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Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
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We report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field.
Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the
relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum.
The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production
are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach
spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background
fields (if any). Agreement with the BMT spin precession equation is shown numerically. The commonly known
theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special
case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions
in relativistic spin-1/2 plasmas.
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I. INTRODUCTION

In recent years, many works have been focused on incorpo-
rating quantum effects into classical plasma physics [1,2]. In
particular, various models have been proposed to marry spin
equations with classical equations of plasma dynamics. This
includes the early works by Takabayasi [3,4] as well as the most
recent works presented in Refs. [5–13]. Of particular interest
in this regard is the regime wherein particles interact with high-
frequency electromagnetic (EM) radiation. In this regime, it
is possible to introduce a simpler time-averaged description,
in which particles experience effective time-averaged, or
“ponderomotive,” forces [14–16]. It was shown recently that
the inclusion of spin effects yields intriguing corrections to
this time-averaged dynamics [17,18]. However, current “spin-
ponderomotive” theories remain limited to regimes where
(i) the particle de Broglie wavelength is much less than the
radiation wavelength and (ii) the radiation amplitude is small
enough so that it can be treated as a perturbation. These
conditions are far more restrictive than those of spinless
particle theories, where nonperturbative, relativistic pondero-
motive effects can be accommodated within the effectively
modified particle mass [19–23]. One may wonder then: is it
possible to derive a fully relativistic, and yet transparent, theory
accounting also for the spin dynamics and the Stern-Gerlach-
type spin-orbital coupling?

Excitingly, the answer is yes, and the purpose of this paper
is to propose such a description. More specifically, what we
report here is a point-particle ponderomotive model of a Dirac
electron [24]. Starting from the Dirac Lagrangian density, we
derive a phase-space Lagrangian (75) in canonical coordinates
with a Hamiltonian (76) that describes the relativistic time-
averaged dynamics of such particle in a geometrical-optics
(GO) laser pulse propagating in vacuum [25]. The pulse is
allowed to have an arbitrarily large amplitude (as long as
radiation damping and pair production are negligible) and, in
case of nonrelativistic interactions, a wavelength comparable
to the electron de Broglie wavelength. The model captures
the spin dynamics, the spin-orbital coupling, the conventional
ponderomotive forces, and the interaction with large-scale
background fields (if any). Agreement with the Bargmann-

Michel-Telegdi (BMT) spin precession equation [26] is shown
numerically. The aforementioned “effective-mass” theory for
spinless particles is reproduced as a special case when the spin-
orbital coupling is negligible. Also notably, the point-particle
Lagrangian that we derive has a canonical structure, which
could be helpful in simulating the corresponding dynamics
using symplectic methods [27–29].

This work is organized as follows. In Sec. II the basic
notation is defined. In Sec. III the main assumptions used
throughout the work are presented. To arrive at the point-
particle ponderomotive model, Secs. IV–VII apply succes-
sive approximations and reparametrizations to the Dirac
Lagrangian density. Specifically, in Sec. IV we derive a
ponderomotive Lagrangian density that captures the average
dynamics of a Dirac particle. In Sec. V we obtain a reduced
Lagrangian model that explicitly shows orbital-spin-coupling
effects. In Sec. VI we deduce a “fluid” Lagrangian model
that describes the particle wave-packet dynamics. In Sec. VII
we calculate the point-particle limit of such “fluid” model. In
Sec. VIII the ponderomotive model is numerically compared
to a generalized nonaveraged BMT model. In Sec. IX the main
results are summarized.

II. NOTATION

The following notation is used throughout the paper. The
symbol “

.=” denotes definitions, “H.c.” denotes “Hermitian
conjugate,” and “c.c.” denotes “complex conjugate.” Unless
indicated otherwise, we use natural units so that the speed
of light and the Plank constant equal unity (c = � = 1). The
identity N × N matrix is denoted by IN . The Minkowski
metric is adopted with signature (+, − , − ,−). Greek indices
span from 0 to 3 and refer to space-time coordinates xμ =
(x0,x) with x0 corresponding to the time variable t . Also,
∂μ ≡ ∂/∂xμ = (∂t ,∇) and d4x ≡ dt d3x. Latin indices span
from 1 to 3 and denote the spatial variables, i.e., x = (x1,x2,x3)
and ∂i ≡ ∂/∂xi . Summation over repeated indexes is assumed.
In particular, for arbitrary four-vectors a and b, we have
a · b ≡ aμbμ = a0b0 − a · b and a2 ≡ a · a. The Feynman
slash notation is used: /a

.= aμγ μ, where γ μ = (γ 0,γ ) are
the Dirac matrices (see below). The average of an arbitary
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complex-valued function f (x,�) with respect to a phase
� is denoted by 〈f 〉. In Euler-Lagrange equations (ELEs),
the notation “δa :” means that the corresponding equation is
obtained by extremizing the action integral with respect to a.

III. BASIC FORMALISM

As for any quantum particle or nondissipative wave [30],
the dynamics of a Dirac electron [24] is governed by the least
action principle δA = 0, where A is the action integral

A =
∫

L d4x, (1)

and L is the Lagrangian density given by [31]

L = i

2
[ψ̄γ μ(∂μψ) − (∂μψ̄)γ μψ] − ψ̄q /Aψ − ψ̄mψ. (2)

Here q and m are the particle charge and mass, ψ is a complex
four-component wave function, and ψ̄

.= ψ†γ 0 is its Dirac
conjugate. The Dirac matrices γ μ satisfy

γ μγ ν + γ νγ μ = 2gμνI4, (3)

where gμν is the Minkowski metric tensor. Hence,

/a/b + /b/a = 2(a · b)I4, (4)

/a/a = a2I4, (5)

for any pair of four-vectors a and b. In this work, the standard
representation of the Dirac matrices is used:

γ 0 =
(
I2 0

0 −I2

)
, γ =

(
0 σ

−σ 0

)
, (6)

where σ = (σx,σy,σz) are the 2 × 2 Pauli matrices. Note that
these matrices satisfy

(γ μ)† = γ 0γ μγ 0. (7)

We consider the interaction of an electron with an EM field
such that the four-vector potential A has the form

A(εx,�) = Abg(εx) + Aosc(εx,�). (8)

Here Abg(εx) describes a background field (if any) that is slow,
as determined by a small dimensionless parameter ε, which is
yet to be specified. The other part of the vector potential,

Aosc(εx,�) = Re[Aosc,c(εx)ei�], (9)

describes a rapidly oscillating EM wave field, e.g., a laser
pulse. Here Aosc,c(εx) is a complex four-vector describing
the laser envelope with a slow space-time dependence, and
� is a rapid phase. The EM wave frequency is defined
by ω(εx)

.= −∂t�, and the wave vector is k(εx)
.= ∇�.

