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Quantum theory allows for absolute maximal contextuality
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Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation
and communication. It is therefore important to investigate how large contextuality can be in quantum theory.
Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α

and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for
noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality
if it has scenarios in which ϑ/α approaches n. Here we show that quantum theory allows for absolute maximal
contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality
inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios.
Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.
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I. INTRODUCTION

Contextuality (namely, the impossibility of explaining
probabilities of measurement outcomes as originated from
pre-existent values which are not altered by compatible
measurements [1–3]) has recently been identified as a crit-
ical resource for quantum computing [4–6] and, through
nonlocality (a form of contextuality), device-independent
secure communication [7,8]. Recent progress has allowed
us to identify where, how, and why quantum contextuality
occurs. In particular, recent results comprise a necessary
and sufficient condition for quantum contextuality [9,10],
necessary conditions for quantum state-independent contex-
tuality [11,12], the maximum contextuality possible for any
structure of exclusivity [9,10], and a number of principles
that explain the quantum limits of contextuality for certain
important scenarios [13–21]. In addition, several quantifiers
of contextuality have been introduced [22], the connections
between contextuality, entanglement, and nonlocality have
been explored [23,24], and the relationship between quantum
contextuality and maximally epistemic interpretations of
quantum theory (QT) has been examined [25].

Still, we know very little about the contextuality that can
be produced with quantum systems. For example, is QT
the most contextual theory possible? Initially, despite a very
appealing candidate as an explanation for QT, the examination
of isolated scenarios suggests that the answer should be
negative [26] and that QT is “neither the most nonlocal theory
one can imagine, nor the most contextual” [27]. However,
when one applies some simple principles to copies of the
scenario [13–16] or to extended scenarios which include extra
possible measurements [17–21], one finds out that, at least
in some key cases, the maximal quantum contextuality of the
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original scenario is restricted by the fact that this scenario
can be embedded into a larger one which is as contextual
as possible (assuming some of these simple principles). This
suggests that QT is the most contextual theory allowed by
some principles. However, this leads to another question
of fundamental and potentially practical implications: How
much contextuality is that? How large contextuality can be
in QT? In which experiments does it occur? How does the
ratio between the maximal allowed contextuality and the non-
contextual bound behave? How does this maximum quantum
contextuality compare with the contextuality allowed by other
theories not restricted by the principles that limit quantum
contextuality?

In this paper we address these questions. A priori, they
are difficult questions. To deal with them, we first observe that
linear contextuality witnesses with all coefficients equal to one
can be written as a sum S of n probabilities such that α and
ϑ > α are, respectively, the maximum of S for noncontextual
theories and for the theory under consideration. Clearly,
1 � α < ϑ � n. This motivates the following definition: A
theory allows for absolute maximal contextuality (AMC) if it
has (at least one) family of experimental scenarios in which
ϑ/α approaches n. As defined in the abstract, α is a well-known
graph-theoretical invariant: the independence number. For
QT, the Tsirelson-like bound [28] ϑ also corresponds to a
well-known graph-theoretical invariant [9,10], the so-called
Lovász number [29]. It is interesting to stress that from the
complexity theory viewpoint, the quantum bound is an “easy”
problem (given a graph G, ϑ is the solution of a semidefinite
program), while the noncontextual α is a nondeterministic-
polynomial-hard (NP-hard) problem [30]. This identification
gives a systematic way of exploring the ϑ/α ratio for QT. We
explore its predictions for n � 10 and examine well-known
Bell inequalities to get some insight on the behavior of ϑ/α

in QT. This exploration suggests that QT does not allow
for AMC. We then present the main result: QT does allow
for AMC. Our proof, however, is not constructive and does
not identify specific scenarios. To ease this lack, we present
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quantum scenarios with almost AMC. We end by discussing
why AMC is actually possible in QT and suggest that AMC is
an emerging phenomenon.

