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Continuous decomposition of quantum measurements via Hamiltonian feedback
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We characterize the set of generalized quantum measurements that can be decomposed into a continuous
measurement process using a stream of probe qubits and a tunable interaction Hamiltonian. Each probe in the
stream interacts weakly with the target quantum system and then is measured projectively in a standard basis.
This measurement result is used in a closed feedback loop to tune the interaction Hamiltonian for the next probe.
The resulting evolution is a stochastic process with the structure of a one-dimensional random walk. To maintain
this structure and require that at long times the measurement outcomes be independent of the path, the allowed
interaction Hamiltonians must lie in a restricted set such that the Hamiltonian terms on the target system form a
finite-dimensional Jordan algebra. This algebraic structure of the interaction Hamiltonians yields a large class of
generalized measurements that can be continuously performed by our scheme and we fully describe this set.
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I. INTRODUCTION

Many quantum systems either exhibit slow measurement
readout times or can only be probed weakly [1,2]. Under
such conditions, it is natural to monitor the systems con-
tinuously while simultaneously exerting some closed-loop
feedback. Experiments can already be performed with such
low latency that feedback can be performed continuously in
real time [3–5]. While generalized continuous measurements
have been studied [6,7], in most systems the diffusive weak
measurements [8] that constitute the continuous process must
be applied via coupling to a probe system. Previously, the
setting of closed-loop feedback applied to a stream of probe
qubits interacting with the system by a fixed Hamiltonian has
been studied [9]. Here we investigate the possibilities that arise
from closed-loop feedback when the interaction Hamiltonian
is itself subject to control.

A key feature of [9] was the derivation of a reversibil-
ity equation that was used to characterize the class of
measurements that admitted a continuous decomposition.
This equation is necessary again in this work. The re-
versibility equation arises from the need to ensure that the
continuous decomposition of a quantum measurement is
a faithful implementation of its instantaneous counterpart.
Since quantum measurements are stochastic instantaneous
processes, it follows that continuous quantum measurements
must be stochastic continuous processes. Of course, stochastic
continuous processes have an infinite number paths, not all of
which match the action of an instantaneous measurement. The
reversibility equation effectively eliminates the dependence of
the path on time. In our construction, the time to complete
a continuous decomposition will be random and so we must
guarantee that repeated use of our scheme yields measurement
statistics that are dependent on the quantum state rather than
the time.

This reversibility condition cannot be generally satisfied
without the use of continuous feedback. The one exception
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to this is the case of decomposing projective measurements,
which can be shown to be path independent [6]. Furthermore,
although we restrict our analysis here to qubit probes and two-
outcome measurements, we note that general two-outcome
measurements are sufficient building blocks for n-outcome
measurements [6,10].

This paper is organized as follows. In Sec. II we describe our
model for continuously decomposing a quantum measurement
using a stream of probes and a linearly controllable interaction
Hamiltonian. In Sec. III we prove our main result about which
measurements can be decomposed given a linearly controllable
interaction Hamiltonian. In Secs. IV and V we give illustrative
examples of the methods described in Sec. III. We conclude in
Sec. VI by comparing this scheme to our previous work [9].

II. MODEL

We treat our scheme using discrete time steps with the
implicit understanding that in the limit of infinitesimal time
steps our scheme converges to a continuous stochastic process.
Consider a quantum system S undergoing a stochastic evo-
lution driven by two-outcome diffusive weak measurements.
The outcome of any particular step during the evolution is one
of two weak measurement step operators M±(x). These step
operators are functions of a pointer variable x that updates
with each outcome. The exact feedback scheme is illustrated
in Fig. 1 and the process terminates when x reaches a fixed
constant ±X. The reversibility condition can be written

M∓(x ± δ)M±(x) ∝ I. (1)

From this equation, two consecutive outcomes that step
forward from x to x + δ and then backward from x + δ to
x have no net effect on |ψ〉. However, rather than track the
evolution of |ψ〉 directly, we can express the total action of our
procedure as the total walk operator

M(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
δ→0

�x/δ�∏
j=1

M+(jδ), x � 0

lim
δ→0

�x/δ�∏
j=−1

M−(jδ), x < 0.

