ρB |ρA), which can be argued as a measure of clas-
sical correlation [9]. Here, ρA and ρB are local density matrices
of the subsystems A and B, respectively, S(ρ) = −Tr[ρ log2 ρ]
is the von Neumann entropy of the quantum state ρ, and
S(ρB |ρA) = ∑

k pkS(ρk
AB) is the quantum conditional entropy

with

ρk
AB = (

�A
k ⊗ IB

)
ρAB

(
�A

k ⊗ IB

)
/pk (1)

and

pk = Tr
[(

�A
k ⊗ IB

)
ρAB

]
. (2)

The subscript “→” implies that the measurement, represented
by a complete set of rank-1 projective operators {�A

k }, is
performed locally on the subsystem A, and IB is the identity
operator defined over the Hilbert space of the subsystem B.
The QD is thus quantified as D = min{I (ρAB) − J→(ρAB)},
where the minimization is performed over the set SC , the class
of all complete sets of rank-1 projective operators. One must
note here the asymmetry embedded in the definition of the
QD over the interchange of the two subsystems A and B.
Throughout this paper, we calculate QD by performing local
measurement on the subsystem A.

B. Quantum work deficit

Along with the QD, we also consider the QWD [10] of a
quantum state, defined as the difference between the amount
of extractable pure states under suitably restricted global and
local operations. In the case of a bipartite state ρAB , the class of
global operations, consisting of (i) unitary operations and (ii)
dephasing the bipartite state by a set of projectors {�k} defined
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on the Hilbert space H of ρAB , is called “closed operations”
(CO) under which the amount of extractable pure states from
ρAB is given by ICO = log2 dim(H) − S(ρAB). And, the class
of operations consisting of (i) local unitary operations, (ii)
dephasing by local measurement on the subsystem A, and (iii)
communicating the dephased subsystem to the other party B

over a noiseless quantum channel is the class of “closed local
operations and classical communication” (CLOCC), under
which the extractable amount of pure states is ICLOCC =
log2 dim(H) − min S(ρ ′

AB). Here, ρ ′
AB = ∑

k pkρ
k
AB is the

average quantum state after the projective measurement {�A
k }

has been performed on A, with ρk
AB and pk given by Eqs. (1)

and (2), respectively. The minimization in ICLOCC is achieved
over SC . The QWD W is given by the difference between the
quantities ICO (ρAB) and ICLOCC (ρAB).

C. Constrained quantum correlations: Error in estimation

We now introduce the physical quantity, which will help us
to reduce the computational complexity involved in evaluation
of QD and QWD. In particular, we consider the bipartite
quantum correlations in the scenario where there are restric-
tions on the complete set of projectors defining the local
measurement on one of the subsystems. Let us assume that
constraints on the local measurement restrict the class of
projection measurements to a subset SE (SE ⊆ SC), where
there are n sets of projection measurements in SE . Performing
the optimization only over the setSE , a “constrained” quantum
correlation (CQC), Qc can be defined. We call the subset
SE as the “earmarked” set. Let the actual value of a given
quantum correlation measure Q for a fixed bipartite state
ρAB be Qa . If the definition of Q involves a minimization
log2 d � Qc � Qa , while a maximization in the definition
leads to log2 d � Qa � Qc, where d is the minimum of the
dimensions among the two parties making up the bipartite state
and where we have assumed that log2 d is the maximum value
of Qa or Qc. For example, one can define the constrained QD
(CQD) as

Dc = min
SD

E

[I (ρAB) − J→(ρAB)], (3)

while the constrained QWD (CQWD) is given by

Wc = min
SW

E

[S(ρ ′
AB) − S(ρAB)]. (4)

Note that, in general, the earmarked sets for QD and QWD,
represented by SD

E and SW
E , respectively, may not be identical.

Evidently, the actual projector for which the quantum
correlation is optimized may not belong to SE . Therefore,
restricting the optimization over the earmarked set gives rise
to error in estimation of the value of Q for a fixed quantum
state ρAB . Let us denote the absolute error occurring due to the
optimization over SE , instead of SC , for an arbitrary bipartite
state ρAB , by ε, where

εn = |Qc − Qa|, (5)

with log2 d � εn � 0. We call this error as the “voluntary”
error (VE). One must note that the VE depends on the size of
the earmarked set n as well as the distribution of the elements
of SE in the space of projection measurements. When n →
∞, we may (but not necessarily) have SE → SC , resulting in

Qc → Qa , wherein VE vanishes. However, for a finite value
of n, we denote the VE by εn. Note that εn also depends on the
actual form of the n projection measurements in SE . If ε = 0
for a quantum state even when the optimization is performed
over the set SE , we call the quantum state an “exceptional”
state.

Apart from the quantum information-theoretic measures
having entropic definitions, such as QD and QWD, there exist
a variety of geometric measures of “discordlike” quantum
correlations. These measures are based on different metrics
quantifying the minimum distance of the quantum state from
the set of all possible classical-quantum states [8,35–40].
Although a collection of distance metrics have been used to
characterize geometric measures of quantum correlations, it
has been shown that out of all the Schatten p-norm distances,
only the one-norm distance has properties that are rather
similar to the QD as well as QWD [38–40]. But, due to the
difficulty in optimizing the measure, analytically closed forms
of one-norm geometric discord have been obtained only for
some special types of states, e.g., Bell diagonal states, and the
X states [40]. Our methodology, along with the traditional QD
and QWD, is applicable also to the geometric measures that
require an optimization. Motivated by the usefulness of QD
and QWD in certain quantum protocols [5–7,41], we choose
these measures for the purpose of demonstration.

III. TWO-QUBIT SYSTEMS

In the case of a C2
A ⊗ C2

B system where each of the
subsystems consists of a single qubit only, the rank-1 pro-
jection measurements are of the form {�A

k = U |k〉〈k|U †,
|k〉 = |0〉,|1〉}, where U , a local unitary operator in SU (2),
can be parametrized using two real parameters θ and φ as

U =
(

cos θ
2 sin θ

2 eiφ

− sin θ
2 e−iφ cos θ

2

)
. (6)

Here, 0 � θ � π , 0 � φ < 2π , and {|0〉,|1〉} denotes the
computational basis in C2. Note that θ and φ can be identified
as the azimuthal and the polar angles, respectively, in the
Bloch sphere representation of a qubit. Let us define a
parameter transformation fθ = cos θ , so that −1 � fθ � 1.
Here and throughout this paper, whenever we need to perform
an optimization over all rank-1 projection measurements
on a qubit to evaluate a given quantum correlation Q, we
choose the parameters fθ and φ uniformly in [−1,1] and
[0,2π ], respectively. An earmarked set, in the present case,
is equivalent to a subset of the complete set of allowed values
of fθ and φ.

