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Energy-level shifts and the decay rate of an atom in the presence of a conducting wedge
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In the present article explicit expressions for the decay rate and energy-level shifts of an atom in the presence
of an ideal conducting wedge, two parallel plates, and a half sheet are obtained in the framework of the canonical
quantization approach. The angular and radial dependences of the decay rate for different atomic polarizations
of an excited atom and also of the energy-level shifts are depicted and discussed. The consistency of the present
approach in some limiting cases is investigated by comparing the relevant results obtained here to the previously
reported results.
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I. INTRODUCTION

An immediate consequence of the quantization of an
electromagnetic field is the occurrence of the field fluctuation
in the vacuum state. The effect of vacuum fluctuations on
atomic systems leads, for example, to observable phenomena
such as spontaneous emission or atomic energy-level shifts
[1,2]. These radiative properties are explained as the reaction
of an atom to the existence of the zero-point field.

In quantum field theory the existence of any modification
in the presence of an environment is an interesting subject
that has been widely studied. In principle, the calculations of
these radiation properties in the presence of an environment
therefore become the search for a quantized electromagnetic
field in the presence of material fields in order to have
a correct picture of fluctuation-induced effects on atomic
systems. Therefore, we should quantize the electromagnetic
field in the presence of material fields [3–6] in order to have
the explicit form of the field operators. A similar situation
arises in static or dynamical Casimir effects, which are a
consequence of constrained vacuum fluctuations imposed by
boundary conditions on macroscopic objects [7]. The presence
of a boundary surface gives rise to alterations of vacuum field
fluctuations and accordingly the energy-level shifts and the
decay rate of atomic systems change as the atom changes its
position with respect to boundary surfaces [8–15]. Formalisms
using different methods for only the dipole decay rate were
explained in other works [16–18]. In this paper we use
another approach that describes both the decay rate and the
energy-level shifts of an atom in terms of the imaginary part of
the dimensionless vector potential Green’s function. We will
see that for the dipole decay rate, agreement with the results
of the other approaches is found.

As expected, the deexcitation process for different wedges
can also occur for an atom inside a wedge. This phenomenon
suggests that the work presented here is applicable to the area
of quantum information processing and the system might serve
as a qubit [19].

In the present work we investigate the decay rate and
energy-level shift of an atom in the presence of a conducting
wedge in the framework of canonical quantization based on
previous works [4–6]. The main ingredients of the formalism
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are the components of the Green’s tensor of the electromag-
netic field in the presence of material fields. We have analyzed
various important limiting cases such as a plane sheet, two
parallel plates, and a half sheet.

The paper is organized as follows. The basic formulation is
presented in Sec. II. In Sec. III the decay rate and the energy-
level shifts of an atom in the presence of a perfectly conducting
wedge is investigated. In Sec. IV the spontaneous emission of
an atom located between parallel plates (the limiting case of
a wedge) is investigated. In Sec. V the radiation properties of
an atom in the presence of a half sheet (the limiting case of a
wedge) are studied.

II. BASIC FORMULAS

A. Effective products for the electric field

In a general, linear, isotropic magnetodielectric medium,
the electric field satisfies the equation [6]

∇ ×
(

1
μ

∇ × E
)

− ω2

c2
εE = μ0ω

2PN + iμ0ω∇ × MN, (1)

where PN (r,ω) and MN (r,ω) are polarization and magneti-
zation noise fields and ε(r,ω) and μ(r,ω) are dimensionless
permittivity and permeability of the medium, respectively. The
constant μ0 is the permeability of the vacuum. The Green’s
dyadic D(r,r′; ω) of Eq. (1) satisfies

∇ ×
(

1
μ

∇ × D
)

− ω2

c2
εD = μ0ω

21δ(r − r′). (2)

Let us assume for simplicity that the medium is nonmagnetic.
Then from Eq. (2) the electric field E(r,ω) can be written in
terms of the polarization noise PN (r,ω) as

E(r,ω) =
∫

dr′D(r,r′; ω) · PN (r′,ω). (3)

The Green’s dyadic in real time can be obtained from the
Fourier transform

D(r,r′; τ ) =
∫ +∞

−∞

dω

2π
e−iωτ D(r,r′; ω), (4)

where τ = t − t ′. Equation (3) in space-time can be written as
[20–22]

E(r,t) =
∫∫

dr′dt ′D(r,r′; t − t ′) · PN (r′,t ′). (5)
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The quantum mechanical monochromatic expectation values
are related to the Green’s dyadic through [23]

〈Ei(r)Ej (r′)〉ω = �μ0

π
ω2Dij (r,r′ : ω), (6)

〈Hi(r)Hj (r′)〉ω = �

πμ0
lim
r′→r

1

μ2(r,ω)

× [
−→∇ × D(r,r′; ω) × ←−∇ ′]ij . (7)

Here we are considering the medium as a perfect conductor,
so we solve Eq. (2) in vacuum with the restriction that the field
components on boundaries should satisfy perfect conductor
boundary conditions.