(2)

1050-2947/2015/92(6)/062113(6) 062113-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.062113


JAN FLORJANCZYK AND TODD A. BRUN PHYSICAL REVIEW A 92, 062113 (2015)

FIG. 1. The system S is continuously measured. At each time
step, we perform a weak measurement by preparing the probe |σ 〉
and tuning the interaction Hamiltonian HPS(x) based on a pointer
variable x. The system and probe interact for a short time δ and
the probe is measured in an orthogonal detector basis 〈�±|. The
measurement result from the detector is used to update the pointer
variable from x to x ± δ and the procedure is repeated with the new
value.

We identify the end-point operators M1 ∝ M(X) and M2 ∝
M(−X) with the instantaneous measurement being decom-
posed by this continuous process.

We will consider a simple model of probe-state interaction
that will generate M±(x). In [9] we found that weak measure-
ments with qubit probes had to form a probe basis on the qubit
Hilbert space. In particular, we required that the probe state, the
orthogonal quantum states of the detector, and the eigenstates
of the interaction Hamiltonian on the probe subsystem have
mutually orthonormal representations on the Bloch sphere.
For this reason, we choose the interaction Hamiltonian to be
HPS = YP ⊗ ε̂(x), the probe state to be |0〉, and the detector
states to be 〈±|. The operator acting on the system S is ε̂ and is
defined to be an x-dependent linear combination of d constant
Hamiltonian terms

ε̂(x) =
d∑

i=0

pi(x)Hi. (3)

The weak measurement step operators of Fig. 1 then become

M±(x) = 〈±|eiδHPS (x)|0〉 (4)

≈ 1√
2
I ∓ δ√

2
ε̂(x) − δ2

2
√

2
ε̂2(x).

The reversibility condition (1) can now be rewritten in terms of
ε̂(x). Note that this condition need only be satisfied up to O(δ2)
since the random walk induced on the pointer variable x will
take O(N2) steps to converge when N = �X/δ�. Collecting
terms by orders of δ yields

M∓(x ± δ)M±(x) = I

2
∓ δ

2
[ε̂(x) − ε̂(x ± δ)]

−δ2

2
ε̂2(x) − δ2

2
ε̂2(x)

= I

2
+ δ2

2
[∂xε̂(x) − 2ε̂2(x)] + O(δ3). (5)

Let α(x) be the O(δ2) coefficient of proportionality in Eq. (1).
We find that the reversibility equation reduces to

∂xε̂(x) = 2ε̂2(x) + α(x)I. (6)

In the derivations that follow, we will temporarily ignore the
α(x)I term, as it will not change the class of measurements
that satisfy the reversibility equation.

Consider the set of controls that appear in Eq. (3). Without
loss of generality, we can always assume that H0 = I since
the action of I is equivalent to an overall phase on the probe
system. The reversibility equation (6) can then be rewritten as

d∑
k=0

∂xpk(x)Hk =
d∑

i,j=0

pi(x)pj (x)
1

2
{Hi,Hj }, (7)

where {·,·} is the anticommutator. It will be useful to introduce
the tensor 	k

ij to express the action of the anticommutator on
the matrices Hi . In particular,

1

2
{Hi,Hj } =

n(n−1)/2∑
k=0

	k
ijHk. (8)

We choose the matrices Hi for i > d such that they form a basis
for Hn(C), the space of all n-dimensional complex Hermitian
matrices. We use 	(k) to denote the matrix resulting from fixing
the index k. The reversibility equation (6) can then be read

∂xpk = �pT 	(k) �p, 0 � k � d

0 = �pT 	(k) �p, d < k.
(9)

III. MAIN RESULT

We now present our main result, which characterizes
solutions to the above equations. Let us define F = span{Hi}
so that ε̂ ∈ F. We prove the following lemma about solutions
to Eq. (9).