A. Mixed states with different ranks

First, we discuss the case of general two-qubit mixed states
of different ranks. As described above, an optimal set of
(fθ ,φ) values define the optimal projection measurement for
the computation of the fixed quantum correlation measure Q.
Let us consider the probability pr that the optimal values of
the real parameters fθ and φ for a fixed measure of quantum
correlation Q of a randomly chosen two-qubit mixed state of
rank r lie in (fθ ,fθ + dfθ ) and (φ,φ + dφ), respectively. The
fact that the real parameters fθ and φ are independent of each
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other suggests that

pr = Pr (fθ ,φ)dfθdφ = P 1
r (fθ )dfθP

2
r (φ)dφ, (7)

which allows one to investigate the two probability density
functions (PDFs) P 1

r (fθ ) and P 2
r (φ) independently. Here,

P 1
r (fθ )dfθ denotes the probability that irrespective of the

optimal value of φ, the optimal value of fθ lies between fθ

and fθ + dfθ for the fixed quantum correlation measure Q

calculated for a two-qubit mixed quantum state of rank r . A
similar definition holds for the probability P 2

r (φ)dφ also.
In the case of two-qubit systems, a uniform distribution

of the projection measurements in the measurement space
corresponds to the uniform distribution of the (fθ ,φ) points
on the surface of the Bloch sphere. It is, therefore, reasonable
to expect that the PDFs P 1

r (fθ )dfθ and P 2
r (φ)dφ correspond

to uniform distributions over the allowed ranges of values of
fθ and φ. To verify this numerically, we consider QD and
QWD as the chosen measures of quantum correlation. The
corresponding P 1

r (fθ ) and P 2
r (φ) in the case of two-qubit

mixed states having NPPT or having PPT for both QD
and QWD are determined by generating 5 × 105 states Haar
uniformly for each value of r = 2, 3, and 4. We find that in
the case of QD as well as QWD, both P 1

r (fθ ) and P 2
r (φ) are

uniform distributions over the entire ranges of corresponding
parameters fθ and φ, irrespective of the rank of the state as
well as whether the state is NPPT or PPT. Note here that for
two-qubit mixed states of rank 2, almost all states are NPPT
while the PPT states form a set of measure zero [42], which
can also be verified numerically. However, in the case of r = 3
and 4, nonzero volumes of PPT states are found. In C2 ⊗ C2

systems, all NPPT states are entangled while PPT states form
the set of separable states [43].

The fact that all the rank-1 projection measurements are
equally probable makes the qualitative features of Qc depend
only on the geometrical structure of the earmarked set SE ,
and not on the actual location of the elements of the set on
the Bloch sphere. In the following, we consider four distinct
choices of the set SE for both QD and QWD in the case of
two-qubit mixed states with ranks r = 2,3,4, and discuss the
corresponding scaling of the average VE.

1. Case 1: SE with ( fθ ,φ) distributed over a circle
on the Bloch sphere

We start by constructing the earmarked set with projection
measurements such that the corresponding (fθ ,φ) lies on the
circle of intersection of a fixed plane with the Bloch sphere.
Let us assume that the corresponding VE resulting from
the restricted optimization of Q, for an arbitrary two-qubit
mixed state of rank r , is given by εr

n, n being the size of
SE , and where the corresponding n points on the circle are
symmetrically placed. Let us also assume that the CQC
calculated by constrained optimization over the set SE with
n → ∞ is given by Q′

c and the corresponding VE, called the
“asymptotic error,” is εr

∞ = |Q′
c − Qa|. To investigate how

fast εr
n reaches εr

∞ on average with increasing n, one must look
into the variation of εr

n − εr
∞ against n for different values of

r . Here, εr
n is the average value of the VE, εr

n, and is given by

εr
n =

∫ 1

0
εr
nP

r
n

(
εr
n

)
dεr

n, (8)

with P r
n (εr

n)dεr
n being the probability that for an arbitrary

two-qubit mixed state with rank r , the VE lies between εr
n and

εr
n + dεr

n when Qc is calculated overSE of size n defined on the
chosen plane. A similar definition holds for the average asymp-
totic VE, εr

∞, and the PDF, P r
∞(εr

∞), in the limit n → ∞, where

εr
∞ =

∫ 1

0
εr
∞P r

∞
(
εr
∞

)
dεr

∞. (9)

We consider two different ways in which the plane is
chosen. (a) We fix a value of fθ = f ′

θ such that the cor-
responding states on the Bloch sphere are given by |ξ 〉 =
cos cos−1 f ′

θ

2 |0〉 + eiφ sin cos−1 f ′
θ

2 |1〉, where φ acts as the spanning
parameter. (b) In the second option, we fix the value of
φ = φ′ while we vary fθ with the corresponding states |ξ 〉.
We consider both the scenarios, and investigate the scaling of
the corresponding average VEs for both QD and QWD for
arbitrary two-qubit mixed states of different ranks.

(a) Fixed value of fθ . Unless otherwise stated, here and
throughout this paper, we shall fix a plane by assigning a value
to fθ . For the purpose of demonstration, we choose fθ = 0,
fixing the (x,y) plane defined by the eigenbasis of the Pauli
matrices σx and σy , where an arbitrary projection basis can
be written as |ξ 〉 = 1√

2
(|0〉 + eiφ|1〉). The earmarked set of

size n on the perimeter of the circle of intersection of the
(x,y) plane and the Bloch sphere can be generated by a set
of n projectors of the form U |k〉〈k|U †, |k〉 = |0〉,|1〉, obtained
by using a fixed fθ = 0 and n equispaced divisions of the
entire range of φ. Here, the form of U is given in Eq. (6). The
situation is depicted in Fig. 1(a). To determine the PDFs P r

n (εr
n)

and P r
∞(εr

∞), we Haar uniformly generate 5 × 105 random
two-qubit mixed states of rank r = 2, 3, and 4 each. The
corresponding average VE, εr

n, and average asymptotic VE,
εr

∞, in the case of both QD and QWD are determined using
Eqs. (8) and (9), respectively. For both the quantum correlation
measures, the quantity εr

n − εr
∞ is found to have a power-law

decay with the size n of the earmarked set, on the log-log
scale for all values of r . One can determine the functional

(a) (b)

FIG. 1. (Color online) (a) Schematic representation of the ear-
marked set confined on the circle defined by the intersection of the
(x,y) plane, fixed by fθ = 0, and the Bloch sphere. The plane is
specified by the eigenbases of σx and σ y . (b) Schematic representation
of the earmarked set confined on a set of circles, defined by the
intersections of a set of planes and the Bloch sphere. The planes are
considered to be symmetrically placed on either side of the (x,y)
plane fixed by fθ = 0.
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FIG. 2. (Color online) Variation of εr=2
n − εr=2

∞ as a function of n

in the case of QD and QWD. (Inset) Linear variation of εr=2
n − εr=2

∞
as a function of n in the log-log graph for QD and QWD, where the
variation is given by Eq. (10). The numerical data are represented
by points while the fitted curve is given by solid lines. The fitting
parameters are estimated as κ = 1.77 × 10−1 ± 1.22 × 10−2 and τ =
−1.92 ± 1.11 × 10−2 with εr=2

∞ = 1.21 × 10−1 in the case of QD,
whereas for QWD, κ = 2.58 × 10−1 ± 1.78 × 10−2, τ = −1.91 ±
1.23 × 10−2, and εr=2

∞ = 1.66 × 10−1. In the main figure, the abscissa
is dimensionless, while the quantities εr=2

n and εr=2
∞ are in bits. In the

inset, the ordinate is in the natural logarithm of εr=2
n − εr=2

∞ , and the
x axis is in the natural logarithm of n.

dependence of εr
n over n as

εr
n = εr

∞ + κn−τ , (10)

where the fitting constant κ and the scaling exponent τ

are estimated from the numerical data. Figure 2 shows the
variations of εr

n − εr
∞ with n for both QD and QWD in the

case of rank-2 two-qubit states. The insets in Fig. 2 show
the corresponding variations of εr

n − εr
∞ with increasing n in

the log-log scale.
The variations of εr

n − εr
∞ with n in the log-log scale using

both QD and QWD with NPPT as well as PPT two-qubit mixed
states of rank r = 3 and 4 are shown separately in Fig. 3. The
corresponding exponents and fitting parameters are quoted in
Table I. Note that although the exponent τ in the case of QD
and QWD has equal values up to the first decimal point for
all the cases (for NPPT and PPT states with different ranks),
the average asymptotic VE, εr

∞, is larger in the case of QWD
in comparison to that for QD. This is reflected in the fact that
the graph for QWD is above the graph for QD, as shown in
Figs. 2 and 3. Note also that εr

n is less in the case of PPT states
than the NPPT states, when two-qubit states of a fixed rank
are considered.

Note that in the above example, we have fixed the plane by
fixing fθ = 0, which corresponds to a great circle on the Bloch
sphere. One can also fix a great circle on the Bloch sphere by
fixing any value of φ in its allowed range of values. Earmarked
sets defined over any such great circle on the Bloch sphere
have similar scaling properties of the average VE as long
as the points corresponding to the projection measurements
belonging to the set SE are distributed uniformly over the

circle. However, for different distribution, one can obtain
different scaling exponents and fitting parameters. We shall
shortly discuss one such example.