Accordingly, kμ .= −∂μ� = (ω,k). We describe Aosc within
the GO approximation [32] and assume that the interaction
takes place in vacuum. Then, the four-wavevector k satisfies
the vacuum dispersion relation

k2 = ω2 − k2 = 0, (10)

which can also be expressed as

/k/k = k2I4 = 0. (11)

Furthermore, a Lorentz gauge condition is chosen for the
oscillatory field such that

∂μAμ
osc = 0. (12)

In this work, we neglect radiation damping and assume

ω′/ωc � 1, (13)

where ωc
.= m is the Compton frequency and ω′ is the

frequency in the electron rest frame. Then, pair production
(and annihilation) can be neglected. We also assume

ε
.= max

(
1

ωτ
,

1

|k|�
)

� 1, (14)

where τ and � are the characteristic temporal and spatial scales
of k, Abg, and Aosc,c. Using this ordering and the Lagrangian
density (2), we aim to derive a reduced Lagrangian density
that describes the ponderomotive (�-averaged) dynamics of an
electron accurately enough to capture the spin-orbital coupling
effects to the leading order in ε. As shown in Refs. [33,34],
this requires that O(ε) terms be retained when approximating
the Lagrangian density (2). Such reduced Lagrangian density
is derived as follows.

IV. PONDEROMOTIVE MODEL

In this section, we derive a ponderomotive Lagrangian
density for the four-component Dirac wave function.

A. Wave function parametrization

Consider the following representation for the four-
component wave function:

ψ(x) = ξeiθ . (15)

Here θ (x) is a fast real phase, and ξ (εx,�) is a complex four-
component vector slow compared to θ (x). In these variables,
the Lagrangian density (2) is expressed as

L = i

2
[ξ̄ γ μ(∂μξ ) − (∂μξ̄ )γ μξ ] + ξ̄ (/π − q /Aosc − mI4)ξ, (16)

where

πμ(εx)
.= pμ − qA

μ

bg, (17)

pμ(εx)
.= −∂μθ. (18)

It is convenient to parametrize ξ in terms of the “semiclassi-
cal” Volkov solution (Appendix A) since the latter becomes the
exact solution of the Dirac equation in the limit of vanishing
ε. Specifically, we write

ξ (εx,�) = �eiθ̃ϕ. (19)

Here ϕ(εx,�) is a near-constant function with an asymptotic
representation of the form

ϕ(εx,�) =
∞∑

n=−∞
ε|n|ϕn(εx)ein� (20)
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(so that ϕ → ϕ0 → const at ε → 0), the real phase θ̃ (εx,�) is
given by

θ̃(εx,�)
.= q

π · k

∫ �

π · Aosc d�′

− q2

2(π · k)

∫ � (
A2

osc − 〈
A2

osc

〉)
d�′ (21)

and has the property 〈θ̃〉 = 0, and �(εx,�) is a matrix defined
as follows:

�(εx,�)
.= I4 + q

2(π · k)
/k /Aosc. (22)

Notice also that the Dirac conjugate of ξ is given by

ξ̄ = (�eiθ̃ϕ)†γ 0 = e−iθ̃ ϕ†�†γ 0 = e−iθ̃ ϕ̄γ 0�†γ 0, (23)

where

γ 0�†γ 0 = γ 0

[
I4 + q

2(π · k)
/A
†
oscγ

0γ 0/k†
]
γ 0

= I4 + q

2(π · k)
/Aosc/k. (24)

Here we used Eqs. (3), (7), and (22).

B. Lagrangian density in the new variables

Inserting Eqs. (19) and (23) into Eq. (16) leads to

L = ϕ̄γ 0�†γ 0 /π�ϕ︸ ︷︷ ︸
=L1

−ϕ̄mγ 0�†γ 0�ϕ︸ ︷︷ ︸
=L2

−ϕ̄γ 0�†γ 0q /Aosc�ϕ︸ ︷︷ ︸
=L3

+ i

2
[ϕ̄γ 0�†γ 0γ μ�(∂μϕ) − c.c.]︸ ︷︷ ︸

=L4

−ϕ̄γ 0�†γ 0(/∂θ̃ )�ϕ︸ ︷︷ ︸
=L5

+ i

2
ϕ̄[γ 0�†γ 0γ μ(∂μ�) − H.c.]ϕ︸ ︷︷ ︸

=L6

. (25)

Let us explicitly calculate each term in Eq. (25). Substituting
Eqs. (22) and (24) into L1 leads to

L1 = ϕ̄γ 0�†γ 0 /π�ϕ

= ϕ̄

[
I4 + q

2(π · k)
/Aosc/k

]
/π

[
I4 + q

2(π · k)
/k /Aosc

]
ϕ

= ϕ̄

[
/π + q

2(π · k)
( /Aosc/k /π + /π/k /Aosc)

+ q2

4(π · k)2
/Aosc/k /π/k /Aosc

]
ϕ

= ϕ̄

[
/π + q /Aosc + qAosc · k

π · k
/π − qAosc · π

π · k
/k

+ q2Aosc · k
π · k

/Aosc − q2A2
osc

2(π · k)
/k

]
ϕ, (26)

where we used Eqs. (4), (5), and (11). Similarly,

L2 = −ϕ̄mγ 0�†γ 0�ϕ

= −ϕ̄m

[
I4 + q

2(π · k)
/Aosc/k

][
I4 + q

2(π · k)
/k /Aosc

]
ϕ

= −ϕ̄m

[
I4 + q

2(π · k)
( /Aosc/k + /k /Aosc)

]
ϕ

= −ϕ̄m

(
1 + qAosc · k

π · k

)
ϕ, (27)

where we used Eq. (11) to obtain the third line and Eq. (4) to
get the last line. For L3, one obtains

L3 = −ϕ̄γ 0�†γ 0q /Aosc�ϕ

= −ϕ̄

[
I4 + q /Aosc/k

2(π · k)

]
q /Aosc

[
I4 + q/k /Aosc

2(π · k)

]
ϕ

= −ϕ̄

[
q /Aosc + q2

π · k
/Aosc/k /Aosc

+ q3

4(π · k)2
/Aosc/k /Aosc/k /Aosc

]
ϕ

= −ϕ̄

[
q /Aosc + 2q2Aosc · k

π · k
/Aosc − q2A2

osc

π · k
/k

+ q3Aosc · k
2(π · k)2

/Aosc/k /Aosc

]
ϕ. (28)

The terms L4, L5, and L6 in Eq. (25) involve space-time
derivatives of (θ̃ ,�,ϕ), which have slow space-time and rapid
� dependencies. For convenience, let us write the derivative
operator ∂μ as follows:

∂μf (εx,�) = εdμf (εx,�) − kμ∂�f (εx,�), (29)

where f is an arbitrary function and dμ indicates a derivation
with respect to the first argument of f . In this notation, L4 can
be written as follows:

L4 = i

2
[ϕ̄γ 0�†γ 0γ μ�(∂μϕ) − c.c.]

= − i

2
[ϕ̄γ 0�†γ 0/k�(∂�ϕ) − c.c.]

+ iε

2
[ϕ̄γ 0�†γ 0γ μ�(dμϕ) − c.c.]