Lemma 1. Any solution ε̂(x) to Eq. (9) must lie entirely in
V, a subspace of F that is closed under anticommutation.

Proof. We note that if F is already closed under anticommu-
tation, then the reversibility equation reduces to an initial-value
problem in terms of the control coefficients �p(x) at x = 0.
However, if F is not closed under anticommutation, then we
must characterize the set of vectors �p such that Eq. (9) is
satisfied. To do so, consider choosing any k > d and solving
the associated equation

�pT 	(k) �p = 0. (10)

Note that the matrix 	(k) is symmetric and defines a quadratic
space over Rn, denoted by (	(k),Rn). We know that every
quadratic space admits a Witt decomposition [11]. That is, the
quadratic space is isomorphic to the direct product of three
types of subspaces

(	(k),Rn) ∼=
N⊕

i=0

Wi ⊕ V0 ⊕ V ′. (11)

In the above, Wi are hyperbolic planes, V0 is the null space of
	(k), and V ′ is an anisotropic subspace of Rn. The solutions �p
can also be written in terms of these subspaces. We begin by
solving Eq. (10) in the subspace formed by the hyperplanes
Wi . Solutions to �xT Wi �x = 0 are span{[1,1]} or span{[1,−1]}
for each i. By definition, there are no nonzero vectors in the
anisotropic subspace V ′ that satisfy �xT V ′ �x = 0 and so we set
all components of �p in this subspace to 0. Let T (k) be the
isomorphism that describes(

In,R
n
) −→

Tk

(	(k),Rn), (12)
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where In is the identity matrix. Let also �p = T (k) �q. We deduce
that all possible solutions to Eq. (10) must lie in the direct
product of the hyperplane subspace solutions and the null
space. The solution space V is then

V = T (k)

(
N⊕

i=0

span{[1,xi]} ⊕ V0

)
. (13)

Notice that in this expression we have assumed a fixed choice
of xi = ±1. Varying any of these values gives rise to an entirely
different space of solutions.

To fully solve Eq. (9) we must now recurse the above
procedure. At each step we restrict �p to lie in the subspace
V defined by a particular choice of xi . We then define a new
matrix basis for the controls restricted to V and generate a new
set of 	(k) matrices. We then choose a new k and decompose
V using 	(k). Since the order in which the k are chosen will
affect the form of V , it is also important to enumerate all
sequences of choices of k and xi if one wishes to identify all
solution spaces. This procedure terminates when the vector
space of Hermitian matrices V formed from V is closed under
anticommutation.

Since the Witt decomposition is unique (up to isometries
of V ′), we can guarantee that this procedure lists all closed
subspaces contained inF. It remains only to show that if �p(0) ∈
V for a particular sequence of choices of k and xi , then �p(x)
will remain in the same subspace for all other values of x. This
follows directly, however, from the fact that if ε̂(x) ∈ V, then
ε̂2(x) ∈ V and so ∂xε̂ ∈ V. �

Lemma 1 establishes that in order to solve the reversibility
equation, one must use a set of controls whose span is closed
under anticommutation. The proof of the lemma also includes
an implicit algorithm for finding closed subspaces given a set
of Hermitian matrices. The next lemma gives the structure of
the subspaces enumerated by Lemma 1.

Lemma 2. The ε̂(x) operator has the form

ε̂(x) =
S(V)⊕
l=1

Ul(x)Dl(x)U †
l (x), (14)

where S(V) is the number of simple components of the algebra
V (with anticommutation as its product) and Dl(x) and Ul(x)
correspond to the lth simple component and are given in
Table I.

TABLE I. We list all rank-n representations of Jordan algebras
that can be embedded into a span of Hermitian matrices. The third
representation corresponds to the two-dimensional embedding of
C into R. The fourth and fifth representations correspond to two-
and four-dimensional embeddings of H into C and R. The notation
diag(Rn) refers to the algebra of n-dimensional diagonal matrices
with real coefficients.