B. Decay rate of an initially excited atom

To find the radiative properties of an atom in the presence
of a boundary surface we need the explicit form of the field
operators. Finding the explicit form of these operators in
a general geometry, due to the intricate structure of field
expressions, is a very difficult task or even impossible if we
are not invoking numerical calculations. However, we can
find an alternative approach to find the radiative properties
of an atom without dealing with the explicit forms of the field
operators. In this approach we try to find the electromagnetic
dyadic tensor satisfying all boundary conditions imposed on
the boundaries. Here the boundary that we are interested in is
an ideal conducting wedge that can be transformed to a plane,
two parallel plates, and a half plane as limiting cases. Here a
very short introduction to the derivation of the basic formulas
is given and the details of the calculations can be found in, for
example, [24].

Up to the dipole approximation, the decay rate of an excited
atom is given by Fermi’s golden rule

� = 2π

�2

∑
f

|〈f |d0 · Ê(r0,t)|0〉|2δ(ωf − ω0), (8)

where r0, ω0, and d0 are the position, transition frequency, and
dipole moment of the atom, respectively. The kets |f 〉 and |0〉
are the final and vacuum states of the electromagnetic field,
respectively. If we decompose the electric field into positive
and negative frequency parts and make use of the fluctuation-
dissipation theorem and Kubo’s formula [25]

〈0|Ê+
α (r,ω)Ê−

β (r′,ω′)|0〉 = 2�ω2ImDαβ(r,r′,ω)δ(ω − ω′),

(9)

we can find the decay rate of an initially excited atom as [24]

� = 2

�
ω2Im[d0 · D(r0,r0,ω) · d0], (10)

where D(r0,r0,ω) is the Green’s tensor of the electromagnetic
field in the presence of boundaries with the components Dαβ

appearing in (9). For dimensional considerations, usually the
Green’s tensor is written in terms of the dimensionless Green’s
tensor Dαβ(r,r′,ω) as

Dαβ(r,r′,ω) = ω

4πε0c3
Dαβ(r,r′,ω), (11)

where ε0 and c are the permittivity and the velocity of light in
free space, respectively. Throughout the paper the summation
convention is assumed, i.e., repeated indices are summed
over the three Cartesian coordinates x,y,z. In the absence
of boundaries or material fields, the decay rate of an excited
atom turns out to be

�0 = d2
0ω3

0

3πε0�c3
. (12)

By inserting Eqs. (11) and (12) into (10), we finally find

�α = 3
2�0Im[Dαα(r0,r0,ω0)], (13)

where the subscript α refers to the different orientations of the
dipole moment of the atom. Although it is generally understood
that spontaneous emission of an excited atom is a pure
quantum mechanical effect and requires a quantum mechanical
treatment, according to the correspondence principle, there
should be a correspondence between the decay rate of an atom
and the energy dissipation by a classical dipole in the same
geometry in large quantum numbers. Actually, the classical
equation for energy dissipation by a dipole based on Poynting’s
theorem is given by [26]

dW

dt
= ω3

0

2ε
Im[d0 · D(r0,r0,ω) · d0]. (14)

The mathematical similarity between Eqs. (10) and (14) is
inspiring and up to a scale, both Eqs. (10) and (14) depend
on geometrical components involved in the Green’s tensor
similarly, so we expect a similar behavior when plotting these
equations in geometrical components. In a simple experimen-
tal setup discussed in [27], a classical analog of a quantum
electrodynamics effect was investigated. In this experiment
the fractional power loss for a classical dipole antenna located
on the central symmetry line of a wedge-shaped cavity was
obtained and a comparison of the results with those obtained
here from a quantum treatment shows agreement up to a scale
as expected. For an experimental investigation of a classical
dipole antenna between parallel mirrors the reader is referred
to [28].

C. Energy-level shift

Following a general formalism for calculating the energy-
level shift of an atom in the presence of a boundary surface
[24,29,30], we can find the contribution of boundary surfaces
to the energy-level shift as

�En = ze4
�

32π3ε2
0c

3m2

∫ mc
�

0

q

q2 + γ 2
QαβIm[Dαβ(r0,r0,ω)]dq,

(15)

where q = ω/c and

Qαβ = −〈n| ∂2

∂xα∂xβ

1

R
|n〉,

γ = |En − Em|av/c� = 17.8R∞/c�. (16)

The constant R∞ is the Rydberg unit of energy. The cutoff
frequency mc/� in Eq. (15), which is the Compton wavelength
of the electron, is needed due to the validity of the dipole
approximation [24]. The main ingredient of the basic formulas
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(13) and (15) is the dimensionless Green’s tensor. In the next
section the decay rate of an initially excited atom and also
the energy-level shift are obtained for an atom located at an
arbitrary point inside a perfectly conducting wedge.

III. PERFECTLY CONDUCTING WEDGE

A. Decay rate

Consider an initially excited atom located at an arbitrary
point P inside an infinite wedge with perfect conducting walls
and the apex angle α (Fig. 1). Due to the symmetry along
the z component, the point P is determined by (r0,θ0) in the
polar coordinates system. The Green’s tensor in the presence
of a wedge with perfect conducting walls is now a textbook
problem and the interested reader can find the details of its
derivation in, for example, [31–33]. The relevant components
in Eq. (13) are the diagonal components Drr , Dθθ , and Dzz

given in Appendix A.
Using Eqs. (A14)–(A16), the decay rate of an initially

excited atom for different polarizations and apex angles is
depicted in terms of the distance from the z axis for θ0 = α/2
(see Fig. 2). The decay rates are normalized to the decay rates
in free space �0. Distances are also normalized to wavelength
λ. In all of these diagrams when r0 � λ, i.e., the atom is far
away from the axis, the decay rate tends to the free-space decay
rate as expected.

