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Vacuum fluctuations and radiation reaction in radiative processes of entangled states
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We investigate radiative processes of inertial two-level atoms in an entangled state interacting with a quantum
electromagnetic field. Our intention is to clarify and to analyze the contributions of vacuum fluctuations and
radiation reaction to the decay rate of the entangled state. The possible relevance of the findings in the present
work is discussed.
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I. INTRODUCTION

Superposition and entanglement are properties that dis-
tinguish quantum mechanics from any classical theory. In
an entangled quantum system there are states that cannot
be factorized into a product of states of the subsystems.
Entanglement has became of interest since it is a key
property in quantum information, cryptography, and quantum
computation [1,2]. There exist several sources of entangled
quantum systems, for instance, in solid-state physics, quantum
optics, and also atoms in cavity quantum electrodynamics.
In the literature many ways have been proposed to generate
entangled states in systems of two-level atoms interacting with
a bosonic field. See, for example, Refs. [3–7].

Research on atomic radiative processes has proved to be of
major importance in quantum optics. Following the seminal
work of Dicke [8], there is extensive literature on resonant
interaction of atoms [9–13]. Recent examples, of great current
interest, concern investigations of radiative processes involv-
ing entanglement. Let us briefly discuss some such important
works. For instance, in Ref. [14] the authors investigate the
properties of emission from two entangled atoms coupled with
an electromagnetic field in unbounded space. In Ref. [15] the
authors study the radiative processes of entangled two-level
atoms coupled individually to two spatially separated cavities.
Reference [16] presents an interesting scheme to realize
a highly controlled and selective atom-field interaction in
cavity quantum electrodynamics systems. Nonlinear optical
processes in chains of ions in an entangled state were
investigated in Ref. [17]. See also Ref. [18]. We mention
that radiative processes of maximally entangled states are
quite different from the nonentangled states. For example,
in an entangled two-atom system there are super-radiant and
subradiant states. These states have very different spontaneous
decay rates. The symmetric state decays with an enhanced
spontaneous emission rate, whereas the antisymmetric state
decays with a reduced spontaneous emission rate [19].

By using first-order perturbation theory it can be shown
that the transition rate of an atom interacting with an

*gabrielmenezes@ufrrj.br
†nfuxsvai@cbpf.br

electromagnetic field in the vacuum state is given by the
Fourier transform of the positive frequency Wightman function
evaluated on the world line of the atom [20,21]. The heuristic
picture is, then, that the atom is forced to radiate by the
vacuum field fluctuations. On the other hand, following the
discussion by Ackerhalt et al. [22] it is possible to interpret
spontaneous decay as a radiation-reaction effect. As discussed
by Milonni, both effects, vacuum fluctuations, and radiation
reaction depend on a particular ordering chosen for commuting
atomic and field operators [23]. Hence, it turns out that the
contributions of vacuum fluctuations and radiation reaction
can, to a large extent, be chosen arbitrarily. On the other
hand, Dalibard, Dupont-Roc, and Cohen-Tannoudji (DDC)
argued that there exists a preferred operator ordering: when
one chooses a symmetric ordering the distinct contributions
of vacuum fluctuations and radiation reaction to the rate of
change of an atomic observable are separately Hermitian and
hence they possess an independent physical meaning [24,25].
This became known as the DDC formalism. Within such
a formalism the interplay between vacuum fluctuations and
radiation reaction can be considered to maintain the stability
of the atom in its ground state. We remark that this formalism
was employed in many situations [26–30]. The essential
picture that emerges from such analysis is the following: the
fluctuations of the quantum field act on the atoms, causing
their polarizations; the atoms then fluctuate and disturb the
field, which in turn reacts back on the atoms. It is clear that the
proper comprehension of the interplay between both effects is
crucial in the studies of resonant interaction of atoms.