For fθ 
= 0, smaller circles over the Bloch spheres are
obtained. One can also investigate the scaling behavior of the
average VE in the case of earmarked sets having elements
corresponding to points distributed over these smaller circles
by using φ as the spanning parameter. However, different
values for the scaling exponents and fitting parameters are
obtained as |fθ | → 1.

(b) Fixed value of φ. Next, we consider the scenario where
the distribution of the (fθ ,φ) points corresponding to the pro-
jection measurements constituting the set SE on the circle of
our choice is different (i.e., nonuniform) than the previous ex-
ample. This may happen due to restrictions imposed by appa-
ratus during experiment, or other relevant physical constraints.
As before, we choose the plane by fixing φ = 0, thereby
confining the earmarked set on the great circle representing
the intersection of the (x,z) plane defined by the eigenbases
of σx and σ z and the Bloch sphere. However, to demonstrate
the effect of such nonuniformity over the scaling parameters,
we consider the (fθ ,φ) points corresponding to the n elements
in SE by n equal divisions of the entire range of fθ . Note that
the current choice of fθ as the spanning parameter leads to a
different (nonuniform) distribution of the points corresponding
to the projection measurements in SE on the chosen circle.

Similar to the previous case of fθ = 0, one can also study
the scaling of average VE by defining εr

n and εr
∞ corresponding

to the present case. The variation of εr
n − εr

∞ with n, as in the
previous case, is given by Eq. (10), only with different values
of fitting constant, scaling exponent, and average asymptotic
error. In the case of two-qubit mixed states of rank 2, the ap-
propriate parameter values for QD are found to be κ = 1.30 ×
10−1 ± 1.08 × 10−3, τ = 1.47 ± 2.7 × 10−3, with εr=2

∞ =
1.21 × 10−1. In the case of states with r = 3 and 4, the values
of κ , τ , and εr

∞ in the case of QD are tabulated in Table II. Note
that the scaling exponents are different from those found in
case of a fixed fθ . However, the fact that the average asymptotic
VE is less in the case of PPT states compared to that of NPPT
states remains unchanged even in the present scenario.

One can carry out similar investigation taking QWD as the
chosen measure of quantum correlation. As in the previous
case where fθ = 0, here also the exponent in the case of QWD
is found to be same with that for QD up to the first decimal
place, although the average asymptotic error is higher.

2. Case 2: SE with ( fθ ,φ) on a collection of circles
on the Bloch sphere

We now consider the situation where the projection mea-
surements in the earmarked set are such that the corresponding
(fθ ,φ) are not confined on the perimeter of a single fixed disk
only, but are lying on the perimeters of a set of fixed disks
[Fig. 1(b)]. As discussed earlier, there are several ways in
which a disk in the state space can be fixed. For the purpose
of demonstration, we achieve this by fixing the value of fθ .
The size n of the set SE depends on two quantities: (i) the
number n1 of divisions of the allowed range of φ on any one
of the disks, and (ii) the number n2 of disks that are considered
for constructing the earmarked set. Evidently, n = n1n2. Note
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FIG. 3. (Color online) Variations of εr
n − εr

∞ as a function of n, in log-log scale, for r = 3 and 4 in the case of NPPT and PPT two-qubit
mixed states using QD and QWD. The numerical data are represented by points while the fitted curve is given by solid lines. The corresponding
values of the fitting constant k, scaling exponent τ , and asymptotic error εr

∞ are tabulated in Table I. The ordinates of all the figures are in
natural logarithm of εr

n − εr
∞, with εr

n and εr
∞ individually being in bits, while the abscissa is in natural logarithm of the cardinality of the

earmarked set.

TABLE I. Values of the fitting constant κ scaling exponent τ and asymptotic error εr
∞ in the case of NPPT as

well as PPT two-qubit mixed states of rank r = 3 and 4. Here, QD and QWD are considered as quantum correlation
measures, and the earmarked set is fixed on the circle defined by the intersection of a plane fixed by fθ = 0 and the
Bloch sphere. The corresponding power-law variations of εr=2

n − εr=2
∞ with n are depicted in Fig. 3.

QD

r NPPT PPT

3
κ = 1.45 × 10−1 ± 9.97 × 10−3

τ = 1.93 ± 1.05 × 10−2

εr=3
∞ = 9.56 × 10−2

κ = 1.04 × 10−1 ± 7.10 × 10−2

τ = 1.94 ± 1.01 × 10−2

εr=3
∞ = 6.98 × 10−2

4
κ = 1.21 × 10−1 ± 8.32 × 10−3

τ = 1.94 ± 1.02 × 10−2

εr=4
∞ = 7.80 × 10−2

κ = 8.67 × 10−2 ± 5.96 × 10−3

τ = 1.94 ± 9.90 × 10−3

εr=4
∞ = 5.78 × 10−2

QWD

r NPPT PPT

3
κ = 1.89 × 10−1 ± 1.30 × 10−2

τ = 1.93 ± 1.13 × 10−2

εr=3
∞ = 1.18 × 10−1

κ = 1.52 × 10−1 ± 1.04 × 10−2

τ = 1.93 ± 1.08 × 10−2

εr=3
∞ = 9.64 × 10−2

4
κ = 1.50 × 10−1 ± 1.03 × 10−2

τ = 1.93 ± 1.07 × 10−2

εr=4
∞ = 9.23 × 10−2

κ = 1.20 × 10−1 ± 8.26 × 10−3

τ = 1.94 ± 1.04 × 10−2

εr=4
∞ = 7.52 × 10−2
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TABLE II. Values of the fitting constant κ scaling exponent τ

and asymptotic error εr
∞ in the case of NPPT as well as PPT two-

qubit mixed states of rank r = 3 and 4. Here, quantum correlation
is quantified by QD, and the earmarked set is fixed on the circle
of intersection of a plane fixed by φ = 0, and the Bloch sphere.
The n points corresponding to the projection measurements in SE

are distributed over the circle by taking into account n equispaced
division of the range [−1,1] of the spanning parameter fθ .

QD

r NPPT PPT

3
κ = 1.04×10−1 ± 5.60×10−4

τ = 1.47 ± 1.70 × 10−3

εr=3
∞ = 9.54 × 10−2

κ = 7.68×10−2 ± 4.3×10−4

τ = 1.48 ± 1.80 × 10−3

εr=3
∞ = 6.95 × 10−2

4
κ = 8.95×10−2 ± 9.6 × 10−4

τ = 1.48 ± 3.4 × 10−3

εr=3
∞ = 7.81 × 10−2

κ = 6.23×10−2 ± 2.8×10−4

τ = 1.48 ± 1.4 × 10−3

εr=4
∞ = 5.79 × 10−2

that the value of n1 is assumed to be constant for every disk,
although one may consider, in principle, a varying number ni

1
such that n = ∑n2

i=1 ni
1.

We demonstrate the situation with an example where an
arbitrary disk is fixed by fθ = f ′

θ , and a collection of additional
disks positioned symmetrically with respect to the fixed disk is
considered. The fact that the number n2 includes the fixed disk
itself implies that n2 is always an odd number. In particular,
the disks defining the set SE can be marked with different
values of fθ , given by f

j

θ = f ′
θ ± jh, where 0 � j � (n2 −

1)/2, and h = 2/(n2 − 1). The set SE , in the present case,
approaches the complete set of rank-1 projectors SC when
both n1 and n2 tend to infinity. Similar to the previous case, one
can study the variation of average VE with the increase in the
size n of the set SE . However, unlike the previous case, in the
situation where n → ∞ is consequent to (fθ ,φ) corresponding
to the earmarked set being distributed over the entire Bloch
sphere, the average asymptotic error εr

∞ = 0 for all quantum
correlation measures since Qc → Qa in such cases.