= − i

2
[ϕ̄/k(∂�ϕ) − (∂�ϕ̄)/kϕ]

+ iε

2
[ϕ̄γ 0�†γ 0γ μ�(dμϕ) − c.c.], (30)

where in the third line, we used Eqs. (11), (22), and (24).
Similarly, substituting Eq. (21) into L5 leads to

L5 = −ϕ̄γ 0�†γ 0(/∂θ̃ )�ϕ

= ϕ̄

[
I4 + q /Aosc/k

2(π · k)

]
/k(∂�θ̃ )

[
I4 + q/k /Aosc

2(π · k)

]
ϕ

− εϕ̄

[
I4 + q /Aosc/k

2(π · k)

]
(/dθ̃ )

[
I4 + q/k /Aosc

2(π · k)

]
ϕ

= ϕ̄/kϕ

[
qAosc · π

π · k
− q2A2

osc

2(π · k)
+ q2

〈
A2

osc

〉
2(π · k)

]

− εϕ̄

[
I4 + q /Aosc/k

2(π · k)

]
(/dθ̃ )

[
I4 + q/k /Aosc

2(π · k)

]
ϕ. (31)
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Finally, the last term L6 gives

L6 = i

2
ϕ̄[γ 0�†γ 0γ μ(∂μ�) − H.c.]ϕ

= iε

2
ϕ̄

{[
I4 + q /Aosc/k

2(π · k)

]
/d

[
q/k /Aosc

2(π · k)

]

− dμ

[
q /Aosc/k

2(π · k)

]
γ μ

[
I4 + q/k /Aosc

2(π · k)

]}
ϕ. (32)

Substituting Eqs. (26)–(32) into Eq. (25) leads to

L = − i

2
[ϕ̄/k(∂�ϕ) − (∂�ϕ̄)/kϕ]

+ ϕ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

− mI4

]
ϕ + F + G, (33)

where

F .= iε

2
[ϕ̄γ 0�†γ 0γ μ�(dμϕ) − c.c.] (34)

and

G .= ϕ̄

[
qχ

π · k
(/π − mI4) − q2χ

π · k
/Aosc − q3χ

2(π · k)2
/Aosc/k /Aosc

]
ϕ

− εϕ̄

[
I4 + q /Aosc/k

2(π · k)

]
(/dθ̃)

[
I4 + q/k /Aosc

2(π · k)

]
ϕ

+ iε

2
ϕ̄

{[
I4 + q /Aosc/k

2(π · k)

]
/d

[
q/k /Aosc

2(π · k)

]

− dμ

[
q /Aosc/k

2(π · k)

]
γ μ

[
I4 + q/k /Aosc

2(π · k)

]}
ϕ. (35)

Here we introduced χ (εx,�)
.= k(εx) · Aosc(εx,�). From

Eqs. (12) and (29), one has kμ∂�A
μ
osc = εdμA

μ
osc, so

χ = ε

∫ �

dμAμ
osc(εx,�′) d�′. (36)

Hence, it is seen that χ = O(ε), so G = O(ε).

C. Approximate Lagrangian density

The reduced Lagrangian density L that governs the time-
averaged, or ponderomotive, dynamics can be derived as the
time average of L, as usual [35,36]. In our case, the time
average coincides with the � average, so

L .= 〈L〉. (37)

Remember that we are interested in calculating L with
accuracy up to O(ε). Using Eqs. (11) and (20) and also the
fact that χ is shifted in phase from Aosc by π/2 [cf. Eq. (36)],
it can be shown that 〈G〉 = O(ε2). Therefore, the contribution
of G to L can be neglected. Similarly, we can also neglect the
first term in Eq. (33) since

− i

2
〈ϕ̄/k(∂�ϕ) − (∂�ϕ̄)/kϕ〉 =

∞∑
n=−∞

nε|2n|φ̄n/kφn = O(ε2),

(38)

where we substituted the asymptotic expansion (20). The
second term in Eq. (33) gives〈

ϕ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

− mI4

]
ϕ

〉

= ϕ̄0

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

− mI4

]
ϕ0 + O(ε2). (39)

By following similar considerations, we also calculate 〈F〉,
namely, as follows. Averaging the first term in F gives

〈ϕ̄0γ
0�†γ 0γ μ�dμϕ0〉

= ϕ̄0

〈[
I4 + q /Aosc/k

2(π · k)

]
γ μ

[
I4 + q/k /Aosc

2(π · k)

]〉
dμϕ0

= ϕ̄0

[
γ μ + q2

4(π · k)2
〈 /Aosc/kγ μγ νkν /Aosc〉

]
dμϕ0

= ϕ̄0

[
γ μ + q2

4(π · k)2
〈 /Aosc/k(2kμ − /kγ μ) /Aosc〉

]
dμϕ0

= ϕ̄0

[
γ μ + kμ q2

2(π · k)2
〈 /Aosc/k /Aosc〉

]
dμϕ0

= ϕ̄0�
μdμϕ0, (40)

where we used Eqs. (3) and (11). We also introduced the
modified Dirac matrices

�μ(εx)
.= γ μ + kμ q2

2(π · k)2
〈 /Aosc/k /Aosc〉

= γ μ + kμ q2

2(π · k)2
〈 /Aosc(2χ − /Aosc/k)〉

= γ μ − kμ q2

2(π · k)2
〈 /Aosc /Aosc〉/k

= γ μ − kμ
q2

〈
A2

osc

〉
2(π · k)2

/k. (41)

Gathering the previous results, we obtain the following
reduced Lagrangian density:

L = i

2
[φ̄�μ(∂μφ) − (∂μφ̄)�μφ]

+ φ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

− mI4

]
φ + O(ε2), (42)

where φ
.= ϕ0. Since only slow space-time dependencies

appear in Eq. (42), we dropped the “εdμ” notation for slow
space-time derivatives and returned to the “∂μ” notation.

V. REDUCED MODEL

In this section, the Lagrangian density (42) is further
simplified by considering only positive-kinetic-energy particle
states. The resulting model describes two-component wave
functions instead of four-component wave functions, which
leads to explicit identification of the spin-coupling term.

A. Particle and antiparticle states

First let us briefly review the case when ε is vanishingly
small. In this case, ∂μφ can be neglected, so Eq. (42) can be
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approximated as

L0[θ,φ,φ̄] = φ̄

[
/π + /k

q2
〈
A2

osc

〉
2(π · k)

− mI4

]
φ, (43)

where φ, φ̄, and θ can be treated as independent variables.
[The Lagrangian density L0 depends on θ in the sense that
it depends on πμ, which is defined through ∂μθ (Sec. IV A).]
When varying the action with respect to φ̄, the corresponding
ELE is

δφ̄: (/λ − mI4)φ = 0, (44)

where

λμ(εx)
.= πμ + αkμ (45)

is a quasi four-momentum [37] and

α(εx)
.= q2

〈
A2

osc

〉
2(π · k)

. (46)

The local eigenvalues are obtained by solving

det(/λ − mI4) = 0. (47)

Since the local dispersion relation (47) has the same form as
that of the free-streaming Dirac particle [38], one has

λ · λ = π · π + q2
〈
A2

osc

〉 = m2, (48)

where we used Eq. (10). Solving for π0 leads to

π0 = −∂tθ − qVbg = ±
√

(∇θ − qAbg)2 + m2
eff . (49)

Here meff is the “effective mass” [19–21] given by

m2
eff(εx)

.= m2 − q2
〈
A2

osc

〉
(εx). (50)

(The minus sign is due to the chosen metric signature.)
Equation (49) is the well known Hamilton-Jacobi equation that
governs the ponderomotive dynamics of a relativistic spinless
particle interacting with an oscillating EM vacuum field and a
slowly varying background EM field [39–42]. The two roots in
Eq. (49) represent solutions for the particle and the antiparticle
states.