The dynamics of a small system, entangled or not, coupled
to a reservoir can be discussed using different formalisms [31].
The key point is that the reservoir is generally described by an
infinitely many degrees-of-freedom formalism. The standard
formalism for the evaluations of time evolution and correlation
properties of collective atomic systems is the traditional master
equation approach. Within this approach it is possible to quan-
tify the degree of entanglement of a particular state. Here, since
we are interested in understanding the mechanism responsible
for supporting entanglement in radiative processes involving
atoms, we choose a different route and use the aforementioned
DDC formalism. For an interesting investigation regarding
boundary effects on quantum entanglement, see, for instance,
Ref. [32].
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We choose to focus our attention on applying this method
to the quantum entanglement of atoms. Being more specific,
we are interested in studying the contributions of vacuum
fluctuations and radiation reaction to the stability or decay
of an entangled state. We remark that in the present paper
we do not consider the rotating-wave approximation. The
organization of the paper is as follows. In Sec. II we discuss
the Hamiltonian, describing a system of bound atoms and
radiation field. In Sec. III we calculate the rate of variation
of the atomic energy in vacuum when both atoms are at rest.
Conclusions and final remarks are given in Sec. IV. We briefly
review the discussion on relevant electromagnetic correlation
functions in the Appendix. In this paper we use units � = c =
kB = 1. We are using the Minkowski metric ηαβ = −1,α =
β = 1,2,3,ηαβ = 1,α = β = 0, and ηαβ = 0,α �= β.

II. TWO IDENTICAL ATOMS COUPLED WITH
AN ELECTROMAGNETIC FIELD

Let us consider two globally neutral systems of charges
localized at fixed distances r1 and r2 interacting with a
quantum electromagnetic field. In what follows we will
interpret such systems as identical atoms. We are working in
a four-dimensional Minkowski space-time. The Hamiltonian
in the Coulomb gauge describing this system in the dipole
approximation reads [33]

H ′ =
∑

α

1

2 mα

[pα − qαA(r1)]2

+
∑

β

1

2 mβ

[pβ − qβA(r2)]2

+V 11
Coul + V 22

Coul + V 12
dip dip

+
2∑

λ=1

∫
d3k

(2π )3
ωk a

†
k,λak,λ, (1)

where V 11
Coul (V 22

Coul) is the respective Coulomb energy of the
system of charges, and V 12

dip dip is the electrostatic interaction
energy between the atomic electric dipole moments μ1 and
μ2 of the systems of charges—the dipole-dipole interaction
energy. The sums are over all charges comprising each of
the systems. The last part is the Hamiltonian of the free
electromagnetic field, in which a

†
k,λ,ak,λ represent the usual

creation and annihilation operators of the electromagnetic
field. In the above we have neglected the rest mass energy of the
systems of charges and the zero-point energy associated with
the quantum field. (The energy of the longitudinal field can be
considered as a correction to the mechanical rest mass.) One
expects the dipole approximation to be accurate whenever the
coupling between particles and radiation mostly encompasses
the modes whose wavelength is much larger than the typical
size of the system. The above expression is known as the
minimal-coupling form of the Hamiltonian.

The above Hamiltonian can be converted to a more
convenient and plain form under the Power-Zienau-Woolley

transformation [34,35]. One gets

H =
∑

α

p2
α

2 mα

+ V 11
Coul +

∑
β

p2
β

2 mβ

+ V 22
Coul

+
2∑

λ=1

∫
d3k

(2π )3
ωk a

†
k,λak,λ − μ1 · E(x1) − μ2 · E(x2).

(2)

The dipole-dipole interaction energy has been compensated for
by dipole terms which also give rise to dipole self-energies.
The latter have been neglected in the above expression
since it does not contribute to the coupling between the
system of charges and the quantum field. In fact, one can
show that the contributions of cross terms related with the
transverse polarizations of the systems of charges cancel the
contribution coming from V 12

dip dip [33]. The total electric field
in the expression above is to be interpreted as an electric
displacement. One should understand that the coupling term
μA · E(rA) contains the interaction of the system of charges A

with the transverse electric (displacement) field, as well as the
longitudinal field generated by the other system of charges at
rA. The consequence of such considerations is that there are
no more instantaneous electrostatic interaction terms between
the systems of charges; all interactions now are realized
through the quantum electromagnetic fields which propagate
with velocity 1. This form is suitable for describing retarded
dipole-dipole interactions between the atoms. Expression (2)
is known as the multipolar-coupling form of the Hamiltonian.
This is the representation that we shall consider throughout
this paper.