For a 90◦ wedge (α = π
2 ), the dimensionless decay rate �r

�0
for an initially excited and radially polarized atom is depicted
in Fig. 2 (see curve a). A comparison of the result with the
experimental results reported in [27] for a classical dipole is
inspiring.

In Fig. 3 the damping rate for z polarization is depicted in
terms of the scaled distance r0

λ
for different wedge angles. It

can be seen that for distances from the cusp smaller than a
certain value determined by the opening angle of the wedge
there are regions for which the atom will not decay at all and
these suppressions are followed by a sudden jump. It should
be noted that here we are considering a perfect conductor; for
a good conductor the influence depth δ of the electromagnetic
fields inside the conductor is not zero, so the results will be
unreliable for distances smaller than or comparable to δ. In a

FIG. 1. The atom is located at point P inside a wedge with
perfectly conducting walls.

FIG. 2. (Color online) Dimensionless decay rate of an excited
atom for three orientations �r

�0
(curve a), �θ

�0
(curve b), and �z

�0
(curve

c) in terms of the dimensionless distance r0
λ

from the origin along the
symmetry line for the wedges with different α.

real investigation one should consider real metals. In Fig. 4 the
typical behavior of the decay rate in terms of the angle θ for the
fixed distance r0 = 20λ from the z axis is depicted for different
apex angles α. As expected, these curves are symmetric around
the middle point θ0 = α/2. It is interesting to note that if we
consider a wedge with a certain α, for example, α = π

3 (see
Figs. 2 and 4), a change in the dipole orientation changes
the decay rate from superradiant to subradiant and vice versa,
depending on the location of the atomic dipole.

0 2 4 6 8 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0

a
b

c

FIG. 3. (Color online) Dimensionless decay rate �z

�0
of the excited

atom in terms of the dimensionless distance r0
λ

from the origin along
the symmetry line for the wedges with different α: α = π/2 (curve
a), α = π/3 (curve b), and α = π/40 (curve c).
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FIG. 4. (Color online) Dimensionless decay rate for three orientations of the polarization of the excited atom (a) �r

�0
, (b) �θ

�0
, and (c) �z

�0
in

terms of the angle θ0 and fixed distance r0
λ

= 20, for α = π/3,π/2,π .

For the special case α = π , the wedge degenerates into a
plane sheet. In this case, using Eqs. (A14)–(A16), we find the
perpendicular and parallel decay rates as

�‖
�0

= �z + �θ

�0

= 1 − 3

2

[
sin(2r0q)

(2r0q)
+ cos(2r0q)

(2r0q)2
− sin(2r0q)

(2r0q)3

]
(17)

and

�⊥
�0

= �r

�0
= 1 − 3

[
cos(2r0q)

(2r0q)2
− sin(2r0q)

(2r0q)3

]
, (18)

which are in agreement with the results reported in [24].

B. Energy-level shift

In this section we find the energy-level shift of an atom
placed at an arbitrary point defined by (r0,θ0) in Fig. 1. In order
to use Eq. (15), we note that the repeated indices are summed
over the three Cartesian coordinates α,β = x,y,z. In Cartesian
coordinates the Green’s dyadic can be obtained from the one
in cylindrical coordinates. For the off-diagonal components,
as we expected, due to the symmetry of the problem we find

Im[Dαz(r0,r0,ω)] = Im[Dzα(r0,r0,ω)] = 0, (19)

in which α = x,y and for two other off-diagonal components
it is easy to show that

Im[Dxy(r0,r0,ω) + Dyx(r0,r0,ω)] � Im{Tr[D(r0,r0,ω)]},
(20)

where

Tr[D] = Dxx + Dyy + Dzz = Drr + Dθθ + Dzz. (21)

Therefore, we can rewrite Eq. (15) as [24]

�En = ze4
�

24π2ε2
0c

3m2
|ψ(0)|2

×
∫ mc

�

0

q

q2 + γ 2

∑
α

Im[Dαα(r0,r0,ω)]dq. (22)

Using the above equation, we find an expression for the
energy-level shifts inside the wedge as given in Appendix B.
In Fig. 5 the relative energy-level shifts of an atom inside the
wedge are depicted in terms of the distance from the z axis
along the symmetry line for different apex angles α. We see that
when α = π

3 , at the region near the narrow end of the wedge,
the energy-level shifts are much smaller compared to the
vacuum case, which means that in this region the atom is more
stable in its excited state. For the more realistic case, where
there are good conductors instead of ideal ones, the Green’s
dyadic should be obtained in the presence of matter with
a frequency-dependent dielectric function where plasmonic
effects are important and the results drastically change near
real conductors.