II. CONTEXTUALITY WITNESSES AND GRAPHS

The question of how large contextuality can be in QT is
very difficult to answer if one adopts the traditional approach
within which most measures of contextuality [22] are defined.
By the traditional approach, we mean that which starts with a
previously specified experimental scenario (i.e., a number of
observables and their relations of comeasurability) in which
we have to obtain the noncontextuality (NC) inequalities
and compute their maximum quantum violations (see, e.g.,
Ref. [31]). The difficulty is that the number of scenarios is
infinite, the number of NC inequalities grows enormously
with the number of observables, and the computation of
the quantum maxima becomes unfeasible even for relatively
simple scenarios.

Interestingly, the problem can be addressed by adopting the
graph-theoretic approach to quantum contextuality [9,10,32].
In this approach, any quantum (linear) contextuality witness
that can be expressed as a finite sum of probabilities, i.e., any
NC inequality involving a linear combination of probabilities,
can be ascribed to a graph with certain properties and,
reciprocally, from any graph with these properties one can
obtain a quantum contextuality witness of this type. More
precisely, for any given graph G, there is always one quantum
experiment such that the noncontextual bound is given by the
independence number of G, α(G) (i.e., the maximum number
of nonadjacent vertices in G), while the maximum value in QT
is given by the Lovász number of G, ϑ(G) [29]. It is valuable
to comment on the generality of this approach. Any tight
contextuality witness that is linear in terms of probabilities
can be written as a sum S of probabilities. The reasoning
is twofold: First, one can eliminate negative coefficients by
changing the probability appearing in each corresponding
term by one minus the complementary probabilities; second,
given that all extremal points in the noncontextual set have
integer coordinates, the corresponding facets can be written
with rational (and hence integer) coefficients. The only kind
of contextuality witness that is disregarded by this approach is
the nonlinear one.

The ratio ϑ(G)/α(G) is a natural measure of quantum
contextuality within the graph approach. In addition, the fact
that ϑ(G)/α(G) is a good measure of contextuality can also be
justified by appealing to the following betting game (see also
the game proposed in Ref. [33]). Consider a bookmaker, Bob,
that accepts all kinds of bets. A gambler, Alice, brings him a
preparation device and a box with a graph G drawn at the top
and whose properties are described in Fig. 1. The bookmaker
can check that both the preparation device and the box work
as promised.

At each run, Alice chooses one of the buttons and bets c

units of money that pressing this button will give the result 1.
The gain gi is defined by Bob agreeing to pay her c(gi − ε)
units of money, where ε > 0. As a bookmaker, Bob establishes
gi in order to guarantee his profit after many rounds of the game
and to make the betting attractive to Alice. Denoting her betting
probability for button i as bi , the expectation of the payoff is

FIG. 1. (Color online) A physical system in state ρ enters the box.
The player presses a button i (with i = 1, . . . ,5) and a light (r = 0,1)
flashes. The player can also press a second button j such that i and j

are adjacent in the graph drawn at the top of the box. Two important
properties can be checked: (i) adjacent buttons correspond to tests
without mutual disturbance, i.e., P (i = r|ij ) = P (i = r|ik) for any
j,k adjacent to i; (ii) exclusiveness relation: no adjacent vertices can
“happen” together, i.e., P (i = 1,j = 1|ij ) = 0, for all i,j adjacent.

∑
i biPi(gi − ε), where Pi = p(i = 1|i) is the probability that

pressing the button i flashes green light 1. If Bob believes that
the system is noncontextual, then he will estimate the prize
trusting that

∑
i Pi � α(G). His simplest choice is to estimate

the gain as gi = [α(G)bi]−1, which gives the expected payoff
as 1

α(G)

∑
i Pi − ε

∑
i biPi , which Bob trusts to be less than 1.

For a quantum gambler, however,
∑

i Pi can reach ϑ(G). This
means that a quantum gambler playing against a noncontextual
bookmaker is expected to make a profit about ϑ(G)

α(G) − 1 per unit
of money, per round (in the limit ε → 0).