Hereafter we will be working within the Heisenberg picture.
As mentioned above, we assume that the globally neutral
systems of charges describe two identical two-level atoms at
rest located at r1 and r2, respectively. We denote by |gi〉 and
|ei〉 the ground and excited states of the ith atom, with energies
∓ω0/2, respectively. We employ this notation in order to allow
the possibility of a straightforward generalization of our results
to the case of nonidentical atoms. The time evolution of the
total system is to be taken with respect to the proper time
τ of the atoms. The important fact to be noticed is that the
purely atomic parts that appear in Eq. (2) describe the free
Hamiltonian of the two atoms labeled as HA(τ ). In the Dicke
notation [8], one has

HA(τ ) = ω0

2

[(
Sz

1(τ ) ⊗ 1̂
) + (

1̂ ⊗ Sz
2(τ )

)]
, (3)

where Sz
a = |ea〉〈ea| − |ga〉〈ga| is the energy operator of the

ath atom. The space of the two-atom system is spanned by
four product stationary states which are eigenstates of HA

with respective energies

Egg = −ω0 |gg〉 = |g1〉|g2〉,
Ege = 0 |ge〉 = |g1〉|e2〉,

(4)
Eeg = 0 |eg〉 = |e1〉|g2〉,
Eee = ω0 |ee〉 = |e1〉|e2〉,

where a tensor product is implicit. Instead of working with this
product-state basis, we can conveniently choose the Bell-state
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basis. In terms of the product states, one has

|	±〉 = 1√
2

(|g1〉|e2〉 ± |e1〉|g2〉),
(5)

|
±〉 = 1√
2

(|g1〉|g2〉 ± |e1〉|e2〉).

The Bell states are known as the four maximally entangled two-
qubit Bell states, and they form a convenient basis of the two-
qubit space. Nevertheless, we remark that the Bell states |
±〉
are not eigenstates of the atomic Hamiltonian HA; in turn, in
view of the degeneracy associated with the eigenstates |ge〉 and
|eg〉, any linear combination of these degenerate eigenstates
is also an eigenstate of the atomic Hamiltonian corresponding
to the same energy eigenvalue. Therefore, the Bell states |	±〉
are eigenstates of HA.

The stationary trajectories guarantee that the undisturbed
atomic system has stationary states. In the following we are
interested in the evolution of the quantum electromagnetic field
with respect to the proper time τ . In this way, the Heisenberg
equations of motion tell us that

HF (τ ) =
∑

λ

∫
d3k

(2π )3
ωk a

†
k,λ(t(τ ))ak,λ(t(τ ))

dt

dτ
. (6)

Finally, from Eq. (2) one can easily identify the Hamiltonian
which describes the interaction between the atoms and the field
in the dipole approximation:

HI (τ ) = −μ1(τ ) · E(x1(τ )) − μ2(τ ) · E(x2(τ )). (7)

The dipole moment operator is endowed of only off-diagonal
elements and hence can be written as

μi(τ ) = 〈gi |μi |ei〉|gi〉〈ei | + H.c. ≡ μ[S+
i (τ ) + S−

i (τ )], (8)

(no summation over repeated indices) where we have assumed
a proper choice of phases, which allows the dipole matrix
elements to be real and we have defined the dipole raising
and lowering operators as S+

i = |ei〉〈gi | and S−
i = |gi〉〈ei |,

respectively. In addition, since the atoms are presumed to be
identical and similarly oriented, 〈gi |μi |ei〉 is independent of
the index i and denoted simply by μ. Incidentally, suppose that
our atoms are spinless one-electron systems. Hence μa(τ ) =
e ra(τ ), where e is the electron charge and ra(τ ) is the position
operator of the atom a.