Fixing n1 to be a number for which the average VE
calculated over an arbitrary disk in the set is considerably
small, variation of the average VE, εr

n, with increasing n2,
where n = n1n2, can be studied for QD and QWD. Here,
the average is computed in a similar fashion as given in
Eq. (8). However, P r

n (εr
n), in the present case, is obtained

by performing optimization of the corresponding quantum
correlation measure using the current definition of SE . We
fix f ′

θ = 0, and observe that in the case of QD, the average VE
decreases linearly with increasing n2 for all values of n1 (see
Fig. 4). This implies that for a fixed n1, the spanning of the
surface of the Bloch sphere by the perimeters of the disks in
the set starting from fθ = 0 occurs linearly with an increase
in the value of n2. Figure 4 depicts the variation of the average
VE, εr

n, as a function of n2 for n1 = 10, where the linear
nature of the variation is clearly shown. Similar results hold in
the case of QWD also.

3. Case 3: SE with ( fθ ,φ) on the surface of Bloch sphere

Let us now consider the situation where the bases in SE

are such that the corresponding (fθ ,φ) are uniformly scattered

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5  10  15  20  25  30

– ε nr

n2

Rank 2
Rank 3, NPPT
Rank 3, PPT
Rank 4, NPPT
Rank 4, PPT

FIG. 4. (Color online) Linear variation of εr
n as a function of

n2 with n1 = 10 (n = n1n2) for QD. The earmarked set, in this
case, is chosen on the perimeters of a set of disks in the Bloch
sphere, starting from the disk fixed by fθ = 0, and placing the
additional disks symmetrically on either side of the fθ = 0 disk. The
numerical data obtained in each case are fitted to a straight line εr

n =
mn2 + c. The fitting parameter values are (i) m = −1.10 × 10−3, c =
0.12 (rank-2 states), (ii) m = −8.59 × 10−4, c = 9.7 × 10−2 (rank-
3 NPPT states), (iii) m = −6.29 × 10−4, c = 7.14 × 10−2 (rank-3
PPT states), (iv) m = −6.99 × 10−4, c = 7.96 × 10−2 (rank-4 NPPT
states), and (v) m = −5.22 × 10−4, c = 5.90 × 10−2 (rank-4 PPT
states). The abscissa is dimensionless, while the quantity εr

n is in bits.

over the entire surface of the Bloch sphere so that only n1 and
n2 equal divisions of the entire range of fθ and φ, respectively,
are allowed, leading to an earmarked set of size n = n1n2.
Similar to the previous case, SE → SC , and εr

∞ → 0 when
both n1 and n2 approach infinity. The average error εr

n in
the present case is determined in a similar way as in Eq. (8)
with the current description of SE . From the variation of εr

n

as a function of n1 and n2 in the case of QD and QWD for
two-qubit mixed NPPT and PPT states of rank r = 2, 3, and
4, we estimate the minimum number of divisions n1 and n2

required in order to converge on a sufficiently low value of εr
n

(∼10−3) in each case. The corresponding values of n1 and n2

are given in Table III. It is observed that with an increase in
the rank of the state, the required size of the earmarked set
n in order to converge on a sufficiently low value of average
VE reduces for both QD and QWD. This feature is clearly

TABLE III. Values of n1 and n2 that are sufficient to obtain a
value of average VE of the order of 10−3 in the case of NPPT and
PPT two-qubit mixed states of different ranks r for QD and QWD.
The values correspond to the case where the earmarked set is confined
on the surface of the Bloch sphere. The corresponding depiction is
available in Fig. 5.

QD QWD

r NPPT PPT r NPPT PPT

2
n1 = 7
n2 = 9

– 2
n1 = 9
n2 = 11

–

3
n1 = 6
n2 = 8

n1 = 5
n2 = 7

3
n1 = 7
n2 = 10

n1 = 6
n2 = 9

4
n1 = 5
n2 = 8

n1 = 5
n2 = 6

4
n1 = 6
n2 = 9

n1 = 5
n2 = 8
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FIG. 5. (Color online) Variation of εr
n as a function of n1 and n2

(n = n1n2) in the case of NPPT and PPT two-qubit mixed states of
rank r = 2 and 4, where QD and QWD are considered as quantum
correlation measures. The ranges of n1 and n2 marked by A are
sufficient to obtain a considerably low value of εr

n (∼10−3). The area
of the region decreases in the case of PPT states compared to NPPT
states in the case of states with a fixed rank r . Also, the region is bigger
in the case of QWD compared to that in QD, implying a requirement
of greater resource in the optimization of QWD. The corresponding
ranges of n1 and n2 are tabulated in Table III. The different shades in
the figure correspond to different values of εr

n. All quantities plotted
are dimensionless, except εr

n, which is in bits.

depicted in Fig. 5 with a reduction in the area of the region
marked as A. Note also that the required size is smaller in the
case of PPT states when compared to the NPPT states of same
rank for a fixed quantum correlation measure.

4. Case 4: Triad

As the fourth scenario, we consider a very special ear-
marked set, called the “triad,” where the set SE consists of
only the projection measurements corresponding to the three
Pauli operators. This is an extremely restricted earmarked set,
and one must expect large average VE if Qc is calculated for
an arbitrary two-qubit state of rank r by performing the opti-
mization over the triad. However, in Sec. III B, we shall show
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FIG. 6. (Color online) Profiles of the probability density function
P r

3 (εr
3) against εr

3 for NPPT and PPT two-qubit mixed states of
different ranks r . The distributions are sharply peaked around low
values of εr

3 in all cases considered. The earmarked set, in this case, is
taken to be the triad. The ordinates in all the figures are dimensionless,
while the quantities εr

3, r = 2, 3, and 4, are in bits.

that there exists a large class of two-qubit “exceptional” states
for which the triad is equivalent to SC , with a vanishing VE.

Before concluding the discussion on general two-qubit
mixed states with different ranks r , we briefly report
the statistics of the VE, εr

n, where the subscript n = 3
in the present case, denoting the size of the triad. We determine
the probability P r

3 (εr
3)dεr

3 that the value of Qc, calculated for a
randomly chosen two-qubit mixed state of rank r , has the VE
between εr

n and εr
3 + dεr

3. To do so, as in the previous cases,
we Haar uniformly generate 5 × 105 NPPT as well as PPT
states for each value of r = 2, 3, and 4. Figure 6 depicts the
variations of normalized P r

3 (εr
3) over the complete range [0,1]

of εr
n for NPPT and PPT states of different ranks in the case of

both QD as well as QWD. It is noteworthy that the distributions
are sharply peaked in the low-error regions, and for a fixed rank
r , the probability of finding a PPT state with a very low value
of εr

3 is always higher than that for an NPPT state.
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B. Two-qubit states in parameter space

A general two-qubit state, up to local unitary transforma-
tions [22], can be written in terms of nine real parameters as

ρAB = 1

4

⎡
⎣IA ⊗ IB +

∑
α=x,y,z

cαασ α
A ⊗ σα

B

+
∑

α=x,y,z

cA
α σα

A ⊗ IB +
∑

β=x,y,z

cB
β IA ⊗ σ

β

B

⎤
⎦. (11)

Here, cαα = 〈σα ⊗ σα〉 are the “classical” correlators given
by the diagonal elements of the correlation matrix (|cαα| � 1),
cA
α = 〈σα

A ⊗ IB〉 and cB
β = 〈IA ⊗ σ

β

B 〉 are the single-site
quantities called magnetizations (|cA

α |,|cB
β | � 1), given by the

elements of the two local Bloch vectors, and IA (IB) is the
identity operator on the Hilbert spaces of A (B).

