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Proposal for a macroscopic test of local realism with phase-space measurements
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We propose a test of local realism based on correlation measurements of continuum valued functions of
positions and momenta, known as modular variables. The Wigner representations of these observables are bounded
in phase space and, therefore, the associated inequality holds for any state described by a non-negative Wigner
function. This agrees with Bell’s remark that positive Wigner functions, serving as a valid probability distribution
over local (hidden) phase-space coordinates, do not reveal nonlocality. We construct a class of entangled states
resulting in a violation of the inequality and thus truly demonstrate nonlocality in phase space. The states can
be realized through grating techniques in spacelike separated interferometric setups. The nonlocality is verified
from the spatial correlation data that is collected from the screens.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen (EPR) argued that
the quantum-mechanical description of physical reality is not
complete, and thus may be superseded by a more complete
realistic theory which reproduces the quantum-mechanical
predictions and, at the same time, obeys the locality condi-
tion [1]. Bell derived an experimentally testable inequality in
his seminal 1964 paper [2], which bounds the correlations
between bipartite measurements for any such local hidden-
variable theory, but is violated by quantum mechanics. This
was a major breakthrough towards empirical tests of quantum
mechanics against theories conforming to common sense.
Since then, the results constraining the permissible types of
hidden-variable models of quantum mechanics have attracted
much attention and have been reformulated as the problem of
contextual measurements by Kochen and Specker [3] and in
terms of temporal correlations by Leggett and Garg [4]. Today,
these concepts have mainly been formulated for intrinsic
quantum degrees of freedom of microscopic particles such
as spins, and tested in various experiments with photons [5],
impurity spins [6,7], or superconducting qubits [8]. All
experimental observations confirmed the validity of quantum
mechanics at this level.

The outstanding challenge, however, is to formulate similar
tests with true phase-space measurements, where nonlocality is
inferred directly from observing the spatial degree of freedom,
for example. This can be viewed as a natural extension
of the macroscopic limit of local realism tests [9]. This is
closer in spirit to the original EPR argument which uses a
phase-space description, a natural concept in the classical
world, to better address the reality and locality problems of
quantum mechanics. Notably, the Wigner function associated
with the entangled state used in the EPR argument, the
so-called EPR state, is non-negative everywhere [10]. That
is why Bell argued that EPR states do not lead to a violation
of the inequalities derived from locality and hidden-variable
assumptions [11]. This was because non-negative Wigner
functions serve as valid joint probability distributions over
local hidden positions and momenta. Thereby, in principle, a
model of a local hidden variable can be attributed to such states.
Banaszek and Wodkiewicz [12], however, showed that by

using particular measurements, namely parity, EPR states can
reveal nonlocal features, indicating that not only the state itself
but the type of correlation measurements is also important in
any local realism test. This opens the discussion as to which
measurements are good candidates for appropriately testing
local hidden-variable models in phase space [13,14]. The
problem of constructing a “macroscopic” test of local hidden-
variable models depends on choosing proper observables
whose Wigner representations satisfy the constraint imposed
by the algebraic Clauser-Horne-Shimony-Holt (CHSH) [15]
expression. The term “macroscopic” henceforth will be used
to refer to the measurement of a particle’s phase-space
coordinates. This class of measurements has a clear de-
scription in the classical limit and its evaluation does not
involve sharp measurements that betray “quantum degrees of
freedom.”

The observables used here are the so-called modular
variables [16]. Recently, such variables have found applica-
tions in detecting certain continuous-variable (CV) entangled
states [17–19] and quantum information [20,21]. Furthermore,
they have been used for fundamental tests such as macroscopic
realism [22], contextuality [23,24], and even the GHZ test [25].
This strongly suggests that modular variables can be used
for Bell inequality tests of local hidden-variable theories as
well. Recently, a Bell test with discretized modular variables
was proposed [26]. In the present work, we put forward a
Bell test with “continuous” modular variables which requires
phase-space measurements.