As discussed above, there is an extensive literature investi-
gating the role of vacuum fluctuations and radiation reaction
in radiative processes of atoms. Here our main intention
is to identify the distinct contributions of quantum field
vacuum fluctuations and radiation reaction to the entanglement
dynamics of the atoms. For such purposes, let us briefly discuss
the DDC formalism. The first step is to set up the Heisenberg
equations of motion for the dynamical variables of the atom
and the field with respect to τ . Such expressions can be derived
from the total Hamiltonian H (τ ) = HA(τ ) + HF (τ ) + HI (τ ).
Afterwards one splits the solutions of the equations of motion
into two parts, namely, the free part, which is present even
in the absence of the coupling, and the source part, which is

caused by the interaction between atoms and field. Therefore
one can write for the atomic observables and the dynamical
variables of the field, respectively,

Sz
a(τ ) = Sz,f

a (τ ) + Sz,s
a (τ ),

(9)
ak,λ(t(τ )) = a

f

k,λ(t(τ )) + as
k,λ(t(τ )),

where a = 1,2. Since one can construct from the annihilation
and creation field operators the free and source part of the
quantum electric field, one also has

E(t(τ ),x(τ )) = Ef (t(τ ),x(τ )) + Es(t(τ ),x(τ )). (10)

Nevertheless, such a procedure introduces an ambiguity of
operator ordering. The source part of the field acquires
contributions of atomic observables during its time evolution,
which implies that the fundamental aspect that all atomic
observables commute with field variables is not preserved in
time for Ef and Es separately. Because the above expression
contains products of atomic and field operators, one must
choose an operator ordering when discussing the effects of
Ef and Es separately. Different operator orderings will yield
different interpretations regarding the roles played by vacuum
fluctuations and radiation reaction. As pointed out in the
Introduction, only the adoption of a symmetric ordering of
atomic and field variables permits both contributions to be
Hermitian. In this way, the effects of such phenomena can
posses an independent physical meaning. Therefore, following
this prescription, one can clearly separate the contribution of
the vacuum fluctuations from the radiation-reaction effects in
the evolution of the atoms’ energies, which are given by the
expectation value of HA, which in turn is given by Eq. (3).
Furthermore, in a perturbative treatment, we take into account
only terms up to order e2. We also consider an averaging over
the field degrees of freedom by taking vacuum expectation
values. In turn, since we are interested in the evolution of
expectation values of atomic observables, we also take the
expectation value of the above expressions in a state |ω〉, which
can be one of the states given by Eq. (4) or one can also consider
the Bell states (5). The details of the calculations can be found
elsewhere; see, for instance, Ref. [26]. Therefore, employing
the notation 〈(· · · )〉 = 〈0,ω|(· · · )|0,ω〉, one has the pivotal
results concerning the vacuum-fluctuation contribution,

〈
dHA

dτ

〉
V F

= i

2

∫ τ

τ0

dτ ′
2∑

a,b=1

Dij (xa(τ ),xb(τ ′))
d

dτ
�

ij

ab(τ,τ ′),

(11)

where

�
ij

ab(τ,τ ′) = 〈ω|(μi,f
a (τ ),μj,f

b (τ ′)
)|ω〉, a,b = 1,2, (12)

is the linear susceptibility of the two-atom system in the state
|ω〉, and

Dij (xa(τ ),xb(τ ′)) = 〈0|{Ef

i (xa(τ )),Ef

j (xb(τ ′))
}|0〉 (13)

is the Hadamard elementary function. Since we are dealing
with free fields, one can employ the results derived in
Appendix. On the other hand, for the radiation-reaction
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contribution, one has
〈
dHA

dτ

〉
RR

= i

2

∫ τ

τ0

dτ ′
2∑

a,b=1

�ij (xa(τ ),xb(τ ′))
d

dτ
D

ij

ab(τ,τ ′),

(14)

where

D
ij

ab(τ,τ ′) = 〈ω|{μi,f
a (τ ),μj,f

b (τ ′)
}|ω〉, a,b = 1,2, (15)

is the symmetric correlation function of the two-atom system
in the state |ω〉, and

�ij (xa(τ ),xb(τ ′)) = 〈0|[Ef

i (xa(τ )),Ef

j (xb(τ ′))]|0〉 (16)

is the Pauli-Jordan function which, for the same reason as
above, can be evaluated from Appendix. Note that �

ij

ab and
D

ij

ab characterize only the two-atom system itself, unlike the
statistical functions of the field which have to be evaluated
along the trajectory of the atoms. We see from Eqs. (11)
and (14) that the rate of variation of the energy of the two-atom
system presents contributions from the isolated atoms and
also contributions due to cross correlations between the atoms
mediated by the field. This interference is a consequence of
the interaction of each atom with the field.