The maximum rank of the two-qubit state given in Eq. (11)
can be 4. The probability distribution P (fθ ,φ), as defined in
Eq. (7), is obtained by generating 5 × 105 states of the form
ρAB by choosing the diagonal correlators and magnetizations
randomly from their allowed ranges. Here, we drop the
subscript r for sake of simplicity. Figures 7(a) (for QD)

and 7(c) (for QWD) show the profiles of P (fθ ,φ) which
have three distinctly high populations around the set of
values (i) (fθ = 0,φ = 0,π ), (ii) (fθ = 0,φ = π

2 ), and (iii)
(fθ = ±1,0 � φ � π ), which correspond to the eigenbasis of
σx , σy , and σ z, respectively, on the Bloch sphere. Let us now
consider small regions around those three high-density peaks.
They are conveniently marked with numbers 1–5 in Figs. 7(b)
and 7(d), and are defined as

1 : −1 � fθ � −0.9, 0 � φ � π,

2 : 0.9 � fθ � 1, 0 � φ � π,

3 : f 2
θ + φ2 � ω2, 0 � φ � π, (12)

4 : f 2
θ + (φ − π )2 � ω2, 0 � φ � π,

5 : f 2
θ +

(
φ − π

2

)2

� ω2, 0 � φ � π,

with ω = 0.3. In the case of QD, about 56.64% of the total
number of sample states, given in Eq. (11), are optimized
in the region marked in Fig. 7(b), while the percentage is
approximately 42.2% in the case of QWD [Fig. 7(d)]. Note
that these are considerably high fractions, taking into account
the fact that the area of the marked regions combined together
is small compared to the entire area of the parameter space.
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FIG. 7. (Color online) The probability distribution landscape P (fθ ,φ) over the plane of (fθ ,φ) in the case of a two-qubit state ρAB of the
form in Eq. (11) in the case of QD (a) and QWD (c). The regions 1–5 are marked on the maps of the distribution landscape in the case of QD
(b) and QWD (d) so that the corresponding quantum correlation for majority of the states is optimized in the marked regions. The definition of
the marked regions is given in Eq. (12). The different shades in the figure correspond to different values of P (fθ ,φ). All quantities plotted are
dimensionless, except for φ, which is in degrees.
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FIG. 8. (Color online) Variation of εr
n as a function of n1 and n2

(n = n1n2) in the case of two-qubit state, given in Eq. (11), where (a)
QD and (b) QWD are considered as quantum correlation measures.
The ranges of n1 and n2 marked by A are sufficient to obtain a
considerably low value of εr

n (∼10−3). The region is bigger in the
case of QWD compared to that in QD. The different shades in the
figure correspond to different values of εr

n. All quantities plotted are
dimensionless, except εr

n being in bits.

We also consider the optimization of QD and QWD in the
case of the two-qubit state given in Eq. (11) by confining
the earmarked set to a collection of projection measurements
corresponding to a uniformly distributed set of points on the
entire surface of the Bloch sphere. As discussed in Sec. III A,
we divide the ranges of the parameters φ and fθ by n1 and
n2 equispaced intervals, and perform the minimization of QD
and QWD over the set SE of size n = n1n2. We find that
a significantly low value of average VE is achieved in the
case of QD when n1 � 2 and n2 � 4. However, as observed
in all the previous cases, the required size of the earmarked
set SE to obtain an average VE of same order as in QD is
larger (n1 � 4, n2 � 8) when QWD is taken as the measure
of quantum correlation, as clearly visible in Fig. 8.

Special case: Mixed states with fixed magnetizations

We conclude the section by discussing a special case of the
two-qubit state given in Eq. (11), where apart from the diagonal
correlators, any one of the three magnetizations is nonzero
while the other two magnetizations vanish. In particular, we
consider a two-qubit state of the form

ρm = 1

4

(
IA ⊗ IB +

∑
α=x,y,z

cαασ α
A ⊗ σα

B

+m
β

Aσ
β

A ⊗ IB + m
β

BIA ⊗ σ
β

B

)
, (13)

with β = x, y, or z. Here, m
β

i = tr(σβ

i ρi) (β = x,y,z) is the
magnetization with ρi being the local density matrix of the
qubit i (i = A,B). The two-qubit X state [32] of the form

ρX
AB =

⎛
⎜⎝

a1 0 0 b1

0 a2 b2 0
0 b2 a3 0
b1 0 0 a4

⎞
⎟⎠, (14)

written in the computational basis {|00〉,|11〉,|01〉,|10〉} is a
special case of ρm with β = z. The matrix elements {ai ; i =
1, . . . ,4} and {bj ; j = 1,2} are real numbers, and can be

considered as functions of the correlators cαα (α = x,y,z) and
the magnetizations mz

A and mz
B . The importance of two-qubit

states of the form given in Eq. (14) includes the fact that
they are found to occur in the quantum information-theoretic
analyses of several well-known quantum spin systems, such
as the one-dimensional XY model in a transverse field [33]
and the XXZ model [44]. These models possess certain
symmetries that govern the two-qubit reduced density matrices
obtained by tracing out all other spins except two chosen
spins from their ground, thermal, as well as time-evolved
states with specific time dependence, to have the form given
in Eq. (14) [12,45–47]. Since completely analytical forms of
QD and QWD are not yet available [23], numerical techniques
need to be employed, and our methodology shows a path to
handle them analytically. See [28,29] in this respect.

For the purpose of demonstration, let us assume that the
magnetization of ρm is along the x direction. Generating a large
number (5 × 105) of such states by randomly choosing the
correlators and the magnetizations within their allowed ranges
of values, and performing extensive numerical analysis, we
find that for about 99.97% of the states, it is enough to perform
the optimization over the triad (SE consists of the projection
measurements corresponding to the three Pauli spin operators)
to determine the actual value of QD. This is due to the fact that
these 99.97% of states are “exceptional,” i.e., the VE, ε3 = 0
for all these states when the optimization is performed over SE

(as discussed in Sec. II C). Here, ε3 is the VE where we drop
the superscript r for simplicity. In the case of the remaining
0.03% of states, for which the optimal projection measurement
does not belong to SE , the VE, resulting from the optimization
performed over SE , is found to be ε3 � 2.9088 × 10−3.
Similar result has been reported in [27], although our numerical
findings result in a different bound. As an example, we consider
the state ρm defined by cxx = (−1)n × 0.956 861, cyy (or czz)
= (−1)m × 0.267 575, czz (or cyy) = (−1)n+m+1 × 0.275 867,
mx

A = (−1)p × 0.949 76, and mx
B = (−1)p × 0.907 559 with

m, n, and p being integers, even or odd. There exist eight
such states (corresponding to different values of m, n, and p)
for which ε3 = 2.9088 × 10−3. Among the set of exceptional
states, the optimal projector is σx

A for about 27.4% states.
For the rest of the set of exceptional states, QD of the half
of them (i.e., 36.3% states) are optimized for with projection
measurement corresponding to σ

y

A while the rest are optimized
for the projector �A

opt corresponding to σ z
A.

Interestingly, all of the above results except one remain
invariant with a change in the direction of magnetization. For
example, a change in the direction of magnetization from x to
z results in the optimization of 27.4% of the set of exceptional
states for projection measurement corresponding to σ z

A. This
highlights an underlying symmetry of the state suggesting that
the presence of magnetization 〈σα〉 diminishes the probability
of optimization of QD for �A

opt corresponding to σα
A , α =

x,y,z, provided the state ρm belongs to the set of exceptional
states.

Note also that our approach offers a closed-form expression
for CQD in the case of two-qubit states of the form given in
Eq. (14) as

Dc = S(ρA) − S
(
ρX

AB

) + min[S ′,S ′
±], (15)

062301-10



REDUCING COMPUTATIONAL COMPLEXITY OF QUANTUM . . . PHYSICAL REVIEW A 92, 062301 (2015)

where ρA = TrB[ρX
AB]. The quantities S ′ and S ′

± are functions
of the matrix elements {ai ; i = 1, . . . ,4} and {bj ; j = 1,2},
and are given by

S ′ = (a1 + a2) log2(a1 + a2) + (a3 + a4) log2(a3 + a3)

−
4∑

i=1

ai log2 ai, (16)

S ′
± = 1 − 1

2

2∑
i=1

α±
i log2 α±

i , (17)

where

α±
i = 1 + (−1)i

√
(a1 − a2 + a3 − a4)2 + 4(b1 ± b2)2. (18)

The expression of Dc given in Eq. (15) is exact for the
exceptional states, and results in a very small absolute error
in the case of all other two-qubit X states, when measurement
over qubit A is considered.