Block Bl Dl(x) Ul(x)

Hn(R) diag(Rn) SO(n)
Hn(C) diag(Rn) SU(n)
Hn(C) ∼= H2n(R) diag(Rn) ⊗ I2 SO(n) ⊗ SO(2)
Hn(H) ∼= H2n(C) diag(Rn) ⊗ I2 SU(n) ⊗ SU(2)
Hn(H) ∼= H4n(R) diag(Rn) ⊗ I4 SO(n) ⊗ SO(4)

Proof. We begin by identifying V as a finite-dimensional
Jordan algebra. Every such algebra accepts a Wedderburn-type
decomposition [12,13]

V ∼=
S(V)⊕
l=1

Bl , (15)

where S(V) is the number of simple components Bl of V. A
classification of all finite-dimensional simple Jordan algebras
was given by Jordan et al. [14]. The three types of Jordan
algebras that can be found in our decomposition are the
self-adjoint real, complex, and quaternionic matrices. The
isomorphism in Eq. (15) leaves a great deal of freedom in
terms of how to represent each of these simple components
by Hamiltonian terms and so we summarize the possible
representations in Table I. Note that the exceptional Albert
algebra is absent, since octonions do not have a matrix
representation over R or C [15].

Since V can be written as a direct sum of the simple
algebras in Table I, we can also write the operator ε̂ in this
decomposition

ε̂ =
S(V)⊕
l=1

ε̂l(x). (16)

Each operator in the direct sum can in turn be diagonalized
with the unitary Ul(x) and the diagonal matrix Dl(x) to yield
the form in the statement of the lemma. �

Before we proceed to the final lemma that will complete
our main result, we give a few illustrative examples of the last
three representations found in Table I. First, we consider the
matrix algebra resulting from the two-dimensional embedding
of C into R, i.e., Hn(C) ∼= H2n(R). If we let the coefficients
of a matrix in Hn(C) be ujk = ajk + ibjk , then

⎡
⎢⎣

u00 · · · u0n

...
. . .

...
un0 · · · unn

⎤
⎥⎦ ∼=

⎡
⎢⎢⎢⎢⎣

a00 −b00 · · · a0n −b0n

b00 a00 · · · b0n a0n

...
...

. . .
...

...
an0 −bn0 · · · ann −bnn

bn0 an0 · · · bnn ann

⎤
⎥⎥⎥⎥⎦
(17)

describes the embedding Hn(C) ∼= H2n(R). For the fourth and
fifth representations in Table I, we replace each quaternionic
element h = a + bî + cĵ + dk̂ by one of the following two
submatrices. For H2n(C) we use

hjk
∼=

[
ajk + ibjk cjk + idjk

−cjk + idjk ajk − ibjk

]
(18)

and for H4n(R) we use

hjk
∼=

⎡
⎢⎣

ajk bjk cjk djk

−bjk ajk −djk cjk

−cjk djk ajk −bjk

−djk −cjk bjk ajk

⎤
⎥⎦. (19)

Note that up to this point, we have ignored the term α(x)I
in the reversibility equation (6). We were able to ignore it in
Lemma 1 because the matrix 	(0) that corresponds to H0 =
I never appears as one of the matrices we use during the
recursive part of the proof. We were also able to ignore it in
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Lemma 2 since all of the simple Jordan algebras listed above
always contain a full set of rank-1 idempotents. We will now
reintroduce the term α(x)I as it will play an important role
in regularizing the behavior of the differential equations in
Lemma 3.

Lemma 3. The ε̂(x) operator and the total walk operator
M(x) are simultaneously diagonalizable.

Proof. We begin by noting that Eq. (6) can be solved for
individual blocks ε̂l(x), yielding

∂x[Ul(x)Dl(x)U †
l (x)] = 2[Ul(x)Dl(x)U †

l (x)]2 + α(x)Il,

where Il is the identity on the block l. A few simple
manipulations result in the equivalent expression (for clarity,
we have omitted the x dependence)

∂xUlDlU
†
l + Ul∂xDlU

†
l + UlDl∂xU

†
l = 2UlD

2
l U

†
l + αIl.