Using that μ
i,f
a (τ ) = eiHAτμ

i,f
a (0)e−iHAτ , and the com-

pleteness relation for the two-atom states
∑

ω′ |ω′〉〈ω′| = 1,
one can show that the statistical functions for the two-atom
system can be put in the following explicit forms:

�
ij

ab(τ,τ ′) =
∑
ω′

[
Mij

ab(ω,ω′) ei(ω−ω′)(τ−τ ′)

−Mji

ba(ω,ω′) e−i(ω−ω′)(τ−τ ′)], (17)

and

D
ij

ab(τ,τ ′) =
∑
ω′

[
Mij

ab(ω,ω′) ei(ω−ω′)(τ−τ ′)

+Mji

ba(ω,ω′) e−i(ω−ω′)(τ−τ ′)], (18)

where we have defined

Mij

ab(ω,ω′) = 〈ω|μi,f
a (0)|ω′〉〈ω′|μj,f

b (0)|ω〉. (19)

In this paper we are primarily interested in transitions from
entangled states [currently represented by the Bell states (5)]
to separable states [given by Eq. (4)], or the inverse. For the pur-
pose of investigating the fine details regarding the degradation
of entanglement between the atoms as a spontaneous emission
phenomenon, assume that the atoms were initially prepared
in one of the Bell states |	±〉. With this regard, Eqs. (4)
and (5) state that the only allowed transitions are |	±〉 → |gg〉,
with �ω = ω − ω′ = ω0 > 0 and |	±〉 → |ee〉, with �ω =
ω − ω′ = −ω0 < 0. On the other hand, suppose that one is
interested to address the generation of entanglement. Assume
that the atoms were initially prepared in the excited state |ee〉.
For the Bell states |
±〉 one gets �ω = 0, which implies that
〈dHA/dt〉 = 0. Hence it is not possible to generate such Bell
states out of the excited atoms. One then must consider the de-
cay rate to one of the Bell states |	±〉, obtaining �ω = ω0 > 0.

III. RATE OF VARIATION OF THE ATOMIC ENERGY
IN VACUUM FOR STATIC ATOMS

In this section we will consider in detail the rate of variation
of atomic energy for an inertial two-atom system using the
technique developed above. We assume that the atoms are sep-
arated by the space-time interval �xμ = (x(τ1) − x(τ2))μ =
(τ1 − τ2,x01 − x02 ) = (τ1 − τ2,�x0). The contributions (11)
and (14) to spontaneous emission can be evaluated from the
results discussed in Appendix. Being more specific, since
x = x(τ ) and x ′ = x(τ ′), we insert in such expressions the
statistical functions of the two-atom system, given by Eqs. (17)
and (18), and the electromagnetic-field statistical functions
given by (A3) and (A6). Initially let us present the contributions
coming from the vacuum fluctuations. These are given below,
with u = τ − τ ′:

〈
dHA

dτ

〉
V F

= 1

2π2

∑
ω′

2∑
a,b=1

Mij

ab(ω,ω′)�ω

∫ �τ

−�τ

du ei�ωu

{
2(�x)i(�x)j − δij [|�x|2 + (u − iε)2]

[(u − iε)2 − |�x|2]3

+ 2(�x)i(�x)j − δij [|�x|2 + (u + iε)2]

[(u + iε)2 − |�x|2]3

}
, (20)

where �τ = τ − τ0,�x = x0a
− x0b

. By invoking the method of residues one may compute all the relevant integrals. For ε → 0
one gets

〈
dHA

dτ

〉
V F

= − 1

4π

∑
ω′

2∑
a,b=1

�ω sin(�ω|�x|)
|�x| Mij

ab(ω,ω′)(θ (�ω) − θ (−�ω))