The numerical results for the state ρm depend strongly on
the choice of quantum correlation measures. To demonstrate
this, we compute QWD instead of QD for ρm. Our numerical
analysis suggests that irrespective of the direction of magne-
tization, for about 95.51% of the two-qubit states of the form
ρm, the QWD is optimized over the triad SE , resulting ε3 = 0.
These states constitute the set of exceptional states in the case
of QWD. For the rest 4.49% of states, the assumption that
�A

opt ∈ SE results in a VE, ε3 = Wc − Wa � 1.0076 × 10−1,
where Wc is the CQWD, and Wa is the actual value of QWD.
Note that the upper bound of the absolute error, in the case of
the QWD, is much higher than that for QD of ρm. In contrast
to the case of the QD, it is observed that for a state ρm with
magnetization along, say, the x direction, within the set of
exceptional states, the QWD for � 53% of states, a larger
percentage, is optimized for �A

opt corresponding to σx
A. The rest

of the exceptional states, with respect to optimization of QWD,
are equally distributed over the cases where �A

opt corresponds
to σ

y

A and σ z
A. Similar to the case of QD [Eq. (15)], one can

obtain a closed-form expression of the CQWD in the case of
two-qubit X states as

Wc = min[S̃,S̃±] − S
(
ρX

AB

)
, (19)

where the quantities S̃ and S̃± are given by S̃ =
−∑4

i=1 ai log2 ai and S̃± = −∑4
i=1(α±

i /4) log2(α±
i /4), re-

spectively, with α±
i given in Eq. (18). For the 95.51% of states

with the form of X states, Wc provides a closed form for QWD,
when measurement is done on qubit A.

C. Application: Quantum spin systems

Now, we discuss how the constrained optimization tech-
nique introduced in the paper, and its potential to provide
closed-form expressions of quantum correlations with small
errors, can help in analyzing physical systems. For the
purpose of demonstration, we choose the spin- 1

2 anisotropic
quantum XY model in an external transverse field, which has
been studied extensively using quantum information-theoretic
measures [12,45–47]. Successful laboratory implementation
of this model in different substrates [48–51] has allowed
experimental verification of properties of several measures of

quantum correlations leading to a better understanding of the
novel properties of the model. In this paper, we specifically
consider variants of the model, viz., (i) the zero-temperature
scenario where the model is defined on a lattice of N sites, with
an external homogeneous transverse field, and (ii) the two-
qubit representation of the model with staggered transverse
field, at finite temperature.

1. L-qubit system with homogeneous field

The Hamiltonian describing the anisotropic XY model in
an external homogeneous transverse field [33], with periodic
boundary condition, is given by [12,33,45]

H = J

2

L∑
i=1

{
(1 + g)σx

i σ x
i+1 + (1 − g)σy

i σ
y

i+1

} + h

L∑
i=1

σ z
i ,

(20)

where J , g (−1 � g � 1), and h are the coupling strength, the
anisotropy parameter, and the strength of the external homoge-
neous transverse magnetic field, respectively. At zero tempera-
ture and in the thermodynamic limit L → ∞, the ground state
of the model encounters a quantum phase transition (QPT) [52]
at λ = λc = 1 (λ = J/h) from a quantum paramagnetic phase
to an antiferromagnetic phase [12,33,45,52]. A special case
of the model is given by the well-known transverse-field
Ising model (g = 1). The Hamiltonian H can be exactly
diagonalized by the successive applications of the Jordan-
Wigner and the Bogoliubov transformations, and the single-
site magnetization mz

i and the two-spin correlation functions
cαα
ij of the spins i and j (i,j ∈ {1,2, . . . ,L},i 
= j , and α =

x,y,z) can be determined. Using these parameters, one can
obtain the two-spin reduced density matrix ρij for the ground
state of the model, which is of the form given in Eq. (14),
where the matrix elements are functions of the single-site
magnetization, and two-site spin correlation functions.

For a finite-sized spin-chain, the QPT at λc = 1 for |g| <

1 is detected by a maximum in the variation of dQ

dλ
against

the tuning parameter λ, which occurs in the vicinity of λc =
1. Here, Q is the measure of quantum correlation, viz., QD
and QWD, computed for the nearest-neighbor (|i − j | = 1)
reduced density matrix ρij , obtained from the ground state of
the model. With the increase in system size, the maximum
sharpens and the QPT point approaches λc = 1 as λL

c = λc +
αL−γ , where λL

c is the value of λ at which the maximum of dQ

dλ

occurs for a fixed value of L, α is a dimensionless constant,
and γ is the scaling index.

We perform the scaling analysis in the case of the
transverse-field XY model by using CQD and CQWD as ob-
servables, and computing their values using Eqs. (15) and (19),
respectively. Fixing the value of the anisotropy parameter at
g = 0.5, using CQD, the scaling parameters are obtained as
α = 0.109 and γ = 1.215, while scaling analysis using the
CQWD results in α = 1.031 and γ = 1.515. This indicates
a higher value of γ in the case of CQWD, and therefore
a better finite-size scaling in comparison to CQD. These
scaling parameters are consistent with the scaling parameters
obtained by performing the finite-size scaling analysis using
unconstrained optimization for computing QD and QWD
numerically. This indicates that the CQWD can capture the
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FIG. 9. (Color online) Finite-size scaling analysis for the
transverse-field XY model using CQWD, computed from Eq. (19),
as the observable. The QPT point for a system of size L approaches
λc = 1 as λL

c = λc + αL−γ , where γ = 1.515 and α = 1.031. All
quantities plotted are dimensionless. The abscissa of the figure is in
natural logarithm of the number of qubits, while the ordinate is in
natural logarithm of λ, a dimensionless quantity.

finite-size scaling features perfectly for the transverse-field XY

model in the vicinity of the QPT. Therefore, our methodology
provides a path to explore the quantum cooperative phenomena
occurring in quantum spin models, in terms of different
measures of quantum correlations that involve an optimization,
in a numerically beneficial way, or analytically. Figure 9
provides the log-log plot of the variation of |λL

c − λc| with
L, where Wc [Eq. (19)] is used.

2. Two-qubit system with inhomogeneous transverse field

We now study the two-qubit anisotropic XY model in the
presence of staggered transverse magnetic field, represented
by the Hamiltonian

H2 = J
{
(1 + g)σx

1 σx
2 + (1 − g)σy

1 σ
y

2

} +
2∑

i=1

hiσ
z
i , (21)

where the strength of the external field on qubit i is given
by hi (i = 1,2), and all the other symbols have their usual
meaning. The thermal state of the two-qubit system ρT , at
a temperature T , is given by ρT = ∑3

i=0 e−βEj P [|ψj 〉]/Z,
where the eigenenergies {Ej } and the eigenvectors {|ψj 〉},
j = 0, . . . ,3, are obtained by diagonalizing the Hamiltonian
[Eq. (21)], β = 1

kBT
with kB being the Boltzmann constant, and

P [|α〉] = |α〉〈α|. Here, Z = tr[e−βH2 ] is the partition function
of the system. Similar to the previous example, the form of ρT

is as given in Eq. (14), where the matrix elements are given by

a1 = 1

2h2+u
[h2

+ cosh(βh+) − h+(h2
+ − 4g2)

1
2 sinh(βh+)],

a2 = 1

2h2−u
[h2

− cosh(βh−) + h−(h2
− − 4)