B. Eigenmode decomposition

Corresponding to the eigenvalues given by Eq. (49), there
exists four orthonormal eigenvectors hq which are obtained
from Eq. (44) and represent the particle and the antiparticle
states. Since hq form a complete basis, one can write φ = hqη

q ,
where ηq are scalar functions. Recall also that pair production
is neglected in our model due to the assumption (13). Let
us hence focus on particle states, merely for clarity, which
correspond to positive kinetic energies

εeff =
√

π2 + m2
eff (51)

in the limit of vanishing ε. We will assume that only such
states are actually excited (we call these eigenmodes “active”),
whereas the antiparticle states acquire nonzero amplitudes

only through the medium inhomogeneities (we call these
eigenmodes “passive”). When designating the active mode
eigenvectors by h1,2 and the passive mode eigenvectors by
h3,4, we have

ηq =
{
O(ε0), q = 1,2

O(ε1), q = 3,4
(52)

As shown in Ref. [33], due to the mutual orthogonality of
all hq , the contribution of passive modes to L is o(ε), so it
can be neglected entirely. In other words, for the purpose of
calculating L, it is sufficient to adopt φ ≈ h1η

1 + h2η
2. It is

convenient to write this active eigenmode decomposition in a
matrix form

φ(εx) = �η, (53)

where

�(εx) =
√

m + λ0

2εeff

(
I2
σ ·λ

m+λ0

)
(54)

is a 4 × 2 matrix having h1 and h2 as its columns and

η(εx)
.=
(

η1

η2

)
. (55)

It is to be noted that η1(εx) and η2(εx) describe wave envelopes
corresponding to the spin-up and spin-down states.

When inserting the eigenmode representation (53) into
Eq. (42), one obtains [33]

L = K − η†(E − U)η + o(ε), (56)

where

K .= i

2
[η†�†γ 0�μ�(∂μη) − c.c.], (57)

E .= ∂tθ + εeff + qVbg, (58)

U .= i

2
[�†γ 0�μ(∂μ�) − H.c.]. (59)

The terms K and U , which are of order ε, represent corrections
to the lowest-order (in ε) Lagrangian density. Specifically, for
K one obtains (Appendix B 1)

K = i

2
[η†(dtη) − (dtη

†)η], (60)

where dt
.= ∂t + v0 · ∇ is a convective derivative associated to

the zeroth-order velocity field

v0(εx)
.= ∂εeff

∂p
= π

εeff
. (61)

Regarding U , one obtains the ponderomotive spin-orbit-
coupling Hamiltonian (Appendix B 2)

U = 1
2σ · �eff, (62)
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where

�eff(εx) = q

εeff

(
Bbg − λ × Ebg

m + λ0

)
+ q2

2εeff(π · k)

[
k × ∇〈

A2
osc

〉 − (λ × k)∂t

〈
A2

osc

〉
m + λ0

− k0λ × ∇〈
A2

osc

〉
m + λ0

]

+ q2
〈
A2

osc

〉
2εeff(π · k)2

{(
k0λ

m + λ0
− k

)
× [k0qEbg + k × qBbg − (πμ∂μ)k] − λ × k

m + λ0
[k · qEbg − (πμ∂μ)k0]

}
(63)

and π · k = εeff(ω − k · v0).
When substituting Eqs. (51), (60), and (62) into Eq. (56),

one obtains the following effective Lagrangian density:

L = −η†(∂tθ +
√

π2 + m2
eff + qVbg

)
η

+ i

2
[η†(dtη) − (dtη

†)η] + 1

2
η†σ · �effη. (64)

The first line of Eq. (64) represents the zeroth-order Lagrangian
density that would describe a spinless relativistic electron. The
second line, which is of order ε, introduces spin-orbit-coupling
effects. Also note that the Lagrangian density (64) is analogous
to that describing circularly-polarized EM waves in isotropic
dielectric media when polarization effects are included [43].

VI. CONTINUOUS-WAVE MODEL

Here we construct a “fluid” description of the Dirac electron
described by Eq. (64). Let us adopt the representation η =
z
√
I, where I(x)

.= η†η is a real function (called the action
density) and z(x) is a unit vector such that z†z ≡ 1. (From
now on, we drop ε in the function arguments to simplify the
notation, but we will continue to assume that the corresponding
functions are slow.) Since the common phase of the two
components of z can be attributed to θ , we parametrize z

in terms of just two real functions ζ (x) and ϑ(x):

z(ϑ,ζ ) =
(

e−iϑ/2 cos(ζ/2)

eiϑ/2 sin(ζ/2)

)
. (65)

As in the case of the Pauli particle [34], ζ determines the
relative fraction of “spin-up” and “spin-down” quanta. Note
that, under this reparametrization, the spin vector S(x) is

S .= 1

2
z†σz =

⎛
⎜⎝sin ζ cos ϑ

sin ζ sin ϑ

cos ζ

⎞
⎟⎠, (66)

and S
.= |S| = 1/2.

Expressing Eq. (64) in terms of the four independent
variables (θ,I,ζ,ϑ) leads to

L[θ,I,ζ,ϑ] = −I
[
∂tθ +

√
π2 + m2

eff + qVbg

− 1
2 (dtϑ) cos ζ − S(ζ,ϑ) · �eff

]
, (67)

where one can immediately recognize the first line of Eq. (67)
as Hayes’ representation of the Lagrangian density of a GO
wave [44]. Four ELEs are yielded. The first one is the action
conservation theorem

δθ : ∂tI + ∇ · (IV) = 0. (68)

The flow velocity is given by V = v0 + u, where

u .= − ∂

∂p

[
1

2
(v0 · ∇ϑ) cos ζ + S(ζ,ϑ) · �eff

]
(69)

is the spin-driven deflection of the electron’s center of mass.
The second ELE is a Hamilton-Jacobi equation

δI: ∂tθ +
√

π2 + m2
eff + qVbg

− 1
2 (dtϑ) cos ζ − S(ζ,ϑ) · �eff = 0, (70)

whose gradient yields the momentum equation

∂tπ + (v0 · ∇)π = qEbg + qv0 × Bbg

+ ∇〈
A2

osc

〉
2εeff

+ ∇
[

1

2
(dtϑ) cos ζ + S · �eff

]
.