III. IS THERE ANY INDICATION OF ABSOLUTE
MAXIMAL CONTEXTUALITY IN QUANTUM THEORY?

Here we review what is known about the quantum maxi-
mum of ϑ/α for NC and Bell inequalities.

For contextuality witness S defined as a sum of n prob-
abilities, the quantum maximum of ϑ/α is known for any
n � 10 [34]. These quantum contextuality witnesses exist
only if n � 5 [9,10]. Then the quantum maxima of ϑ/α are√

5/2 ≈ 1.118 for n = 5,6,7, 2(2 − √
2) ≈ 1.172 for n = 8,

11/9 ≈ 1.222 for n = 9, and 5/4 = 1.25 for n = 10 [34]. Still,
any of these maxima is very far from the values required for
the AMC. For explicit families of NC inequalities with an
increasing number of settings [31], the distance to the AMC is
indeed growing with the number of settings.

Bell inequalities violated by QT are also quantum contextu-
ality witnesses. The advantage with respect to NC inequalities
is that, unlike NC inequalities, Bell inequalities have been
extensively studied for years and many results and examples
for the growth of the ratio R between the quantum and
noncontextual (i.e., local) bounds are known, because this
ratio usually measures the quantum vs classical advantage for
certain tasks involving separated parties. Here we present a
brief overview of such results (see Ref. [35] for more details)
and explain how these results are connected to our problem.
For our purposes, R will play the role of ϑ/α and, hereafter,
m will be the number of parties, d the dimension (of at least
one) of the local subsystems, N the number of settings per
party, and K the number of outputs, while n is the number of
probabilities in the contextuality witness S.
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In a pioneering work, Tsirelson [28] showed that, for
bipartite Bell inequalities, R is upper-bounded by the real
Grothendieck constant KR

G [36], whose exact value is unknown
(but bounds are known). In the multipartite case, the first
investigations focused on R for particularly promising quan-
tum states. For example, for tripartite Greenberger–Horne–
Zeilinger states, R � 4

√
2KC

G , where KC
G is the complex

Grothendiek constant (whose exact value is also unknown).
For Schmidt states, R � 2(3m−5)/2KC

G and n ∼ Nm. Similar
results hold for clique-wise entangled states and, in particular,
for stabilizer states [35,37,38].

Better results where found with the help of the probabilistic
method. In the tripartite scenario it is possible to prove,
for every d ∈ N, the existence of quantum violations with
R ∼ O(

√
d), with n ∼ O(2d2 × 2D2 × 2D2

) [39]. However,
this result is highly nonconstructive and there is no estimate
for D (the dimension of the other two subsystems). In Ref. [40]
the authors show that there are tripartite Bell inequalities for
which R � c

√
N log−5/2 N , for some constant c > 0, while

n ∼ O(N6), improving the previous result.
There is a general result which provides an upper bound for

R for tripartite-correlation Bell inequalities. In Refs. [39,40]
it is proven that, for this case, R � O(

√
k), where k =

min{N,d}. In this case, n ∼ O(N3). A generalization of
this result to m parties shows that R � O(N (m−2)/2), with
N settings for at least m − 2 parties [40]. In this case,
n ∼ O(Nm−2). Both results are also nonconstructive and there
are no explicit examples approaching these bounds. For these
nonconstructive results, n is a loose estimative, since many Bell
inequalities involve only a fraction of the KmN probabilities.

For a large number m of parties, large violations can be
obtained already in the simpler scenario with two settings
per party. For the inequalities connected with XOR games,
which include the Werner–Wolf–Żukowski–Brukner inequal-
ities [41,42], R = 2m/2 can be found for some particular
inequalities, including the Mermin inequalities [43,44]. This
value is optimal for this scenario. In this case, n ∼ O(2m).

For general bipartite inequalities, R � O(h), with h =
min{N,K,d} [38]. In this case, n ∼ O(N2 × K2). If N =
K = d, there are Bell inequalities with R � �(

√
N/

√
log N ).