1
2 sinh(βh−)],

a3 = 1

2h2−u
[h2

− cosh(βh−) − h−(h2
− − 4)

1
2 sinh(βh−)],

(a)
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FIG. 10. (Color online) Variations of (a) CQD and (b) CQWD,
as computed from Eqs. (15) and (19), respectively, against h1

J
and

h2
J

, with g = 0.5, for the two-qubit system with inhomogeneous
transverse field at a finite temperature, given by Jβ = 1. All quantities
plotted are dimensionless, except for CQD and CQWD, which are in
bits.

a4 = 1

2h2+u
[h2

+ cosh(βh+) + h+(h2
+ − 4g2)

1
2 sinh(βh+)],

b1 = −g sinh(βh+)

h+u
, b2 = − sinh(βh−)

h−u
, (22)

with h+ = [4g2 + (h1+h2)2

J 2 ]
1
2 , h− = [4 + (h2−h1)2

J 2 ]
1
2 , and u =

cosh(βh+) + cosh(βh−). Using Eqs. (15), (19), and (22), one
can determine CQD and CQWD for the thermal state of the
model as functions of the system parameters g, h1

J
, and h2

J
, and

the temperature T .
The variations of CQD and CQWD with h1

J
and h2

J
, as

calculated using Eqs. (15) and (19), for g = 0.5 and Jβ = 1,
are plotted in Fig. 10. The analytical form in Eq. (15) is exact
for QD in the present case, while Eq. (19) results in a maximum
VE, εmax = 6.26 × 10−2 in the values of QWD, occurring at
the points ( h1

J
, h2

J
) = (±1.45, ± 0.55), for the given ranges

of the system parameters, viz., | h1
J

|,| h2
J

| � 2. However, the
qualitative features of the variation of QWD with h1

J
and h2

J
,

when computed using Eq. (19), are similar to those when the
QWD is computed via unconstrained optimization. Also, if
one adopts the constrained optimization technique discussed
in case 3 of Sec. III A, εmax reduces to ∼10−6 for n1 = 8 and
n2 = 1. Hence, the value of QWD, with negligible error, can
be obtained in the case of the thermal state of the two-qubit
anisotropic XY model in an external inhomogeneous magnetic
field with very small computational effort, if the constraints
are used appropriately. This again proves the usefulness of our
methodology.

IV. RESTRICTED QUANTUM CORRELATIONS
FOR BOUND ENTANGLED STATES

From the results discussed in the previous section, it comes
as a common observation that the VE is less in the case of
two-qubit PPT states when compared to the two-qubit NPPT
states of fixed rank for a fixed measure of quantum correlation.
A natural question arising out of the previous discussions is
whether the result of low VE in the case of PPT states, which
until now were all separable states, holds even when the state
is entangled. Since PPT states, if entangled, are always BE, to
answer this question, one has to look beyond C2 ⊗ C2 systems
and consider quantum states in higher dimensions where PPT
bound entangled states exist. However, generating BE states
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in higher dimension is itself a nontrivial problem. Instead, we
focus on a number of paradigmatic BE states in C2 ⊗ C4 and
C3 ⊗ C3 systems and investigate the properties of the VE in a
case-by-case basis.

It is also observed, from the results reported in the previous
section, that the choice of the triad as the earmarked set
yields good result in the context of low VE in the case of
a large fraction of two-qubit states in the parameter space.
Motivated by this observation, in the following calculations,
we choose the triad constituted of projection measurements
corresponding to the three spin-operators {Sx,Sy,Sz}, in the
respective physical system denoted by Cd , as the earmarked
set SE . Here, Sβ , β = x,y,z, are the spin operators for a
spin- d−1

2 particle (a system of dimension d). From now on,
in the case of the triad as the earmarked set, we discard the
subscript “3” and denote the VE by ε for sake of simplicity.
If the dimension is 2, the earmarked set is given by the triad
constituted of the projection measurements corresponding to
three Pauli matrices.

A. C2 ⊗C4 system

The first PPT BE state that we consider is in a C2 ⊗ C4

system, and is given by [15]

ρb = 1

7b + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0
0 0 0 0 fb 0 0 gb

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 gb 0 0 fb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

with

fb = 1 + b

2
, gb =

√
1 − b2

2
, (24)

and 0 � b � 1. The state is BE for all allowed values of
b. We calculate QD and QWD of the state by performing
measurement on the qubit. In Fig. 11(a), we plot the CQD,
Dc, and the actual QD, Da , as functions of the state parameter
b. At b = 0.15, QD shows a sudden change in its variation.
The inset of Fig. 11(a) shows the variation of the relative
error ε with b exhibiting a discontinuous jump from zero to
a nonzero value at b = 0.15. Note that for b < 0.15, ε = 0,
indicating �A

opt ∈ SE , which, in this case, corresponds to σ z.
For b � 0.15, the maximum value of ε, although nonzero,
is of the order of 10−3 and monotonically decreases to zero
at b = 1. Therefore, a restriction of the minimization of QD
over the triad, in this region, is advantageous. For b � 0.15,
we observe that minimization in obtaining the value of Dc

is achieved from the projection measurement corresponding
to σx . Using this information, one can obtain a closed-form
expression for Dc as

Dc = S
(
ρA

b

) − S(ρb) + min[S̄1,S̄2], (25)

where S(ρA
b ) is the von Neumann entropy of the local density

matrix of the qubit part. The quantities S̄1 and S̄2 are functions
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FIG. 11. (Color online) Variation of QD (a) and QWD (b) as a
function of b in the case of the PPT BE state ρb in C2 ⊗ C4 systems.
(Inset) Variation of the corresponding VE, ε, as a function of b. The
error jumps from zero to a nonzero value at b = 0.15 in the case of
QD, while at b = 0.22 in the case of QWD. The quantities Dc, Da ,
Wc, Wa , and ε are in bits, while b is dimensionless.

of the state parameter b, given by

S̄1 = 1

1 + 7b

[
1 + 9b + (1 + 3b) log2(1 + 3b)

− 2b log2 b − 1

2

2∑
i=1

ζi log2 ζi

]
, (26)

S̄2 = −1

2

2∑
i,j=1

(τij log2 τij + τ ′
ij log2 τ ′

ij ), (27)

where the quantities ζi , τi , and τ ′
i are given by

ζi = 1 + b + (−1)i
√

1 − b2,

τij = 1

4(1 + 7b)
[1 + 9b + (−1)i

√
1 − x2 + (−1)jωi], (28)

τ ′
ij = 1

4(1 + 7b)
[1 + 5b + (−1)i

√
1 − x2 + (−1)jω′

i],

with ω2
i = 2[1 − 3b + 12b2 + (−1)i(1 − 3b)

√
1 − b2] and

ω′
i
2 = 2[1 + b + 8b2 + (−1)i(1+b)

√
1−b2]. The expression
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in Eq. (25) provides the actual value of QD up to an absolute
error ε ∼ 10−3.

The variations of QWD and CQWD, as functions of b,
are depicted in Fig. 11(b) with the inset demonstrating the
corresponding variations of ε. Similar to the case of QD, the
optimal measurement observable is σ z for b < 0.22, and σx for
b � 0.22, which can be used to determine analytic expression
of Wc as

Wc = min[S̃1,S̃2] + S(ρb), (29)

where the functions S̃1 and S̃2 are given by

S̃1 = 1

1 + 7b

[
1 + b + (1 + 7b) log2(1 + 7b)

−6b log2 b − 1

2

2∑
i=1

ζi log2 ζi

]
, (30)

S̃2 = −1

2

2∑
i,j=1

(τij log2 τij + τ ′
ij log2 τ ′

ij − τij − τ ′
ij ). (31)

The quantities ζi , τij , and τ ′
ij are given in Eq. (28). In the case

of QWD, the point at which the sudden change takes place
(b = 0.22) is different from that for QD (b = 0.15). Note that
the behaviors of both constrained as well as actual QWD as
functions of b are similar to the behaviors of the respective
varieties of QD, and the VE, in both cases, also show similar
variations. The maximum value of ε, in the case of QWD, is
also of the order of 10−3.