Using Eqs. (6) and (B1), we can define the potential energy
ε for a polarizable point particle or an atom as [20]

ε = − 1
2α(0)〈E2〉, (23)
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FIG. 5. (Color online) Relative energy-level shifts of an atom
inside the wedge in terms of the dimensionless distance 2γ r0 along
the symmetry line of the wedge with different apex angles α: α = π

(curve a), α = π/3 (curve b), α = π/50 (curve c), and α = π/100
(curve d).

where α(0) is the static electric dipole polarizability of the
particle. In compact notation we have

〈E2〉 = 〈
E2

r

〉 + 〈
E2

θ

〉 + 〈
E2

z

〉
. (24)

One can obtain the expression for the Casimir-Polder energy
between the wedge and the atom. The force F is derivable as
the gradient of the particle’s potential energy. The calculation
of this energy was done in [20]. However, a small check of
our calculations for the Green’s dyadic in the presence of
a wedge shows that when p = 1 (α = π ) we recover the
expected Casimir-Polder result for an atom above an ideal
conducting plane

ε(d) = − 3

32

α(0)

π2d4
, (25)

where d = r0 sin θ0 denotes the distance between the atom
and the plane. This is the usual expression for Casimir-Polder
interaction [20,34]. For experimental verification see [35].

It should be noted that for the special case α = 2π , we have
p = 1

2 , that is, the wedge degenerates into a half sheet. In this
case p is not an integer, so we cannot use Eq. (A4). In Sec. V,
using the Green’s dyadic reported in [36], we will find the
decay rate and energy-level shifts of an atom in the vicinity of
an ideal conducting half sheet.

IV. DECAY RATE OF AN ATOM BETWEEN
PARALLEL PLATES

There has been increasing interest in the computation of
the decay rate of an excited atom located between two parallel
plates. Initially, Barton discussed extensively the QED of
charged particles between conducting plates [14,15]. Also,
Hulet et al. reported the experimental inhibited spontaneous
emission by a Rydberg atom [37].

In the limiting case α → 0, r → ∞ such that rα = d, the
wedge geometry tends to two parallel plates separated by
a distance d, so we can find the decay rates of an excited
atom in this case by taking the limit of the wedge results.
Using Eqs. (A16) and (A15), the results for the parallel and
perpendicular polarizations are depicted in Figs. 6 and 7,
respectively, in terms of the dimensionless variables y0

λ
and

d
λ

, where y = r sin θ0 → rθ0 denotes the distance to the lower
plate, d is the distance between the plates, and λ is the
transition wavelength. For the case of parallel polarization,
a strong suppression occurs for d

λ
< 1

2 since the decay rate
is proportional to the density of modes in free space and in
a cavity formed by two infinite conducting plates, the mode
density for the electric field parallel to the surface vanishes for
d
λ

< 1
2 [38].

In Figs. 6(a) and 7(a) the two curves are analogous in the
sense that both are symmetric with respect to the equidistant
point to the plates. However, there is a remarkable difference
since the regions of enhancement of the former correspond
to regions of suppression of the latter and vice versa. Also in
Figs. 6(b) and 7(b), the distances between successive peaks
for �‖

�0
and local minima of �⊥

�0
are λ. These results are in

agreement with those reported in [37,38]. Again a comparison
of the results depicted in Fig. 6(b) with the experimental data
reported in [28] for a classical dipole antenna is interesting.

V. CONDUCTING HALF SHEET

A. Green’s tensor

To find the decay rate and energy-level shifts of an atom
near a conducting half sheet, let us consider the geometry
depicted in Fig. 8. The conducting half sheet is defined by the
xz plane for x � 0. For this geometry, the electric-type dyadic

FIG. 6. (Color online) Dimensionless decay rate for parallel polarization of the excited atom between conducting plates in terms of the
dimensionless variables (b) d

λ
and (a) y0

λ
.
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FIG. 7. (Color online) Dimensionless decay rate for perpendicular polarization of the excited atom between conducting plates in terms of
the dimensionless variables (b) d

λ
and (a) y0

λ
.

Green’s function or Green’s tensor De1, satisfying boundary
conditions on the walls, is given in Appendix C.

B. Decay rate

To find �⊥ (�y in our notation) and the in-plane polariza-
tions �x or �z, we need the diagonal components of the Green’s
tensor. The calculations are straightforward and are given in
Appendix C. The decay rates for these two polarizations in
terms of the dimensionless distance r0

λ
along the curves a,

θ0 = π
50 ; b, θ0 = π

2 ; and c, θ0 = 5π
6 are depicted in Figs. 9(b)

and 10(b). The decay rates in terms of θ for fixed distances are
also depicted in Figs. 9(a) and 10(a), showing a symmetrical
behavior around θ0 = π , as expected. It is interesting to note
that in these figures, the presence of the half sheet affects
the decay rate only for angles θ0 < π/2 or θ0 > 3π/2; this is
because the emitted photon from the excited atom inside the
angle π/2 < θ0 < 3π/2 cannot be reflected back to the atom.