In this case, n ∼ O(N4) [38]. In Ref. [37] the authors prove
the existence of Bell inequalities with R �

√
k/log2 k, where

N = (2(log2 k)/2)k . There are no explicit examples achieving
these bounds. Also in these cases large violations can be
obtained but at the expense of increasing exponentially n.

In the case of general bipartite Bell inequalities, two impor-
tant explicit examples are shown in Ref. [45]. The first one is
the family of inequalities associated with the hidden matching
game, which has R ∼ O(

√
K/log K) for N = 2K , which

gives a superexponential n. The second example is the family
of inequalities associated with the Khot–Vishnoi game, with
R � �(

√
K/log2 K), with N = 2K/K , which also gives a

superexponential n. To our knowledge, the growth of R for Bell
inequalities with three or more parties remains unexplored.

As we see, none of these quantum violations of NC or Bell
inequalities even remotely suggests that QT might allow for
AMC.

Absolute maximal contextuality in quantum theory. Despite
what is suggested by all previous evidence, the following
theorem holds:

Theorem 1. Absolute maximal contextuality in quantum
theory.

Proof. The proof is based on two previous results. In
Ref. [10] it is shown that, for any n-vertex graph G such that
α(G) < ϑ(G), there is a quantum contextuality witness S such
that α(G) and ϑ(G) are, respectively, the noncontextual and
quantum tight maximum of S. Its physical implementation
requires us to prepare a quantum state in the handle of a
Lovász-optimum orthogonal representation of the complement
of the graph and to measure the rank-one projectors onto
the unit vectors of that representation (see Ref. [10] for
details). Therefore, proving the existence of scenarios of AMC
requires proving the existence of graphs such that ϑ(G)/α(G)
approaches n. Reference [46] proves that, for every ε > 0, an
n-vertex graph G exists such that ϑ(G)/α(G) > n1−ε . �

The proof in Ref. [46] uses the probabilistic method and
no explicit construction approaching these values is known.
Therefore, although the existence of scenarios allowing for
AMC in QT is guaranteed by the result in Ref. [10], we cannot
present any explicit example. To ease this problem, we present
some additional results.

First, notice that, if we fix α(G) < k, then there is a limit
for ϑ(G)/α(G). Specifically, the following theorem holds:

Theorem 2. For every k ∈ N there exists an absolute
constant Mk such that, for any n-vertex graph G with α(G) <

k, ϑ(G) � Mkn
1−2/k .

The proof is based on Theorem 5.1 in Ref. [47], which
generalizes a result in Ref. [48] for k = 3, for which
M3 = 22/3.

Although there are no explicit constructions for general
k, in Ref. [49] there is a family of graphs with α = 2 and
ϑ ∼ 22/3n1/3. These graphs depend on a parameter r which
cannot be a multiple of 3. In this case, n = 23k . For r = 2, it is
a graph with 64 vertices such that its complement is the graph
consisting of 16 unconnected squares. In this particular case,
ϑ = α, therefore it is not a quantum contextuality witness. The
interesting thing is that it gives us some intuition about how the
graphs corresponding to AMC may be: Dense graphs (i.e., with
a number of edges close to the maximal number of edges) with
a very high number of vertices. We have also computed the
adjacency matrix for the complement of the graph for r = 4. It
has over two million edges. We do not know whether or not the
cases r = 4,5 are quantum contextuality witnesses. However,
this is the case for r > 6. These graphs are Cayley graphs [50]
and, therefore, regular and vertex transitive.

Alternatively, if we do not fix α(G), then we can obtain
larger violations with simpler graphs for which the number of
vertices does not grow so fast.