(71)

Note that the first line is the well known relativistic momentum
equation. The first term in the second line represents the well
known nonlinear ponderomotive force due to the oscillating
EM field [41], and the last two terms represent the pondero-
motive Stern-Gerlach spin force. Finally, the remaining two
ELEs are

δζ : (dtϑ) sin ζ = 2(∂ζ S) · �eff, (72)

δϑ : ∂t (I cos ζ ) + ∇ · (v0I cos ζ ) = 2(∂ϑS) · �eff . (73)

These equations describe the phase-averaged electron spin
precession. Together, Eqs. (68)–(73) provide a complete
“fluid” description of the ponderomotive dynamics of a Dirac
electron.

VII. POINT-PARTICLE MODEL

A. Ponderomotive model

The ray equations corresponding to the above field equa-
tions can be obtained as a point-particle limit. In this limit, I
can be approximated with a delta function,

I(t,x) = δ[x − X(t)], (74)

where X(t) is the location of the center of the wave packet. As
in Refs. [33,34], the Lagrangian density (67) can be replaced
by a point-particle Lagrangian Leff

.= ∫
L d3x, namely,

Leff[X,P,Z,Z†]

= P · Ẋ + i�

2
(Z†Ż − Ż†Z) − Heff(t,X,P,Z,Z†), (75)

where the effective Hamiltonian is given by

Heff(t,X,P,Z,Z†)
.= γeffmc2 + qVbg − �

2
Z†σ · �effZ. (76)
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Here P(t)
.= �∇θ (t,X(t)) is the canonical momentum, and

Z(t)
.= z(t,X(t)) is a complex two-component vector. For

clarity, we have reintroduced c and �. The effective Lorentz
factor associated with the particle oscillation-center motion is

γeff(t,X,P)
.=
√

1 + a2
0 +

(
P
mc

− qAbg

mc2

)2

, (77)

where

a2
0(t,X)

.= −q2
〈
A2

osc

〉
m2c4

(78)

is positive under the assumed metric. For example, suppose
a standard representation of the laser vector potential is
Aosc = Re[A⊥(x)ei�], where A⊥ · k = 0 [39,45,46]. Then,
the Lorentz condition (12) determines the scalar potential
envelope Vosc,c = i(∇ · A⊥)c2/ω = O(ε). Hence, Eq. (78)
yields

a2
0 ≈ q2|A⊥|2

2m2c4
, (79)

where we neglected a term O(ε2). Note also that, loosely
speaking, a2

0 is the measure of the particle quiver energy in
units mc2. Accordingly, nonrelativistic interactions correspond
to a0 � 1.

The effective precession frequency �eff is given by

�eff(t,X,P) = �1 + �2 + �3 + O(ε2), (80)

where

�1(t,X,P)
.= q

γeffmc

(
Bbg − � × Ebg

mc + �0

)
, (81)

�2(t,X,P)
.= − mc2

2γeff(� · k)

[
k × ∇a2

0

− (� × k)∂ta
2
0

mc2 + �0c
− ω� × ∇a2

0

mc2 + �0c

]
, (82)

�3(t,X,P)
.= − mc2a2

0

2γeff(� · k)2

(
ω�

mc2 + �0c
− k

)

×
[
ωqEbg

c2
+ k × qBbg

c
− (�μ∂μ)k

]

+ mca2
0

2γeff(� · k)2

� × k
mc + �0

[k · qEbg − (�μ∂μ)ω].

(83)

Here �μ = (mcγeff,P − qAbg/c), kμ = (ω/c,k), ∂μ =
(c−1∂t ,∇), and

�μ(t,X,P) = �μ − kμ m2c2a2
0

2(� · k)
. (84)

Notably, �μ → �μ at a0 → 0 and �μ → �μ −
kμmc2a0/(2ω) at a0 → +∞. Also, if the spin-orbital
interaction is neglected, the present model yields the spinless
ponderomotive model that was developed in Ref. [42] for a
particle interacting with a laser pulse and a slow background
field simultaneously.

Treating X(t), P(t), Z(t), and Z†(t) as independent variables
leads to the following ELEs:

δP: Ẋ = mc2∂Pγeff − ∂P(S · �eff), (85)

δX: Ṗ = −∂X(mc2γeff + qVbg) + ∂X(S · �eff), (86)

δZ†: Ż = i

2
�eff · σZ, (87)

δZ: Ż† = − i

2
Z†�eff · σ , (88)

where S(t) is the particle spin vector,

S(t)
.= �

2
Z†(t)σZ(t), (89)

and S = �/2. Equations (77)–(89) form a complete set of
equations. The first terms on the right-hand side of Eqs. (85)
and (86) describe the dynamics of a relativistic spinless
particle in agreement with earlier theories [39–42]. The second
terms describe the ponderomotive spin-orbit coupling. Equa-
tions (87) and (88) also yield the following ponderomotive
equation for spin precession,

Ṡ = S × �eff, (90)

which can be checked by direct substitution. Equations (75)–
(90) are the main result of this work.

B. Extended BMT model

Let us compare our ponderomotive point-particle
Lagrangian (75) with the complete point-particle Lagrangian
of a Dirac electron [33]

LXBMT[X,P,Z,Z†]

= P · Ẋ + i�

2
(Z†Ż − Ż†Z) − HXBMT(t,X,P,Z,Z†), (91)

where the Hamiltonian is given by

HXBMT(t,X,P,Z,Z†)
.= γmc2 + qV − �

2
Z†σ · �BMTZ (92)

and the BMT precession frequency [26] is

�BMT(t,X,P) = q

mc

[
B
γ

− (v0/c) × E
1 + γ

]
. (93)

Here v0
.= �/(γm), and

γ (t,X,P)
.=
√

1 +
(

P
mc

− qA
mc2

)2

. (94)

Note that the EM potentials and fields in Eqs. (91)–(94) in-
clude both the rapidly oscillating EM wave and the background
EM field (if any). Obviously, Leff → LXBMT when Aosc → 0;
i.e., the two Lagrangians are equivalent in the absence of the
EM wave.

The corresponding ELEs are

δP: Ẋ = mc2∂Pγ − ∂P(S · �BMT), (95)

δX: Ṗ = −∂X(mc2γ + qV ) + ∂X(S · �BMT), (96)

δZ†: Ż = i

2
�BMT · σZ, (97)

δZ: Ż† = − i

2
Z†�BMT · σ . (98)
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FIG. 1. (Color online) Motion of a single Dirac electron under the action of a relativistically intense laser pulse (numerical simulation): the
black dashed curves correspond to the ponderomotive model described by the Lagrangian (75); the colored curves correspond to the XBMT
model described by the Lagrangian (91). (a) Schematic of the interaction; yellow and red is the laser field, blue is the particle; arrows denote
the direction of the laser wave vector k, the oscillating vector potential Aosc, the particle canonical momentum P, and the particle spin S. The
unit vectors along the reference axes are denoted by ei . (b)–(f) show the components of the particle canonical momentum P, Lorentz factor γ ,
velocity V, and spin S. The red, green, and blue lines correspond to projections on the x, y, and z axes, respectively. We consider an electron
initially traveling along the z axis and colliding with a counterpropagating laser pulse. The initial position of the particle is X0 = (�/2)ex ,
the initial momentum is P0/(mc) = 20ez, and the normalized initial spin vector is S0/� = 0.14ex + 0.33ey + 0.35ez. The envelope of the
vector potential of the laser pulse is qAosc/(mc2) = 30 sech[(z − 5� + ct)/�] exp [−(x2 + y2)/�2]ex , where � = 20|k|−1. These parameters
correspond to a maximum intensity Imax � 1.23 × 1021 W/cm2 for a 1 μm laser.