The paper is organized as follows. In Sec. II, we introduce
our framework for the Bell test, aiming to use the most
“classical-like” variables and measurements. This motivates
a macroscopic test of local realism [9]. In Sec. III, we
construct a Bell operator from modular variables, for which
the violation is achieved only if the state is described by a
negative Wigner function. We then proceed with identification
of the relevant entangled state, explicitly showing the violation.
Finally, in Secs. IV and V, we show how the entire test can
be implemented in a double (multislit) grating setup [10].
Grating techniques have been used to experimentally demon-
strate quantum matter waves [27]. We summarize by briefly
discussing the outlook in Sec. VI and conclude in Sec. VII.

1050-2947/2015/92(6)/062107(8) 062107-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.062107


ATUL S. ARORA AND ALI ASADIAN PHYSICAL REVIEW A 92, 062107 (2015)

II. FRAMEWORK FOR A MACROSCOPIC BELL TEST

In what follows, we develop a test of local realism which
complies with Bell’s aforesaid argument. The central problem
here is to construct a Bell operator of the CHSH form,

B̂ ≡ Â1 ⊗ (Â2 + Â′
2) + Â′

1 ⊗ (Â2 − Â′
2), (1)

expressed in terms of suitable local CV observables Âi which
must be restricted to a limited range of values to impose a well-
defined classical bound. We therefore require the observables
to satisfy the following properties:

(a) Eigenvalues of Âi , |ai | � 1, which for bounded observ-
ables can be achieved trivially by rescaling. An example of
this is the parity operator.

While this condition is enough to obtain a classical bound,
we demand an extra constraint which is necessary for probing
nonlocality in phase space.

(b) The observable Â corresponds to a bounded c-number
function in phase space obtained from the Wigner-Weyl
correspondence (q ↔ q̂, p ↔ p̂),

|WÂ(q,p)| ≡
∣∣∣∣
∫

dq ′eipq ′
〈
q − q ′

2

∣∣∣∣ Â
∣∣∣∣q + q ′

2

〉∣∣∣∣ � 1. (2)

This entails

|WB̂(q, p)| = ∣∣WÂ1
(q1,p1)

[
WÂ2

(q2,p2) + WÂ′
2
(q2,p2)

]
+WÂ′

1
(q1,p1)

[
WÂ2

(q2,p2) − WÂ′
2
(q2,p2)

]∣∣
� 2

for the Wigner representation of the Bell operator where q ≡
(q1,q2) and p ≡ (p1,p2). Accordingly, for any state, including
the EPR state, described by a valid (non-negative) probability
distribution over phase space, the following inequality holds:

|〈B̂〉| =
∣∣∣∣
∫

Wρ̂(q, p)WB̂(q, p)dqd p

∣∣∣∣ � 2, (3)

where Wρ̂ is the Wigner quasiprobability distribution corre-
sponding to ρ̂ given by Wρ̂ = Wρ̂/2π�. A violation therefore
must necessarily arise from the negativity of the Wigner
function describing the state.

Although formally valid, the Bell inequality expressed in
terms of displaced parity operators used in Refs. [12,28] voids
the second condition; their Wigner representations are given
by δ functions which are unbounded in phase space.

The measurement scheme used for evaluating the corre-
lations must have a clear classical limit for any reasonable
“macroscopic test.” This measurement strategy is in marked
contrast to other approaches that use parity measurements [12].
Parity measurements, unlike phase-space measurements, re-
quire resolving intrinsic quantum degrees of freedom and
thus have no classical analog. It has been shown that for
sufficiently sharp measurements, the system inevitably enters a
quantum regime and no classical description is possible [29].
Thus such measurements remotely resemble “classical-like”
measurements, if at all.

The binary binning of quadrature measurements has also
been shown to be a possible scheme [30,31] where entangled
Schrödinger Cat states (and their appropriate generalizations)
are used. Here, however, to preserve features characteristic of
classical dynamics, we aim to adopt a different measurement

strategy which retains the continuous spectra and uses phase
space exclusively.