Theorem 3. For every ε > 0 there is an explicit family of
graphs for which ϑ � ( 1

2 − ε)n and α < nδ(ε), δ(ε) < 1.
The proof is based on Theorem 6.1 in Ref. [49].
Interestingly, there are explicit quantum contextuality wit-

nesses reaching these values. For a pair of integers q > s > 0,
G(q,s) is the graph on

n =
(

2q

q

)

vertices, with each vertex corresponding to a q subset of
{1,2, . . . ,2q}, and such that two vertices are adjacent if and
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only if their intersection has exactly s elements. For small
values of q and s we have:

.

q s n α ϑ

2 1 6 2 2
3 1 20 4 5
3 2 20 4 5
4 1 70 17 23
4 2 70 10 10
4 3 70 14 14
5 1 252 �55 94.5
5 2 252 �27 42
5 3 252 �12 18.67
5 4 252 �28 42

For this family, there are explicit orthonormal representa-
tions [49] that achieve the lower bound on ϑ in dimension
2q. Each of these orthonormal representation provides the
measurements (the rank-one projectors onto the unit vectors
of the representation) and the quantum state (the handle of
the representation) for an experimental implementation of a
quantum contextuality witness.

IV. CONCLUSIONS AND OPEN PROBLEMS

Contextuality is an important resource for computation and
communication. So far, a given experimental scenario was said
to exhibit maximal contextuality when the maximum possible
violation ϑ of the corresponding noncontextual bound α was
the maximum allowed by some principles. This approach
motivated the definition of, e.g., “fully contextual correlations”
as those in which ϑ equals the nonsignaling bound [34].
Recent developments [13–21] suggest that QT could be
maximally contextual in the sense that the contextuality of
specific scenarios can be explained by embedding them into
larger maximally contextual scenarios. However, this still does
not answer the question of how large quantum contextuality
can be.

Here we investigated whether QT achieves the maximum
conceivable contextuality. Previous evidence, including the
quantum violation of NC and Bell inequalities, strongly
suggested against that possibility. Surprisingly, in QT, there
are scenarios in which the ratio ϑ/α can be arbitrarily close to
its absolute maximum.

How this may happen? Unfortunately, our proof is not con-
structive and does not allow us to identify explicit scenarios.
However, the examples of almost AMC that we found, when
examined from the point of view of their quantum realization,
have in common the presence of a very large set of rank-one
projectors such that almost everyone commutes with everyone
(suggesting, when coarse grained, a classical system of high

dimensionality), but at the same time riddled with a large
number small “islands” of projectors such that not all of them
commute (suggesting, when fine grained, a strong quantum
behavior). This supports the view that quantum AMC is an
emerging phenomenon that only occurs when small quantum
structures infest in a particular way seemingly classical and
highly complex systems.

A natural open problem is therefore to learn more about
these scenarios. On the technical side, the difficulty to identify
them is related to the difficulty of identifying graphs with
large ϑ(G)/α(G) due to the fact that α(G) is hard to compute
and is only known for very restricted families of graphs.
A possible strategy to address this problem would be to
single out graph invariants computable in polynomial time
[like ϑ(G)] and sandwiched between α(G) and ϑ(G), and
then identify graphs with a large ratio between this quantity
and ϑ(G). For example, in Ref. [51] the authors present a
semidefinite-program (SDP) approximation for α(G) which
is at least as good as ϑ(G). Many approximations are also
known [52], including many SDP hierarchies that converge in
a finite number of steps [53–56]. Each of them provides other
SDP approximations to α(G) and, if smaller than ϑ(G), can
be used to lower bound the contextuality. From the conceptual
point of view, even if the simplest scenarios with quantum
AMC are so complex that they do not allow for experimental
tests using present technologies, it seems to be important to
understand how AMC emerges, what implications AMC has
(in particular, for the limits of the contextuality of simple
scenarios), and what AMC may be useful for.

Finally, another important question is which is the max-
imum nonlocality allowed by QT. This problem has been
only studied for fixed scenarios and has been proven hard
even in the simplest scenarios. The quest for maximum
nonlocality with no restriction on the scenario is much harder.
However, the same way the graph-theoretic approach to
quantum contextuality [9,10,32] has been useful to answer
the question of what is the maximum contextuality in QT,
the multigraph approach of Ref. [57] may help to address the
question of which is the maximum nonlocality in QT.
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