Let us as a consistency check find the limiting case where
the atom is placed at a distance far from the z axis or the edge of
the half sheet (see Fig. 8), where d is fixed and h → ∞. In this
limiting case using Eqs. (C12)–(C14) and (A10), we will find

�y

�0
= − 3

4q

[(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(−2 sin(qrr )

rr

)
+

(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(−2 sin(qri)

ri

)]∣∣∣∣
x→x ′,y→y ′,z→z′

, (26)

�x

�0
= 3

4q

[(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(−2 sin(qrr )

rr

)
−

(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(−2 sin(qri)

ri

)]∣∣∣∣
x→x ′,y→y ′,z→z′

, (27)

�z

�0
= 3

4q

[(
1 + 1

q2

∂

∂z′
∂

∂z′

)(−2 sin(qrr )

rr

)
−

(
1 + 1

q2

∂

∂z′
∂

∂z′

)(−2 sin(qri)

ri

)]∣∣∣∣
x→x ′,y→y ′,z→z′

. (28)

By taking the derivatives and evaluating the expressions at
r′ = r, we finally find

�y

�0
= 1 − 3

[
cos(2qd)

(2qd)2
− sin(2qd)

(2qd)3

]
(29)

FIG. 8. Geometry of a conducting half sheet.

and

�x

�0
= �z

�0
= 1 − 3

2

[
sin(2qd)

2qd
+ cos(2qd)

(2qd)2
− sin(2qd)

(2qd)3

]
,

(30)

which are the same results reported in [24] for an ideal con-
ducting plane, as expected. As another consistency check let us
find the Casimir force on the atom when it is polarized perpen-
dicular to the half sheet and directly above the edge. When the
atom is polarizable only in the y direction (see Fig. 8), the
only component of the Green’s dyadic that contributes is
the yy component. We insert this component into Eq. (24) and
the result of a straightforward calculation at θ = π leads to

〈E2〉 = 〈
E2

y

〉 = 0. (31)

This means that when the atom is polarized perpendicular to
the half sheet and located exactly above the edge of the half
sheet, there is no force on the atom, in agreement with the
result reported in [39].
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(a) (b)

FIG. 9. (Color online) Dimensionless decay rate �z

�0
of an excited atom in the vicinity of a half sheet (a) in terms of the angle θ0 ∈ (0,2π )

for fixed distances r0
λ

= 1 (curve a) and r0
λ

= 5 (curve b) and (b) along the lines θ0 = π

50 (curve a), θ0 = π

2 (curve b), and θ0 = 5π

6 (curve c).

C. Energy-level shifts

The energy-level shift of an atom in the presence of an ideal
conducting half sheet is

�En

�E0
n

= 1

4 ln mc
�γ

∫ mc
�

0

dq

q2 + γ 2
A, (32)

where A is given in Appendix D. The above expression for the
energy-level shift cannot be reduced any further to a simple
analytical form and one should invoke numerical calculations.
As before, when d is fixed and h → ∞ (see Fig. 8), the last
three terms in Eq. (D1) vanish and we find

�En

�E0
n

= 1 −
(

ln
mc

�γ

)−1 ∫ mc
�

0

qdq

q2 + γ 2

[
sin(2qd)

(2qd)

+ 2
cos(2qd)

(2qd)2
− 2

sin(2qd)

(2qd)3

]
, (33)

again in agreement with the result reported in [24], as expected.

VI. CONCLUSION

Explicit expressions for the decay rate and energy-level
shifts of an atom in the presence of an ideal conducting

wedge, two conducting parallel plates, and a half sheet have
been obtained in the framework of the canonical quantization
approach. The angular and radial dependences of the decay rate
for different atomic polarizations of an excited atom and also
of the energy-level shifts were depicted and discussed. The
consistency of the present approach in some limiting cases
was investigated by comparing the relevant results obtained
here to the previously reported results. For distances from
the cusp smaller than a certain value determined by the
opening angle of the wedge, there are configurations for
which the atom will not decay at all. This is more clearly
understood for the case of conducting parallel plates where,
for the case of a transition dipole moment parallel to the
plates, a strong suppression occurs for d

λ
< 1

2 since the mode
density for the electric field parallel to the surface vanishes
for d

λ
< 1

2 . The appearance of enhancement or inhibition of
the emission depends not only on the dipole location of
the atom but also on the dipole orientational of the atom
and the opening angle of the wedge. This study open the
way to devising cavity quantum electrodynamics systems,
such as the storage, processing, and retrieval of quantum bits
for practical realization of quantum information processing
[19].