Phase-space translation and modular variables

One particular class of bounded observables can be
constructed from the quantum-mechanical space translation
operator e−ip̂L/�. As its name suggests, this operator displaces
a particle by a finite distance L, which in our case will be the
distance between two adjacent slits. This operator is not an
observable, therefore we define a symmetric combination,

X̂ ≡ e−ip̂L/� + eip̂L/�

2
= cos(p̂L/�), (4)

which is explicitly Hermitian and bounded by ±1. In fact,
the corresponding function |WX̂| = | cos(pL/�)| is also mani-
festly �1. Further, when X̂ is operated on |p〉, only the modular
part of p is relevant to the value of the operator. Thus, we may
define

p̂mod h
L

≡ (p̂L/h − �p̂L/h	)
h

L
, (5)

and note that measuring p̂mod h
L

is sufficient for obtaining the

value of X̂ ≡ X(p̂mod h
L

). Conversely, measuring X̂ only yields
p̂mod h

L
, not p̂. The idea is to construct a Bell operator [see

Eq. (1)] from X̂ in which the different measurement settings
are chosen by transforming it using suitable unitary operators.

III. THE CONSTRUCTION

Consider a localized state ϕ(q) = 〈q|ϕ〉 symmetric about
the position q = L/2, where L ≡ length scale and ϕn(q) ≡
ϕ(q − nL). We define

|ψ0〉 ≡ 1√
M

� M−1
2 	∑

n=−� M
2 	

|ϕ2n+1〉, |ψ1〉 ≡ 1√
M

� M−1
2 	∑

n=−� M
2 	

|ϕ2n〉.

Using these states, as illustrated in Fig. 1, we construct the
states

|ψ+〉 ≡ |ψ0〉 + |ψ1〉√
2

, |ψ−〉 ≡ |ψ0〉 − |ψ1〉√
2

. (6)

These states were constructed with a partial translational sym-
metry which is appropriate to the bounded Hermitian operator
X̂ discussed earlier. These N -component superposition states
can represent a delocalized particle after an N -slit grating. It
follows that

〈ψ+| X̂ |ψ+〉 = N − 1

N
,

〈ψ−| X̂ |ψ−〉 = −N − 1

N
,

where N ≡ 2M is the number of “slits.” Before proceeding
further, we introduce a unitary operator Û to implement
different measurement settings. Motivated by the spins, we
define Û by its action

Û (φ)|ψ0〉 = eiφ/2|ψ0〉, Û (φ)|ψ1〉 = e−iφ/2|ψ1〉. (7)

More explicitly,

Û (φ) ≡ eiẐφ/2,
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FIG. 1. (Color online) Illustration of multicomponent superposi-
tion states |ψ±〉 and |ψ0〉, |ψ1〉 for N = 8.

where Ẑ is such that Ẑ|ψ0〉 = |ψ0〉 and Ẑ|ψ1〉 = −|ψ1〉. We
note that Ẑ must differentiate between spatial wave functions
〈q|ϕ〉 and 〈q − L|ϕ〉. It is thus natural to expect Ẑ to be a
function of q̂mod2L, i.e., Ẑ ≡ Z(q̂mod2L). For consistency then,
we conclude that Z must have the form of a square wave and
define

Ẑ ≡ sgn

(
sin

q̂π

L

)
.