Applying U
†
l and Ul from the left and the right gives

U
†
l ∂xUlDl + ∂xDl + Dl∂xU

†
l Ul = 2D2

l + αIl.

Since Ul is a unitary matrix we can write it as the exponent
of a Hermitian matrix Gl and we note that U

†
l ∂xUl = i∂xGl .

This reduces the above equation to

i[∂xGl,Dl] + ∂xDl = 2D2
l + αIl. (20)

The entries of the commutator term are

([∂xGl,Dl])ij = ∂xg
(l)
ij

(
d

(l)
i − d

(l)
j

)
, (21)

from which we can infer that the diagonal entries of the
commutator term are 0 if d

(l)
i �= d

(l)
j . Thus, the equation for

any d
(l)
i (x) reduces to

∂xd
(l)
i (x) = [

d
(l)
i (x)

]2 + α(x), (22)

which is a special case of the Ricatti first-order nonlinear
differential equation. Without loss of generality however, we
can simply consider the case where α(x) is fixed at a strictly
positive real constant α. Although a different choice of α(x)
will ultimately lead to different solutions for the functions
d

(l)
i (x), this will not expand the class of measurements possible

with our scheme. Thus, fixing α(x) = α, Eq. (22) has the
solution

√
α tanh

[√
α
(
x − c

(l)
i

)]
. (23)

This form immediately implies that for any i,j such that
c

(l)
i �= c

(l)
j , g

(l)
ij is constant. Furthermore, we can even prove

that for other solutions where α(x) has a more general form,
g

(l)
ij is constant when d

(l)
i �= d

(l)
j . This is because the general

solution d
(l)
i (x) to the special Ricatti equation has only one

free parameter c
(l)
i ,

d
(l)
i (x) = f (x) +

e

(
2
∫

f (x)dx

)

c
(l)
i −

∫
exp

(
2
∫

f (x)dx

)
dx

, (24)

where f (x) is a known solution to Eq. (22). It can be seen from
this general solution that d

(l)
i = d

(l)
j only in the case where

c
(l)
i = c

(l)
j , just as with the tanh solution.

Finally, for the case of α(x) = α Eq. (20) has the solution

d
(l)
i (x) = √

α tanh
[√

α
(
x − c

(l)
i

)]∀i,

g
(l)
ij (x) = g

(l)
ij (0) ∀i,j ; c

(l)
i �= c

(l)
j ,

g
(l)
ij (x) = g

(l)
ij (x) ∀i,j ; c

(l)
i = c

(l)
j .

We note that in the cases where c
(l)
i = c

(l)
j , g

(l)
ij need not be

constant. However, in these cases, the x-dependent subblock
of Gl(x) is acting on a subblock of Dl(x) that is proportional
to the identity. Thus, this freedom in Gl(x) does not affect the
form of ε̂ or of M1 and M2.

We now turn our attention to the total walk operator
given in Eq. (2) that obeys the differential equation (up to
a normalization factor)

∂xM(x) = −ε̂(x)M(x). (25)

We can write M(x) in the diagonal basis of ε̂(x) by introducing
the operator

N (x) =
⎛
⎝S(V)⊕

k=1

U
†
l

⎞
⎠M(x)

⎛
⎝S(V)⊕

l=1

Ul

⎞
⎠. (26)

Equation (25) can then be rewritten as

∂xN (x) = −
S(V)⊕
l=1

Dl(x)N (x) − i

S(V)⊕
l=1

[∂xGl(x),Nl(x)]. (27)

Note that since M(0) = I , then N (0) = I and so the commu-
tator term above disappears for all x. This immediately implies
that N (x) must be diagonal and so the total walk operator and
the ε̂(x) operator are diagonal in the same basis. �

Lemmas 1–3 combined give the full characterization of M1

and M2 operators achievable by our scheme.
Theorem 1: Main result. A continuous measurement using

qubit probes and closed-loop feedback on the interaction
Hamiltonian (as in Fig. 1) can realize any measurement
{M1,M2} of the form

M1 =
S(V)⊕
l=1

U
†
l

⎛
⎝rank(Bl)⊕

i=1

λ
(l)
i �

(l)
i

⎞
⎠Ul, (28)

where M2 = (I − M
†
1M1)1/2 is diagonal in the same basis.