(a) (b)

FIG. 10. (Color online) Dimensionless decay rate �y

�0
of an excited atom in the vicinity of a half sheet (a) in terms of the angle θ ∈ (0,2π )

for fixed distances r0
λ

= 1 (curve a) and r0
λ

= 5 (curve b) and (b) along the lines θ0 = π

50 (curve a), θ0 = π

2 (curve b), and θ0 = 5π

6 (curve c).
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APPENDIX A

The diagonal components Drr , Dθθ , and Dzz of the Green’s tensor in the presence of a perfect conducting wedge are given by
[31–33]

Drr = −2ip

q3

∫ +∞

−∞
dk eik(z−z′)

∞́∑
m=0

[
q2m2p2

η2rr ′ Jmp(ηr)H (1)
mp(ηr ′) + k2J ′

mp(ηr)H ′(1)
mp (ηr ′)

]
sin(mpθ ) sin(mpθ ′)

= −2ip

q3

[
1

rr ′
∂

∂θ

∂

∂θ ′

∫ +∞

−∞

q2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′) cos(mpθ ) cos(mpθ ′)

+ ∂

∂r

∂

∂r ′

∫ +∞

−∞

k2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′) sin(mpθ ) sin(mpθ ′)

]

= −ip

q3

[
1

rr ′
∂

∂θ

∂

∂θ ′

∫ +∞

−∞

q2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′){cos[mp(θ + θ ′)] + cos[mp(θ − θ ′)]}

+ ∂

∂r

∂

∂r ′

∫ +∞

−∞

k2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′){cos[mp(θ − θ ′)] − cos[mp(θ + θ ′)]}

]
, (A1)

Dθθ = −2ip

q3

∫ +∞

−∞
dk eik(z−z′)

∞́∑
m=0

[
k2m2p2

η2rr ′ Jmp(ηr)H (1)
mp(ηr ′) + q2J ′

mp(ηr)H ′(1)
mp (ηr ′)

]
cos(mpθ ) cos(mpθ ′)

= −2ip

q3

[
1

rr ′
∂

∂θ

∂

∂θ ′

∫ +∞

−∞

k2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′) sin(mpθ ) sin(mpθ ′)

+ ∂

∂r

∂

∂r ′

∫ +∞

−∞

q2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′) cos(mpθ ) cos(mpθ ′)

]

= −ip

q3

[
1

rr ′
∂

∂θ

∂

∂θ ′

∫ +∞

−∞

k2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′){cos[mp(θ − θ ′)] − cos[mp(θ + θ ′)]}

+ ∂

∂r

∂

∂r ′

∫ +∞

−∞

q2dk

η2
eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′){cos[mp(θ + θ ′)] + cos[mp(θ − θ ′)]}

]
, (A2)

Dzz = −2ip

q3

∫ +∞

−∞
dk η2eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′) sin(mpθ ) sin(mpθ ′),

= −ip

q3

∫ +∞

−∞
dk η2eik(z−z′)

∞́∑
m=0

Jmp(ηr)H (1)
mp(ηr ′){cos[mp(θ − θ ′)] − cos[mp(θ + θ ′)]}, (A3)

where p = π/α is defined for simplicity and η =
√

q2 − k2. We can henceforth set z = z′. For the case α = π/n, where n is a
natural number, the parameter p is an integer (p = n) and the summation over m can be done using Graf’s addition theorem [40]

p−1∑
n=0

K0(ζRn) = 2p

∞́∑
m=0

Imp(ζ r1)Kmp(ζ r2) cos(mpφ), (A4)

where

Rn =
√

r2
1 + r2

2 − 2r1r2 cos(φ + 2nπ/p). (A5)

Therefore, using Eq. (A4) and changing the integration variable u = k/q, the diagonal components can be written as

Drr = 2

πq2

[
1

rr ′

p−1∑
n=0

∫ +∞

0

du

u2 − 1

∂

∂θ

∂

∂θ ′ [K0(
√

u2 − 1qR1) + K0(
√

u2 − 1qR2)]

+
p−1∑
n=0

∫ +∞

0

u2du

u2 − 1

∂

∂r

∂

∂r ′ [K0(
√

u2 − 1qR2) − K0(
√

u2 − 1qR1)]

]
, (A6)
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Dθθ = 2

πq2

[
1

rr ′

p−1∑
n=0

∫ +∞

0

u2du

u2 − 1

∂

∂θ

∂

∂θ ′ [K0(
√

u2 − 1qR2) − K0(
√

u2 − 1qR1)]

+
p−1∑
n=0

∫ +∞

0

du

u2 − 1

∂

∂r

∂

∂r ′ [K0(
√

u2 − 1qR1) + K0(
√

u2 − 1qR2)]

]
, (A7)

Dzz = 2

π

p−1∑
n=0

∫ +∞

0
du(u2 − 1)[K0(

√
u2 − 1qR2) − K0(

√
u2 − 1qR1)], (A8)

where

R1 =
√

r2 + r ′2 − 2rr ′ cos(θ + θ ′ + 2nπ/p),

R2 =
√

r2 + r ′2 − 2rr ′ cos(θ − θ ′ + 2nπ/p). (A9)

Now using the formula [40]

∫ +∞

0
dx

Kν(β
√

x2 + z2)√
(x2 + z2)ν

x2μ+1 = 2μ�(μ + 1)

βμ+1zν−μ−1
Kν−μ−1(βz) (A10)

and doing some straightforward calculations, we finally find the imaginary part of the diagonal components of the Green’s tensor
as

Im[Drr (r0,r0,ω)] =
p−1∑
n=0

[(
cos x

x2
+ sin x

x
− sin x

x3

)
+ sin2

(
nπ

p

)(
cos x

x2
− sin x

x
− sin x

x3

)