×
[(

3(�x)i(�x)j
|�x|2 − δij

)
(1 − �ω|�x| cot(�ω|�x|)) 1

|�x|2 −
(

(�x)i(�x)j
|�x|2 − δij

)
|�ω|2

]
, (21)

where we have taken �τ → ∞. Let us note from the above contributions that vacuum fluctuations stimulate excitation
(〈dHA/dt〉 > 0) as well as deexcitation (〈dHA/dt〉 < 0) of the two-atom system. This is reminiscent from the fact that for an
atom interacting with quantized radiation, one has that stimulated excitation and deexcitation have equal Einstein B coefficients,
which implies that vacuum fluctuations tend to excite an atom in the ground state as well as deexcitate an atom in the excited state.
In our context, following the discussion at the end of Sec. II one realizes that vacuum fluctuations can promote the degradation
of entanglement of atoms as well as activate the generation of entanglement between the atoms.
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Now let us evaluate the radiation-reaction contributions. One has, with u = τ − τ ′,
〈
dHA

dτ

〉
RR

= 1

4π

∑
ω′

2∑
a,b=1

Mij

ab(ω,ω′)�ω

∫ �τ

0
du sin(�ωu)

×
{(

3(�x)i(�x)j
|�x|2 − δij

)[
δ′(|�x| − u) − δ′(|�x| + u)

|�x|2 −
(

δ(|�x| − u) − δ(|�x| + u)

|�x|3
)]

−
(

(�x)i(�x)j
|�x|2 − δij

)[
δ′′(|�x| − u) − δ′′(|�x| + u)

|�x|
]}

. (22)

By employing standard Dirac δ-function identities we get
〈
dHA

dτ

〉
RR

= − 1

4π

∑
ω′

2∑
a,b=1

�ω sin(�ω|�x|)
|�x| (θ (�ω) + θ (−�ω))Mij

ab(ω,ω′)

×
[(

3(�x)i(�x)j
|�x|2 − δij

)
(1 − �ω|�x| cot(�ω|�x|)) 1

|�x|2 −
(

(�x)i(�x)j
|�x|2 − δij

)
(�ω)2

]
. (23)

Note that our results explicitly show contributions from
a classical phenomenon (radiation-reaction effect) to the
entanglement dynamics of two identical atoms. Adding up
the above terms leads to the main conclusions of this work.
First of all, we note the appearance of spatial oscillations in
the rate of variation of atomic energy. In turn, we observe that
for large times the difference between vacuum fluctuations
and radiation reaction arises when considering excitation
processes. In the perspective of spontaneous emission, both
give identical contributions. Thus only emission processes are
allowed for asymptotic times. Being more specific, the Bell
states |	±〉 are stable for absorption processes, but through
spontaneous emission the atoms can disentangle and decay
to the ground state. On the other hand, the transition |gg〉 →
|	±〉 is suppressed for �τ → ∞. This can be seen as a direct
consequence of the known result that an atom in its ground
state is stable due to the balance between vacuum fluctuations
and radiation reaction. In order to perturb such a balance for
�τ → ∞, one must consider general noninertial trajectories,
such as uniformly accelerated motion [26]. Notwithstanding,
one can notice that entanglement between the atoms can still
be created, but only via emission processes; for instance, one
must initially prepare the atoms in the excited state |ee〉 in order
to detect the formation of entangled states for �τ → ∞. In
summary, the importance of such results lies in the fact that by
considering the cooperation between vacuum fluctuations and
radiation-reaction effect, one could give a detailed mechanism
that accounts for the generation as well as the degradation of
entanglement in the resonant interaction of atoms.

For completeness let us present the total rate of change
of the atomic energy for �τ → ∞ assuming that the atoms
were initially prepared in one of the Bell states |	±〉. This
is obtained by adding the vacuum-fluctuations and radiation-
reaction terms. For simplicity consider that the atoms are
polarized along the x3 direction. We also assume the special
case in which the atoms are separated by the space-time in-
terval �xμ = (x(τ1) − x(τ2))μ = [τ1 − τ2,0,0,(x1)3 − (x2)3].
The total rate of change of the atomic energy is zero for
�ω < 0. As discussed above, the distinct contributions for
spontaneous excitation cancel each other in this situation,
leaving only the terms for which �ω > 0. In addition, from

Eq. (4) and the aforementioned assumption on the dipole
matrix elements one has that

Mij

11(	±,g) = μiμj

2
,

Mij

22(	±,g) = μiμj

2
, (24)

Mij

12(	±,g) = M21(	±,g) = ± μiμj

2
.