The parameters λ
(l)
i are real and contained in (0,1) and �

(l)
i is

a projector onto one, two, or four basis states.
Proof. Recall that the number of distinct diagonal entries

possible in Dl(x) is rank(Bl). However, each distinct entry can
appear one, two, or four times depending on the particular
representation from Table I. Using Lemma 3 we can plug our
solution for Dl(x) into Eq. (27) to find that the diagonal entries
of N (x) are

λ
(l)
i (x) = exp

(∫ x

0

√
α tanh

[√
α(y − c

(l)
i

)]
dy

)
. (29)

The total walk operator M(x) must then be

M(x) ∝ U
†
l

⎛
⎝rank(Bl)⊕

i=1

λ
(l)
i (x)�(l)

i

⎞
⎠Ul. (30)
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The end-point operators M1 and M2 are proportional to
M(X) and M(−X). Their diagonal entries are λ

(l)
i , which

after renormalization approach 0 when c
(l)
i → ∞ and 1 when

c
(l)
i → −∞. �

Note that in Theorem 1 the eigenvalues of M1 and M2

are restricted to lie in the open set (0,1), not the closed set
[0,1]. This is a consequence of the reversibility condition
at the points x = X − δ and x = −X + δ. At these points,
setting any eigenvalue of the total walk operator to 0 would be
effectively a projection, which is an irreversible operation for
the random walk. However, we can approach arbitrarily close
to any such projective measurement.

To allow for direct comparisons with the scheme of [9], we
provide the following corollary.

Corollary 1: Spectrum of the measurement. Given the
ability to perform any unitary transformations directly before
and after the continuous process of Theorem 1, one can con-
tinuously decompose any measurement with

∑S(V)
l=1 rank(Bl)

distinct singular values.
Proof. The end-point measurement operators M1 and M2 in

Theorem 1 can have up to
∑S(V)

l=1 rank(Bl) distinct eigenvalues.
We can decompose any pair of general end-point operators M1

and M2 using their polar decompositions Mi = Wi(M
†
i Mi)1/2.

Then we can use a procedure like that of Fig. 1 to measure
the positive Hermitian operators (M†

i Mi)1/2 and subsequently
apply Wi depending on the measurement result. �

Whereas in [9] we were able to decompose, with a fixed
interaction Hamiltonian, any measurement operator with two
singular values, using the scheme presented here we are able to
increase the number of singular values much higher, depending
on the number and types of controls available.

IV. FOUR-DIMENSIONAL EXAMPLE

We now demonstrate how our technique can be used to
characterize the continuous measurements possible with an
interaction Hamiltonian of five (d = 5) controllable terms
acting on a four-dimensional Hilbert space. We denote by S

the set of controllable terms Hi in HPS ,

S = {II,ZI,IZ,ZZ,XX}. (31)

Note that this set is not closed under anticommutation since
{XX,ZZ} = 2YY . We will use a simplified version of the
procedure described in Lemma 1 to find closed Jordan algebras
contained in S. Strictly speaking, the optimal procedure in
Lemma 1 finds all algebras contained in F = span{S} and
our example below will ignore possible linear combinations
of terms or any rewriting of the control set in a new basis.
Nonetheless, dropping individual terms from S demonstrates
the branching nature of the recursive search for closed
algebras. The result of the search yields the following three
subsets, each of which is closed under anticommutation:

S1 = {II,IZ,XX}, (32)

S2 = {II,ZI,XX}, (33)

S3 = {II,ZI,IZ,ZZ}. (34)

S

S1

ZZ

ZI

S2

ZZ

IZ

S3

XX

FIG. 2. Subsets of Hamiltonian terms resulting from the search
for closed algebras as it progressively removes elements of S. Each
node is an attempt to solve Eq. (9) and the labels on the edges are the
elements removed from S as a result.