−
(

cos xθ

x2
θ

+ sin xθ

xθ

− sin xθ

x3
θ

)
− sin2

(
θ + nπ

p

)(
cos xθ

x2
θ

− sin xθ

xθ

− sin xθ

x3
θ

)]
, (A11)

Im[Dθθ (r0,r0,ω)] = −
p−1∑
n=0

[
2

(
cos x

x2
− sin x

x3

)
− sin2

(
nπ

p

)(
cos x

x2
− sin x

x
− sin x

x3

)

+2

(
cos xθ

x2
θ

− sin xθ

x3
θ

)
− sin2

(
θ + nπ

p

)(
cos xθ

x2
θ

− sin xθ

xθ

− sin xθ

x3
θ

)]
, (A12)

Im[Dzz(r0,r0,ω)] =
p−1∑
n=0

[(
sin x

x
+ cos x

x2
− sin x

x3

)
−

(
sin xθ

xθ

+ cos xθ

x2
θ

− sin xθ

x3
θ

)]
, (A13)

where xθ = 2r0q sin(θ0 + nπ/p) and x = 2r0q sin(nπ/p). By inserting Eqs. (A11)–(A13) into (13), we find

�r

�0
= 3

2

p−1∑
n=0

[(
cos x

x2
+ sin x

x
− sin x

x3

)
+ sin2

(
nπ

p

)(
cos x

x2
− sin x

x
− sin x

x3

)

−
(

cos xθ

x2
θ

+ sin xθ

xθ

− sin xθ

x3
θ

)
− sin2

(
θ + nπ

p

)(
cos xθ

x2
θ

− sin xθ

xθ

− sin xθ

x3
θ

)]
, (A14)

�θ

�0
= −3

2

p−1∑
n=0

[
2

(
cos x

x2
− sin x

x3

)
− sin2

(
nπ

p

)(
cos x

x2
− sin x

x
− sin x

x3

)

+ 2

(
cos xθ

x2
θ

− sin xθ

x3
θ

)
− sin2

(
θ + nπ

p

)(
cos xθ

x2
θ

− sin xθ

xθ

− sin xθ

x3
θ

)]
, (A15)

�z

�0
= 3

2

p−1∑
n=0

[(
sin x

x
+ cos x

x2
− sin x

x3

)
−

(
sin xθ

xθ

+ cos xθ

x2
θ

− sin xθ

x3
θ

)]
. (A16)
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APPENDIX B

Using Eqs. (A11)–(A13), we find

Im

[∑
α

Dαα(r0,r0,ω)

]
=

p−1∑
n=0

2

[
sin x

x
− sin2

(
nπ

p

)(
sin x

x
− cos x

x2
+ sin x

x3

)
−

(
sin xθ

xθ

+ 2
cos xθ

x2
θ

− 2
sin xθ

x3
θ

)]
. (B1)

By substituting Eq. (B1) into Eq. (22), we find for the energy-level shifts inside the wedge

�En

�E0
n

=
(

ln
mc

�γ

)−1 p−1∑
n=0

∫ mc
�

0

q dq

q2 + γ 2

[
sin x

x
− sin2

(
nπ

p

)(
sin x

x
− cos x

x2
+ sin x

x3

)
−

(
sin xθ

xθ

+ 2
cos xθ

x2
θ

− 2
sin xθ

x3
θ

)]
,

(B2)

which for the special choice p = 1 tends to the familiar expression for an ideal conducting plane [24].

APPENDIX C

The electric-type Green’s tensor De1 is given by [32,33,36]

De1 = 1

2q

{(
I + ∇′∇′

q2

)[
e−iqri

ri

− iqI (ζ−,ri)

]
− Ir

(
I + ∇′∇′

q2

)[
e−iqrr

rr

− iqI (ζ+,rr )

]}

− i

q

[
x̂ sin

(
θ

2

)
− ŷ cos

(
θ

2

)]{[
x̂ sin

(
θ ′

2

)
− ŷ cos

(
θ ′

2

)]
H

(2)
0 (qp)√

rr ′ + 1

q
∇′ sin

(
θ ′

2

)
r + r ′
√

rr ′
H

(2)
1 (qp)

p

}
, (C1)

where

I = x̂x̂ + ŷŷ + ẑẑ, (C2)

Ir = x̂x̂ − ŷŷ + ẑẑ, (C3)

p =
√

(r + r ′)2 + (z − z′)2, (C4)

ri =
√

(x − x ′)2 + (y − y ′)2 + (z − z′)2 =
√

r2 + r ′2 − 2rr ′ cos(θ − θ ′) + (z − z′)2, (C5)

rr =
√

(x − x ′)2 + (y + y ′)2 + (z − z′)2 =
√

r2 + r ′2 − 2rr ′ cos(θ + θ ′) + (z − z′)2, (C6)

I (ζ,η) =
∫ ζ

0
dt

H
(2)
1 (ω

√
t2 + η2)√

t2 + η2
, (C7)

and ζ∓ = 2
√

rr ′ cos( θ∓θ ′
2 ). By making use of Eq. (C1), we find the diagonal components of the Green’s tensor as

Dyy = 1

2q

[(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(
e−iqri

ri

− iqI (ζ−,ri)

)
+

(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)]