Hence the explicit result for the rate of variation of energy of
the two-atom system is given by〈

dHA

dτ

〉
tot

= − ω4
0

3π
[1 ± f (ω0�z)](μ3)2, (25)

where the (minus) plus sign refers to the (anti)symmetric
Bell state (|	−〉) |	+〉 and �z = (x1)3 − (x2)3. Also, we have
defined the function

f (x) = 3 sin x

x3
(1 − x cot x). (26)

Such a function quantifies the influence of the cross correla-
tions on the entanglement between the atoms. Some special
values are given by

f (nπ ) = 3

(nπ )2
(−1)n+1 (27)

(n is a positive integer) and

f [(n + 1/2)π ] = 3

(n + 1/2)3π3
(−1)n. (28)

The behavior of this function is depicted in Fig. 1. Note
the great oscillatory regime for short distances between the
atoms. In fact, the plot shows that for |�z| � 1/ω0 cross
correlations are more important for the rate dHA/dτ in
comparison with the case in which the distance between the
atoms is very large (|�z|  1/ω0). It means that the cross
correlations generate a constructive interference when the
atoms are very near each other, and these interference terms
vanish for large spatial separations between entangled atoms.
This is a similar result as described in Refs. [11] and [36].
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FIG. 1. (Color online) The quantity f (x) as a function of x =
ω0�z.

On the other hand, Eq. (25) shows that, for small distances
between the atoms, the symmetric Bell state |	+〉 decays
with an enhanced emission (super-radiant) rate as compared
with terms of isolated atoms, whereas the antisymmetric Bell
state |	−〉 presents the opposite behavior (subradiant). This
clearly indicates that the antisymmetric entangled state decays
in a softened rate. In addition, note that for |�z| � 1/ω0 the
antisymmetric Bell state presents a nearly complete inhibition
of the decay to the ground state due to destructive interference
of cross correlations between the atoms. Such results confirm
the assertions discussed in the Introduction.

IV. CONCLUSIONS AND PERSPECTIVES

Within first-order perturbation theory the transition rate
of an atom interacting with an electromagnetic field in the
vacuum state is given by the Fourier transform of the positive
frequency Wightman function evaluated on the world line of
the atom. Within this picture the atom is forced to radiate by
the vacuum field fluctuations. On the other hand, it is possible
to interpret spontaneous decay as a radiation-reaction effect.
Both effects, vacuum fluctuations and radiation reaction,
depend on a particular ordering chosen for commuting atomic
and field operators. On the other hand, as discussed above
there exists a preferred operator ordering: when one chooses
a symmetric ordering the distinct contributions of vacuum
fluctuations and radiation reaction to the rate of change of
an atomic observable are separately Hermitian and hence they
possess an independent physical meaning [24,25]. Within such
a formalism the interplay between vacuum fluctuations and
radiation reaction can be considered to maintain the stability
of the atom in its ground state. Here in this paper we studied
the contributions of vacuum fluctuations and radiation reaction
in radiative processes of entangled atoms. We found that, at
asymptotic times, with respect to excitation processes such
contributions cancel each other, whereas both mechanisms
are responsible for the decay of the entangled state. One

possible way to unbalance the contributions from vacuum
fluctuations and radiation reaction in absorption processes
is to consider situations of finite observation time intervals.
The main conclusion one can draw from such results is that
when considering radiative processes of atoms the machinery
underlying entanglement can be envisaged as an interplay
between classical concepts (radiation-reaction effect) and
quantum-mechanical phenomena (vacuum fluctuations). We
believe that the results presented in this paper may have
an impact in the studies of radiative process of atoms. For
instance, recently the subject of van der Waals interaction
between atoms was taken up in Ref. [37] in which the
authors demonstrate that such an interaction presents both
temporal and spatial oscillations. In the experimental side, the
angular dependence of the resonant dipole-dipole interaction
between two individual Rydberg atoms with controlled relative
positions was measured [38]. A framework in which vacuum
fluctuations and radiation-reaction effect have been clearly
identified and quantitatively analyzed may contribute to an
accurate and deeper understanding of such results.