Note that the identity II along with any one of the Pauli
operators in S is also a closed algebra, but since these are
smaller than the solutions above, we do not list them. The
process of finding S1, S2, and S3 is illustrated in Fig. 2.

V. THREE-DIMENSIONAL EXAMPLE

In the following example we illustrate how knowledge of
the simple algebras listed in Table I can help reveal structure
contained within a set of controllable Hamiltonian terms.
Consider two nonorthogonal quantum states |1〉 and |2〉 such
that 〈1|2〉 = a with a ∈ R. We consider the following set of
control terms:

H0 = I,

H1 = |1〉〈1|,
H2 = |2〉〈2|,
H3 = |1〉〈2| + |2〉〈1|,
S = {H0,H1,H2,H3}.

One can check that F = span{S} is closed under anticom-
mutation. However, it is not clear which finite-dimensional
Jordan algebra F is a representation of. To reveal the structure,
consider rewriting F in the basis

H ′
0 = H1, (35)

H ′
1 = a2H1 + H2 − aH3

1 − a2
, (36)

H ′
2 = −2aH1 + H3√

1 − a2
, (37)

H ′
3 = H0 − H1 + H2 − aH3

1 − a2
. (38)

In this form, when we calculate the product 1
2 {·,·}, we find that

1
2 {H ′

0,H
′
0} = H ′

0,
1
2 {H ′

3,H
′
0} = 0,

1
2 {H ′

0,H
′
1} = 0, 1

2 {H ′
3,H

′
1} = 0,

1
2 {H ′

1,H
′
1} = H ′

1,
1
2 {H ′

3,H
′
2} = 0,

1
2 {H ′

2,H
′
0} = H ′

2,
1
2 {H ′

3,H
′
3} = H ′

3,

1
2 {H ′

2,H
′
1} = H ′

2,
1
2 {H ′

2,H
′
2} = H ′

0 + H ′
1.
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From these relations it is clear to see that H ′
0, H ′

1, and H ′
3 are

idempotents and that

F = span{H ′
0,H

′
1,H

′
2} ⊕ span{H ′

3} (39)
∼= H2(R) ⊕ R. (40)

Armed with this decomposition, one can quickly and easily
characterize the full set of continuous measurement decompo-
sitions possible using S. In this case, one can decompose any
M1 of the form

M1 =
⎡
⎣a c 0

c b 0
0 0 d

⎤
⎦, (41)

with a,b,c,d ∈ R and M2 =
√

I − M2
1 .

VI. CONCLUSION

In this work we have characterized the full class of
continuous measurements achievable using a stream of probe
qubits and a tunable interaction Hamiltonian. Given a set of
linearly controlled Hamiltonian terms, we provide a method
to exhaustively list all continuous decompositions achievable
with the control set. The class we find has a simple block-
diagonal form, but results from a nontrivial application of the
reversibility condition. Notably, measurements in this class

have a quantifiably broader spectrum than in the case of a
fixed interaction Hamiltonian.

Our work makes critical use of finite-dimensional Jordan
algebras. This is surprising since these algebras have had little
application elsewhere in quantum mechanics. Our model for
continuous measurements does not include internal dynamics
HS for the system or the probe, nor does it account for environ-
ment noise. In the presence of HS , successive realizations of
the continuous decomposition would yield inconsistent results
unless HS commutes with the measurement operators.

The model presented here is still not the most general
description of all continuous measurements realizable with a
stream of probes. A completely general description would have
to consider higher-dimensional probes, multiple outcomes
to the weak measurement steps (as well as the end-point
measurements), and a more general reversibility condition.
This is the subject of ongoing work. If Jordan algebras reappear
in that scenario, then they will have found renewed application
in quantum mechanics.
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