− i

q

{
cos

(
θ

2

)
cos

(
θ ′

2

)
J0(qp)√

rr ′ − 1

q
cos

(
θ

2

)
∂

∂y ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]}
, (C8)

Dxx = 1

2q

[(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(
e−iqri

ri

− iqI (ζ−,ri)

)
−

(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)]

− i

q

{
sin

(
θ

2

)
sin

(
θ ′

2

)
J0(qp)√

rr ′ + 1

q
sin

(
θ

2

)
∂

∂x ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]}
, (C9)

Dzz = 1

2q

[(
1 + 1

q2

∂

∂z′
∂

∂z′

)(
e−iqri

ri

− iqI (ζ−,ri)

)
−

(
1 + 1

q2

∂

∂z′
∂

∂z′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)]
. (C10)

To calculate �y , we need the yy component of the Green’s tensor. Therefore, by inserting Eq. (C8) into Eq. (13), we find

�y

�0
= − 3

4q
Im

([(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)
+

(
1 + 1

q2

∂

∂y ′
∂

∂y ′

)(
e−iqri

ri

− iqI (ζ−,ri)

)]

−2i

{
cos

(
θ

2

)
cos

(
θ ′

2

)
J0(qp)√

rr ′ − 1

q
cos

(
θ

2

)
∂

∂y ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]})∣∣∣∣
x→x ′,y→y ′,z→z′

(C11)
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and for the in-plane polarizations �x or �z, we find

�x

�0
= 3

4q
Im

([(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)
−

(
1 + 1

q2

∂

∂x ′
∂

∂x ′

)(
e−iqri

ri

− iqI (ζ−,ri)

)]

+ 2i

{
sin

(
θ

2

)
sin

(
θ ′

2

)
J0(qp)√

rr ′ + 1

q
sin

(
θ

2

)
∂

∂x ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]})∣∣∣∣
x→x ′,y→y ′,z→z′

, (C12)

�z

�0
= 3

4q
Im

[(
1 + 1

q2

∂

∂z′
∂

∂z′

)(
e−iqrr

rr

− iqI (ζ+,rr )

)
−

(
1 + 1

q2

∂

∂z′
∂

∂z′

)(
e−iqri

ri

− iqI (ζ−,ri)

)]∣∣∣∣
x→x ′,y→y ′,z→z′

. (C13)

Using Eqs. (C11) and (C13) and doing straightforward calculations, we find

�y

�0
= 1

2
− 3

2

[
cos(2y0q)

(2y0q)2
− sin(2y0q)

(2y0q)3
+

(
2 cos(θ0/2) cos(3θ0/2) − cos(θ0)

2
− cos(2θ0)

2
+ sin2(θ0)

2

)
J1(2r0q)

(2r0q)2

−
(

sin2(θ0)

4

)
J2(2r0q)

2r0q
−

(
2 cos4(θ0/2) + sin2(θ0)

4

)
J0(2r0q)

2r0q
− 1

2

∫ 2r0q

0
dx

(
J1(x)

x
− J2(x)

x2

)

− 1

2

∫ 2r0q cos(θ0)

0
dx

z3J0(z) − [2z2 + (2y0q)2z2 − z4]J1(z) + 4(2y0q)2zJ2(z)

z5

]
, (C14)

�z

�0
= 1

2
− 3

4

[
sin(2y0q)

(2y0q)
+ cos(2y0q)

(2y0q)2
− sin(2y0q)

(2y0q)3
+

∫ 2r0qcos(θ0)

0
dx

(
J1(z)

z
− J1(z)

z3
+ J0(z)

2z2
− J2(z)

2z2

)

−
∫ 2r0q

0
dx

(
J1(x)

x
− J1(x)

x3
+ J0(x)

2x2
− J2(x)

2x2

)]
, (C15)

where y0 = r0 sin θ0 and z =
√

x2 + (2y0q)2.

APPENDIX D

By inserting Eqs. (C8)–(C10) into Eq. (15), we find Eq. (32), where

A = Im

([
1 + 1

q2

(
∂

∂x ′
∂

∂x ′ − ∂

∂y ′
∂

∂y ′ + ∂

∂z′
∂

∂z′

)][
e−iqrr

rr

− iqI (ζ+,rr )

]

−
[

3 + 1

q2

(
∂

∂x ′
∂

∂x ′ + ∂

∂y ′
∂

∂y ′ + ∂

∂z′
∂

∂z′

)][
e−iqri

ri

− iqI (ζ−,ri)

]

+ 2i

{
cos

(
θ − θ ′

2

)
J0(qp)√

rr ′ + 1

q
sin

(
θ

2

)
∂

∂x ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]

− 1

q
cos

(
θ

2

)
∂

∂y ′

[
sin

(
θ ′

2

)
r + r ′
√

rr ′
J1(qp)

p

]})∣∣∣∣
x→x ′,y→y ′,z→z′

. (D1)
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Rev. A 78, 012105 (2008).
[17] H. J. Zhao and M. L. Du, J. Phys. B 44, 025401 (2011).
[18] S. C. Skipsey, M. Al-Amri, M. Babiker, and G. Juzeliūnas, Phys.
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