These equations also yield the BMT spin precession equation,
similar to Eq. (90), with �eff replaced by �BMT. However, as
opposed to the original BMT model [26,31], Eqs. (95)–(98)
also capture the spin-orbital coupling. Because of that, they
represent a generalization of the BMT model, which we call
“extended BMT” (XBMT).

The XBMT model applies, in principle, to arbitrary fields,
provided that (i) the spin-orbital coupling is weak and (ii)
the particle de Broglie wavelength λ remains much shorter
than the smallest spatial scale of the EM fields. In application
to the particle motion in a laser field, it can describe
details that the ponderomotive model misses due to phase
averaging. In this sense, the XBMT model is more precise than
the ponderomotive model above. However, the XBMT (and,
similarly, BMT) model is also more complicated for the same
reason and, in application to laser fields, requires λ/λL � 1,
where λL is the laser wavelength. No such assumption was
made to derive the ponderomotive model above. Instead,
Eq. (13) was assumed, which implies

λ/λL � c/v0, (99)

where v0 is the particle speed. For nonrelativistic particles
(v0 � c), this can be satisfied even at λL � λ. In that sense, the
ponderomotive model is, perhaps surprisingly, more general
than XBMT.

VIII. NUMERICAL SIMULATIONS

To test our ponderomotive model, we applied it to simulate
the single-particle motion and compare the results with the
XBMT model in two cases. In the first test case, we consider the

dynamics of a Dirac electron colliding with a counterpropagat-
ing relativistically strong (a0 
 1) laser pulse. The simulation
parameters are given in the caption of Fig. 1, and a schematic of
the interaction is presented in Fig. 1(a). From Figs. 1(b)–1(e),
it is seen that the ponderomotive model accurately describes
the mean evolution of the particle momentum, kinetic energy,
and velocity. The main contribution to the variations in Vx and
Vz is the ponderomotive force caused by spatial gradient of the
effective mass. However, the acceleration on the xz plane is
caused by the Stern-Gerlach force, as shown in Fig. 1(e). Also
notice that the ponderomotive model is extremely accurate
in describing the particle spin precession, as can be seen in
Fig. 1(f).

In the second test case, we consider a Dirac electron
immersed in a background magnetic field along the z axis and
interacting with a laser plane wave traveling along the z axis.
The simulation parameters are given in Fig. 2. As can be seen in
Figs. 2(a)–2(f), the ponderomotive model accurately describes
the particle position, momentum, velocity, and spin. Notably,
these simulations also support the spinless model developed
in Ref. [42] for a particle interacting with a relativistic laser
field and a large-scale background field simultaneously.

IX. CONCLUSIONS

In this paper, we report a point-particle ponderomotive
model of a Dirac electron oscillating in a high-frequency field.
Starting from the first-principle Dirac Lagrangian density,
we derived a reduced phase-space Lagrangian that describes
the relativistic time-averaged dynamics of such particle in a
geometrical-optics laser pulse in vacuum. The pulse is allowed
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FIG. 2. (Color online) Motion of a Dirac electron under the action of an external background field and a relativistically intense laser pulse
(numerical simulation): the black dashed curves correspond to the ponderomotive model described by the Lagrangian (75); the colored curves
correspond to the XBMT model described by the Lagrangian (91). (a)–(c) show the components of the particle canonical momentum P,
velocity V, and spin S. The red, green, and blue lines correspond to projections on the x, y, and z axes, respectively. We consider an electron
initially traveling along the z axis and colliding with a counterpropagating laser pulse. (d)–(f) show the components of the particle position
X. The initial position of the particle is X0 = 0, the initial momentum is P0/(mc) = (−2ey + 3ez), and the normalized initial spin vector is
S0/� = 0.14ex + 0.33ey + 0.35ez. A background magnetic field is added such that qAbg/(mc2) = 0.1(−yex + xey)/2, which corresponds to
a static homogeneous magnetic field Bbg � 10.7 MG aligned towards the z axis. The envelope of the vector potential of the laser pulse is
assumed to have the form qAosc/(mc2) = 10 sech[(z − 8� + ct)/�]ex , where � = 20|k|−1. These parameters correspond to a maximum laser
intensity Imax � 1.37 × 1020 W/cm2 for a 1 μm laser.

to have an arbitrarily large amplitude (as long as radiation
damping and pair production are negligible) and, in case of
nonrelativistic interactions, a wavelength comparable to the
electron de Broglie wavelength. The model captures the BMT
spin dynamics, the Stern-Gerlach spin-orbital coupling, the
conventional ponderomotive forces, and the interaction with
large-scale background fields (if any). Agreement with the
BMT spin precession equation is shown numerically. Also,
the well known theory in which ponderomotive effects are
incorporated in the particle effective mass is reproduced as a
special case when the spin-orbital coupling is negligible.

As a final note, the underlying essence of this paper is
to illustrate the convenience of using the Lagrangian wave
formalism for deriving reduced point-particle models. To
derive the ponderomotive model above by using the point-
particle equations of motion and spin would have been a
torturous task. However, the bilinear structure of the wave
Lagrangian enabled a straightforward deduction of the reduced
model. Following this reasoning, we believe that the ability to
treat particles and waves on the same footing, i.e. as fields,
may have far-reaching implications, e.g., for plasma theory.
This will be discussed in future publications.
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APPENDIX A: SEMICLASSICAL VOLKOV STATES

Volkov states are eigenstates of the Dirac equation with
a homogeneous EM vacuum field [47–49]. Here we present
a derivation of these states. Consider the second-order Dirac
equation, (

DμDμ + m2 + 1
2qσμνF

μν
)
ψ = 0, (A1)

where iDμ
.= i∂μ − qAμ is the covariant derivative, σμν

.=
i[γμ,γν]/2 is twice the (relativistic) spin operator, and Fμν =
∂μAν − ∂νAμ is the EM tensor. We start with the case
where Abg is constant and Aosc(�) is strictly periodic. Since
Eq. (A1) is linear, we search for ψ in the Floquet-Bloch form.
Specifically, we consider ψ = ueiθ , where u is a periodic
four-component function of � and pμ

.= −∂μθ is constant. It
is also convenient to rewrite u in the form u = eiθ̃�ϕ, where
�(�) is a matrix operator, θ̃ (�) is a real scalar function, and
ϕ is a constant four-component spinor. This leads to[

π2 − m2 + 2(π · k)∂�θ̃ − 2q(π · Aosc) + q2A2
osc

]
�ϕ

− 2i(π · k)(∂��)ϕ − 1
2qσμνF

μν�ϕ = 0, (A2)

where πμ .= pμ − qA
μ

bg.
Equation (A2) can be satisfied identically if we require that

θ̃ and � satisfy the following equations:

π2 − m2 + 2(π · k)∂�θ̃ − 2q(π · Aosc) + q2A2
osc = 0, (A3)

−2i(π · k)(∂��) − 1
2qσμνF

μν� = 0. (A4)

The integration constants can be chosen arbitrarily since they
merely redefine ϕ. We hence require � → I4 at vanishing
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Aosc and 〈θ̃〉 = 0 (so that θ̃ represents a phase shift due to the
oscillating EM field). For �, this gives

�(εx,�) = T exp

[
iq

4(π · k)

∫ �

σμνF
μν(�′) d�′

]

= I4 + q

2(π · k)
/k /Aosc(�), (A5)

where we used

σμνF
μν = σμν(∂μAν − ∂νAμ)

= −σμν

(
kμ∂�Aν

osc − kν∂�Aμ
osc

)
= −i(/k∂� /Aosc − ∂� /Aosc/k)

= −2i/k∂� /Aosc. (A6)

Here /k /Aosc + /Aosc/k = 0 since k · Aosc = 0 [see Eq. (12)]. We
note that the ordered exponential [denoted by T exp(. . .)]
becomes an ordinary exponential due to

σμνF
μν(�1)σαξF

αξ (�2)

= −4/k[∂� /Aosc(�1)]/k[∂� /Aosc(�2)]

= 4/k/k∂� /Aosc(�1) /Aosc(�2)

= 0, (A7)

where we substituted Eq. (11). To obtain θ̃ , we average
Eq. (A3). This leads to Eq. (47), which serves as a dispersion
relation for πμ. Subtracting Eq. (47) from Eq. (A3) and solving
for θ̃ leads to Eq. (21). Finally, if one substitutes ψ = �eiθ+θ̃ ϕ

into the first-order Dirac equation, one finds that constant ϕ

indeed satisfies that equation.
The above solution can be extended also to a wave with a

slowly inhomogeneous amplitude; i.e., when the vector poten-
tial has the form A(εx,�). This can be done by substituting the
ansatz ψ = �eiθ+θ̃ ϕ into the Dirac equation with the same �

and θ̃ , as before, and requiring that pμ is slow. This will lead
to an equation for ϕ with a perturbation linear in ε. Hence, one
can construct a solution for ϕ as an asymptotic power series
in ε. The general form of such series is given by Eq. (20), and
finding the coefficients ϕn explicitly is not needed here.

APPENDIX B: AUXILIARY FORMULAS

1. Kinetic term K
Let us reexpress Eq. (57) as

K = i

2
[η†�†γ 0�0�(∂tη) + η†�†γ 0	 · �(∇η) − c.c.].

(B1)

Substituting Eqs. (41), (45), (46), and (54) into �†γ 0�0�

leads to

�†γ 0�0� = m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)(
γ 0γ 0 − k0α

π · k
γ 0/k

)(
I2
σ ·λ

m+λ0

)

= m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)[
I4 − k0α

π · k

(
k0 −σ · k

−σ · k k0

)](
I2
σ ·λ

m+λ0

)

= m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)[( I2

σ ·λ
m+λ0

)
− k0α

π · k

(
k0I2 − (σ ·k)(σ ·λ)

m+λ0

−σ · k + k0 σ ·λ
m+λ0

)]

= m + λ0

2εeff

{
1 + λ2

(m + λ0)2
− k0α

π · k

[
k0 − 2k · λ

m + λ0
+ k0 λ2

(m + λ0)2

]}
I2

= m + λ0

2εeff

{
1 + (λ0)2 − m2

(m + λ0)2
− k0α

π · k

[
k0 − 2k · λ

m + λ0
+ k0 (λ0)2 − m2

(m + λ0)2

]}
I2,

= I2, (B2)

where λ · λ = m2 from Eq. (48). Also notice that λ · k = π · k from Eqs. (10) and (45). Similarly,

�†γ 0	� = m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)(
γ 0γ − k

α

π · k
γ 0/k

)(
I2
σ ·λ

m+λ0

)

= m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)[(0 σ

σ 0

)
− k

α

π · k

(
k0 −σ · k

−σ · k k0

)](
I2
σ ·λ

m+λ0

)

= m + λ0

2εeff

(
I2

σ ·λ
m+λ0

)[( σ (σ ·λ)
m+λ0

σ

)
− k

α

π · k

(
k0I2 − (σ ·k)(σ ·λ)

m+λ0

−σ · k + k0 σ ·λ
m+λ0

)]

= m + λ0

2εeff

{
σ (σ · λ) + (σ · λ)σ

m + λ0
− k

α

π · k

[
k0 − 2k · λ

m + λ0
+ k0 λ2

(m + λ0)2

]}
I2

= λ − kα

εeff
I2 = π

εeff
I2. (B3)
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Hence, notice the following corollary of Eqs. (B2) and (B3)
that we will use below:

(�†γ 0�μ�)∂μ = I2

(
∂t + π

εeff
· ∇

)
= I2dt , (B4)

where dt is the same as defined in Sec. V B. Substituting
Eq. (B4) into Eq. (57) leads to Eq. (60).

2. Expression for U
An alternative representation of U in Eq. (59) is

U = −Im[�†γ 0�μ(∂μ�)], (B5)

where “Im” is short for the “anti-Hermitian part of.” To
calculate ∂μ�, let us consider � as a function

�(t,x) = �(εeff(t,x),λ0(t,x),λ(t,x)). (B6)

Notice that the contribution to Eq. (B5) from the partial
derivative with respect to εeff is zero. This is shown by using
Eqs. (54) and (B4):

Im
[
�†γ 0�μ

(
∂εeff �

)
∂μεeff

]
= − 1

2 Im[(�†γ 0�μ�)∂μ ln εeff]

= − 1
2 Im(dt ln εeff)

= 0 (B7)

since εeff is real. Then, U = −Pt − Px − Qt − Qx , where

Pt
.= Im[�†γ 0�0(∂λi

�)(∂tλi)], (B8)

Px
.= Im[�†γ 0	(∂λi

�) · (∇λi)], (B9)

Qt
.= Im[�†γ 0�0(∂λ0�)(∂tλ

0)], (B10)

Qx
.= Im[�†γ 0	(∂λ0�) · (∇λ0)]. (B11)

When substituting Eqs. (41), (45), (46), and (54) into Pt ,
we obtain

Pt = Im
[
�†γ 0�0

(
∂λi

�
)
(∂tλ

i)
] = m + λ0

2εeff
Im

[(
I2

σ ·λ
m+λ0

)
γ 0�0

(
0

σ ·∂tλ
m+λ0

)]

= m + λ0

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[
I4 − k0α

π · k

(
k0 −σ · k

−σ · k k0

)](
0

σ ·∂tλ
m+λ0

)}

= 1

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[( 0

σ · ∂tλ

)
− k0α

π · k

(−(σ · k)(σ · ∂tλ)