Conducting plates or cavities can modify the rate of spon-
taneous emission of excited atoms [39]. Since the presence
of boundaries affects the vacuum fluctuations of the quantum
field, one should expect that the transition rates of atoms are
modified in this situation [40]. Hence, for entangled atoms,
it is interesting to ask how the rate of variation of the atomic
energy is modified in a situation where translational invariance
is broken. Recently, boundary effects on entanglement were
investigated assuming a framework where the spontaneous
decay of atoms is only attributed to vacuum-fluctuation
effects [36]. A natural extension of our results is to discuss the
mean life of an entangled state in the presence of boundaries
within the formalism employed in this work. This is under
investigation by the authors.
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APPENDIX: CORRELATION FUNCTIONS OF THE
ELECTROMAGNETIC FIELDS IN THE VACUUM

In this Appendix we concisely discuss free electromag-
netic correlation functions. We consider a four-dimensional
unbounded Minkowski space-time. In addition, as previously
mentioned, we work in the Coulomb gauge. Here we do not
discuss the quantization of the electromagnetic field in detail.
For a thorough analysis of quantum electrodynamics in the
Coulomb gauge, we refer the reader the Ref. [33]. In turn,
details concerning the correlations of the electric field for two
static space-time points can be found in the comprehensive
account by Takagi [41] and related references therein. In-
stead, we limit ourselves to present all relevant electromag-
netic correlation functions in the vacuum employed in the
text.

Let us start with the correlation functions of the electric
field. Through standard procedures, one may evaluate the
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Pauli-Jordan function of the electric field. It is given by

�ij (x,x ′) = 〈0|[Ei(x),Ej (x ′)]|0〉 = −i

(
∂

∂t

∂

∂t ′
δij − ∂

∂xi

∂

∂x ′
j

)
D(t − t ′,x − x′), (A1)

where

D(t,x) = 1

4π |x| [δ(|x| − t) − δ(|x| + t)] = 1

(2π )2|x| lim
ε→0

[
ε

ε2 + (|x| − t)2
− ε

ε2 + (|x| + t)2

]
. (A2)

By evaluating the derivatives one obtains an explicit form for the Pauli-Jordan function in terms of the δ functions and their
derivatives:

�ij (x,x ′) = i

4π

{(
3(�x)i(�x)j

|�x|2 − δij

)[
δ′(|�x| − �t) − δ′(|�x| + �t)

|�x|2 −
(

δ(|�x| − �t) − δ(|�x| + �t)

|�x|3
)]

−
(

(�x)i(�x)j

|�x|2 − δij

)[
δ′′(|�x| − �t) − δ′′(|�x| + �t)

|�x|
]}

, (A3)

where �x = x − x′ and �t = t − t ′. The above derivatives of the δ function are to be understood as distributional derivatives.
An important remark is the following. The expression we have obtained is ambiguous when �t → 0 or |�x| → 0 since they
introduce products of δ functions with functions which diverge for |�x| = 0. In this case, one possible route is to consider the
second line of expression (A2) with a finite ε.

Another important commutator of the electric field is the Hadamard elementary function. It is given by

Dij (x,x ′) = 〈0|{Ei(x),Ej (x ′)}|0〉 =
(

∂

∂t

∂

∂t ′
δij − ∂

∂xi

∂

∂x ′
j

)
D(1)(t − t ′,x − x′), (A4)

where

D(1)(t − t ′,x − x′) = − 1

4π2

{
1

[(t − t ′ − iε)2 − |x − x′|2]
+ 1

[(t − t ′ + iε)2 − |x − x′|2]

}
. (A5)

After calculating the derivatives one gets

Dij (x,x ′) = − 1

π2

{
2(�x)i(�x)j − δij [|�x|2 + (�t − iε)2]

[(t − t ′ − iε)2 − |x − x′|2]3
+ 2(�x)i(�x)j − δij [|�x|2 + (�t + iε)2]

[(t − t ′ + iε)2 − |x − x′|2]3

}
. (A6)

From the results above one may evaluate Hadamard’s elementary functions found in Eq. (11). On the other hand, from Eq. (A3)
one can compute the Pauli-Jordan functions appearing in Eq. (14).
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