B. C3 ⊗C3 systems

1. Case 1

As an example of a BE state in a C3 ⊗ C3 system, we first
consider the following state [15]:

ρa = 1

8a + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 f ′

a 0 g′
a

0 0 0 0 0 0 0 a 0
a 0 0 0 a 0 g′

a 0 f ′
a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where 0 � a � 1, and the functions f ′
a = fb=a and g′

a = gb=a ,
with fb and gb given by Eq. (24). Note that similar to the state,
given in Eq. (23), the state is BE for the entire range of a.
However, unlike the C2 ⊗ C4 state discussed in Sec. IV A, the
local measurement must be performed on a subsystem. We
consider the set {|0〉,|1〉,|2〉} as the computational basis for
each subsystem of dimension d = 3. The triad, in this case,
consists of the measurements corresponding to the observables
Sx , Sy , and Sz, where Sβ, β = x,y,z, are the spin operators for
a spin-1 particle. Figure 12(a) demonstrates the variations of
QD and CQD as functions of a for the entire range [0,1]. Note
that the VE (shown in the inset) is nonzero for the entire range
of a, attaining its maximum at a = 0.23. The optimization
of Dc is obtained for the measurement corresponding to the
observable Sz when a < 0.23, while for a � 0.23, the optimal

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1

Q
D

a
(a)

Dc
Da

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

ε

a

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1

Q
W

D

a
(b)

Wc
Wa

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

ε

a

FIG. 12. (Color online) Variation of QD (a) and QWD (b) against
a in the case of the PPT BE state ρa in C3 ⊗ C3 systems. (Inset)
Variation of the corresponding VE, ε, as a function of a. The error is
maximum at a = 0.23 in the case of QD and at a = 0.32 in the case
of QWD. The quantities Dc, Da , Wc, Wa , and ε are in bits, while a is
dimensionless.

measurement observable is Sx . Similar results are obtained in
the case of QWD and CQWD [Fig. 12(b)] where the maximum
VE occurs at a = 0.32. In both the cases (QD and QWD), the
maximum VE is of the order of ∼10−1, which is much higher
compared to the same in previous examples.

An interesting observation comes from swapping the
subsystem over which the local measurement is performed
since the state ρa is asymmetric over an exchange of the
subsystems A and B. If one optimizes QD of ρa over a
complete set of local measurements performed on the party
B instead of A, it is observed that the VE reduces drastically
in comparison to the same obtained when measurement is
performed over the party A. The variation of the corresponding
Dc and Da along with VE against the state parameter a is given
in Fig. 13. The VE attains a nonzero value (from the zero value)
at a = 0.6, while a sudden change in the variation profile is
observed at a = 0.665. This change is due to a transition of the
optimal measurement observable from Sy to Sx at a = 0.665.
Note that the maximum value of VE in the region a � 0.6
is ∼10−2, in contrast to the previous case. Note also that
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FIG. 13. (Color online) Variation of Dc and Da for ρa , as func-
tions of the state parameter a, when measurement is performed over
the subsystem B. (Inset) Variation of VE, ε, as a function of a. The
quantities Dc, Da , and ε are in bits, while a is dimensionless.

analytical expressions for CQD and CQWD can be obtained
in a procedure similar as in the previous case.

2. Case 2

Let us take another example of a PPT BE state in C3 ⊗ C3,
given by [17]

�α = 2

7
|ψ〉〈ψ | + α

7
�+ + 5 − α

7
�−, (33)

where �+ = (|01〉〈01| + |12〉〈12| + |20〉〈20|)/3, �− =
(|10〉〈10| + |21〉〈21| + |02〉〈02|)/3, |ψ〉 = 1√

3

∑2
i=0 |ii〉, and

0 � α � 5. The state is separable for 2 � α � 3, BE for
3 < α � 4 and 1 < α � 2, while distillable for 4 < α � 5
and 0 < α � 1 [17]. Figure 14(a) depicts the variation of QD
and CQD as functions of the state parameter α over its entire
range. Note that the QD as well as the CQD remains constant
over the range of α in which entanglement is distillable,
whereas both of them attain a minimum at α = 2.5 in the
separable region. In the BE region 1 < α � 2, the value of
QD as well as CQD remains constant up to α = 1.36, and
then decreases for increasing α in the region 1.36 � α � 2.
Besides, in the BE region 3 < α � 4, the value of QD as well
as CQD increases with increasing α up to α = 3.64, and then
becomes constant. The corresponding ε is plotted against α

in Fig. 14(b). Note that the maximum VE is committed in
the separable region (of the order of ∼10−2), whereas it is
smaller (of the order of ∼10−3) in the BE region. Clearly,
the maximum VE is relatively higher in the present case
in comparison to the C2 ⊗ C4 BE state ρb [Eq. (23)], but
considerably lower when compared to the C3 ⊗ C3 BE state
ρa [Eq. (32)]. When QD is constant, the optimal measurement
observable is Sz while it changes to either Sx or Sy when value
of QD increases or decreases. Note that in the latter case,
choice of Sx or Sy as the optimal measurement observable
is equivalent in the context of optimizing QD. Analytic
expression for Dc can be obtained using the above analysis,
as shown in the previous cases.

We conclude the discussion on the state �α by pointing out
that the QWD of the state coincides with the QD since �α has
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FIG. 14. (Color online) Variation of QD (a) and the correspond-
ing VE (b) as functions of α in the case of the PPT BE state �α ,
given in Eq. (33). The quantities Dc, Da , and ε are in bits, while α is
dimensionless.

maximally mixed marginals, i.e., the local density operator of
each of the parties is proportional to identity in C3 [10].

V. CONCLUDING REMARKS

To summarize, we have addressed the question as
to whether the computational complexity of information-
theoretic measures of quantum correlations such as quantum
discord and quantum work deficit can be reduced by per-
forming the optimization involved over a constrained subset
of local projectors instead of the complete set. We have
considered four plausible constructions of such a restricted
set, and shown that the average absolute error, in the case of
two-qubit mixed states with different ranks, dies down fast with
the increase in the size of the set. Quantitative investigation
of the reduction of error with the increase in the size of the
restricted set has been performed with a comparative study
between quantum discord and quantum work deficit, and the
corresponding scaling exponents have been estimated. We
have also considered a general two-qubit state up to local
unitary transformation, and have shown that the computation
of measures such as quantum discord and quantum work
deficit can be made considerably easier by carefully choosing
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the restricted set of projectors. We have also pointed out
that insight about constructing the constrained set can be
gathered from the probability distribution of the optimizing
parameters.

If a very special restricted set consisting of the projection
measurements corresponding to only the three Pauli matrices is
considered, we have demonstrated that the state space of a two-
qubit system contains a large fraction of states for which exact
minimizations of quantum discord and quantum work deficit
are obtained only on this set, resulting in vanishing error. We
have also pointed out that this feature can be utilized to obtain
closed-form expressions of quantum correlation measures up
to small error for some special classes of states, which can be
used to study physical systems such as quantum spin models.
The usefulness of this methodology has been demonstrated in

the finite-size scaling analysis of the well-known transverse-
field XY model at zero temperature, and for the thermal
state of a two-qubit XY model in an external inhomogeneous
transverse field. Moreover, we have found that the absolute
error in the value of quantum correlation calculated using the
constrained set in the case of two-qubit PPT as well as PPT BE
states is low compared to the NPPT states. The investigations
show that these measures can be obtained with high accuracy
even when restrictions in the optimizations involved in their
definitions are employed, thereby reducing the computational
difficulties in their evaluation. Although we have investigated
only information-theoretic measures, this study gives rise to a
possibility to overcome challenges in the computation of other
quantum correlation measures that involve optimization over
some set.
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