σ · k0∂tλ

)]}

= 1

2εeff
Im

[
(σ · λ)(σ · ∂tλ)

m + λ0
+ k0α

π · k
(σ · k)(σ · ∂tλ) − k0α

π · k
(σ · λ)(σ · k0∂tλ)

m + λ0

]

= 1

2εeff
σ ·

[
λ × ∂tλ

m + λ0
− k0α

π · k
λ × k0∂tλ

m + λ0
+ α

π · k
k × k0∂tλ

]
. (B12)

The next term, Px , is calculated similarly:

Px = Im
[
�†γ 0	

(
∂λi

�
) · (∇λi)

] = m + λ0

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[(0 σ

σ 0

)
− k

α

π · k

(
k0 −σ · k

−σ · k k0

)]
·
(

0
∇(σ ·λ)
m+λ0

)}

= 1

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[((σ · ∇)(σ · λ)

0

)
− α

π · k

(−(σ · k)(k · ∇)(σ · λ)

k0(k · ∇)(σ · λ)

)]}

= 1

2εeff
Im

[
(σ · ∇)(σ · λ) + α

π · k
(σ · k)(k · ∇)(σ · λ) − k0α

π · k
(σ · λ)(k · ∇)(σ · λ)

m + λ0

]

= 1

2εeff
σ ·

[
∇ × λ + α

π · k
k × (k · ∇)λ − k0α

π · k
λ × (k · ∇)λ

m + λ0

]
. (B13)

Furthermore, the expressions for Qt and Qx are given by

Qt = Im[�†γ 0�0(∂λ0�)(∂tλ
0)] = m + λ0

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[
I4 − k0α

π · k

(
k0 −σ · k

−σ · k k0

)]( 0

− σ ·λ
(m+λ0)2 ∂tλ

0

)}

= ∂tλ
0

2εeff(m + λ0)
Im

{(
I2

σ ·λ
m+λ0

)[( 0

−σ · λ

)
− k0α

π · k

(
(σ · k)(σ · λ)

−k0σ · λ

)]}

= ∂tλ
0

2εeff(m + λ0)
Im

[
− (σ · λ)(σ · λ)

m + λ0
− k0α

π · k
(σ · k)(σ · λ) + (k0)2α

π · k
(σ · λ)(σ · λ)

m + λ0

]
= − k0∂tλ

0

2εeff(m + λ0)

α

π · k
σ · (k × λ),

(B14)
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Qx = Im[�†γ 0	(∂λ0�) · (∇λ0)]

= m + λ0

2εeff
Im

{(
I2

σ ·λ
m+λ0

)[(0 σ

σ 0

)
− k

α

π · k

(
k0 −σ · k

−σ · k k0

)]
·
(

0

− σ ·λ
(m+λ0)2 ∇λ0

)}

= 1

2εeff(m + λ0)
Im

{(
I2

σ ·λ
m+λ0

)[(−(σ · ∇λ0)(σ · λ)

0

)
− (k · ∇λ0)

α

π · k

(
(σ · k)(σ · λ)

−k0(σ · λ)

)]}

= 1

2εeff(m + λ0)
Im

{
−(σ · ∇λ0)(σ · λ) − (k · ∇λ0)

α

π · k

[
(σ · k)(σ · λ) − k0 (σ · λ)(σ · λ)

m + λ0

]}

= 1

2εeff(m + λ0)
σ ·

[
λ × ∇λ0 − α

π · k
(k × λ)(k · ∇λ0)

]
. (B15)

Substituting Eqs. (B12)–(B15) leads to

U = − 1

2εeff
σ ·

[
∇ × λ + λ × (∇λ0 + ∂tλ)

m + λ0
+ α

π · k
k × (kμ∂μ)λ − α

π · k
k0λ × (kμ∂μ)λ + (k × λ)(kμ∂μ)λ0

m + λ0

]
. (B16)

Equation (B16) can be simplified as follows. The first term can be rewritten as

∇ × λ =∇ × (π + kα) = ∇ × (∇θ − qAbg + kα) = −qBbg − k × ∇α (B17)

since ∇ × k = ∇ × ∇� = 0. Moreover, we note that ∂2
μνθ = ∂2

νμθ . Hence,

∇λ0 = ∇π0 + α∇k0 + k0∇α � −∇(∂tθ + qVbg) − α∂tk + k0∇α

= −∂t (∇θ − qAbg) − q(∇Vbg + ∂tAbg) − α∂tk + k0∇α = −∂tλ + qEbg + k0∇α + k∂tα. (B18)

Similarly, the numerator of the last term simplifies to

k0λ × (kμ∂μ)λ + (k × λ)(kμ∂μ)λ0 = λ × [k0(kμ∂μ)π − k(kμ∂μ)π0], (B19)

where

(kμ∂μ)k =k0∂tk + (k · ∇)k = k0∇∂t� + ki∇∂i� = −k0∇k0 + ki∇ki = −∇[(k0)2 − k2]/2 = 0 (B20)

and (kμ∂μ)k0 = 0. Here we used Eq. (10). By substituting Eqs. (B17)–(B19) and explicitly showing the derivatives of α, we
obtain

U = q

2εeff
σ ·

(
Bbg − λ × Ebg

m + λ0

)
+ q2

4εeff(π · k)
σ ·

[
k × ∇〈

A2
osc

〉 − (λ × k)∂t

〈
A2

osc

〉
m + λ0

− k0λ × ∇〈
A2

osc

〉
m + λ0

]

+ α

2εeff(π · k)
σ ·

(
k0λ

m + λ0
− k

)
× [∇(π · k) + (kμ∂μ)π] − α

2εeff(π · k)

σ · (λ × k)

m + λ0
[(kμ∂μ)π0 − ∂t (π · k)]. (B21)

We can simplify the last two lines of Eq. (B21) with

∇(π · k) + (kμ∂μ)π = ∇(π0k0 − k · π) + k0∂tπ + (k · ∇)π � k0qEbg + π0∇k0 + (k · ∇)π − ∇(k · π )

= k0qEbg − π0∇∂t� + (k · ∇)π − πi∇∂i� − ki∇πi

= k0qEbg − π0∂tk − (π · ∇)k + (k · ∇)π − ki∇πi = k0qEbg − (πμ∂μ)k − k × (∇ × π)

= k0qEbg − (πμ∂μ)k − k × [∇ × (∇θ − qAbg)] = k0qEbg + k × qBbg − (πμ∂μ)k, (B22)

(kμ∂μ)π0 − ∂t (π · k) = k0∂tπ
0 + k · ∇π0 − ∂t (π

0k0 − π · k) = k · ∇π0 + ∂t (π · k) − π0∂tk
0

� k · (−∂tπ + qEbg) + ∂t (π · k) − π0∂tk
0 = qk · Ebg − π0∂tk

0 + π · ∂tk

= qk · Ebg − π0∂tk
0 + π · ∂t∇� = qk · Ebg − π0∂tk

0 − (π · ∇)k0 = qk · Ebg − (πμ∂μ)k0. (B23)

Hence, we obtain Eqs. (62) and (63).
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