The test is performed by considering two particles and
their observers, Alice and Bob; they apply the aforesaid local
unitaries to define the setting and then measure X̂. We claim
that the suitable entangled state which will yield a violation,
given this scheme, is

|�〉 ≡ |ψ+〉1 |ψ−〉2 − |ψ−〉1 |ψ+〉2√
2

. (8)

We now evaluate 〈B̂〉. This essentially requires terms such as
〈X̂(φ) ⊗ X̂(θ )〉, where X̂(θ ) ≡ Û †(θ )X̂Û (θ ). It can be shown
that (see the Appendix)

〈X̂(φ) ⊗ X̂(θ )〉 = −
(

N − 1

N

)2

cos(φ − θ ). (9)

Thus, for particular angles, i.e., θ ′, φ, θ , and φ′ successively
separated by π/4, we get

|〈B̂〉| =
(

N − 1

N

)2

2
√

2. (10)

The violation, i.e., |〈B̂〉| > 2, requires N > 6; see Fig. 2. To
interpret this, we must ensure that the assumptions of the
framework are satisfied, viz. |WX̂(φ)| � 1. To that end, we
note that

|WX̂(φ)(q,p)| =
∣∣∣∣1

2

∫
dq ′eipq ′/�

〈
q − q ′

2

∣∣∣∣ (e−iẐφ/2

× eip̂ L
� eiẐφ/2 + H.c.

) ∣∣∣∣q + q ′

2

〉 ∣∣∣∣

0
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FIG. 2. (Color online) Practically, the number of slits N will be
finite. The plot shows 〈B̂〉 as a function of N . To get a violation, we
need a mere 8 slits; with 50 we almost saturate.

= ∣∣Re
(
e−iZ−(q)φ/2eip L

� eiZ+(q)φ/2
)∣∣

= | cos(pL/� ± Z±(q)φ)| � 1, (11)

where Z±(q) ≡ Z[(q ± L
2 )mod2L], and we used the fact that

Z(q) = −Z(q + L) (omitting the mod2L).

Passing remarks

(1) Pauli-like commutation. While at first the definition of
Ẑ might appear arbitrary, we show that it naturally yields
Pauli-like algebra. We start with [Ẑ,eip̂L/�]. To evaluate
it, we multiply the second term with

∫
dq|q〉〈q| and ob-

tain Ẑeip̂L/� + Ẑeip̂L/�, where we have used Z(q̂mod2L) =
−Z((q̂ ± L)mod2L),

[Ẑ,X̂] = 2ẐX̂ = −2iŶ ,

where Ŷ ≡ iẐX̂. Here, i was introduced to ensure Ŷ † = Ŷ ,
since X̂† = X̂ and Ẑ† = Ẑ. Similarly, {Ẑ,X̂} = 0. From the
definition of Y and the anticommutation, {Ŷ ,X̂} = 0 and
{Ŷ ,Ẑ} = 0 also follow trivially. We may point out that while
Ẑ2 = 1, it is not a sum of a two-state projector, and X̂2 �= 1 in
general. This manifests in the following relations:

[X̂,Ŷ ] = −2iẐX̂2 = −2iX̂2Ẑ,

[Ŷ ,Ẑ] = −2iX̂.

It is apparent that the exact SU(2) algebra is not necessary to
arrive at a violation.

(2) Asymmetry in Z and X. Using an analogous momentum
translation operator, the following can be derived from the
definition of p̂:

eip̂ueiq̂v = ei�uveiq̂veip̂u.

For appropriate choices of u,v, the translation operators can
be made to commute or anticommute. In the former case, it
means that one can simultaneously measure modular position
and momentum (which is in stark contrast to x̂ and p̂

measurements), and in the latter case, one can define Pauli-
matrix-like commutation. Considering the operator (non-
Hermitian for simplicity) X̂ = eip̂L/�, defining Ẑ = eiq̂2π/2L

is more natural. They also follow the desired anticommutation
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{X̂,Ẑ} = 0 and we could define Ŷ = ˆiZX̂ to get a more
natural generalization. The question is why did Ẑ = Z(q̂mod2L)
appear in the analysis. The cause of this asymmetry hinges on
the preferential treatment of position space. We could have
constructed states of the form |ψ0〉 = ∑

n |q + nd〉 and used
the natural definition of Ẑ to obtain the violation. The issue
is that this forces us to choose a countable superposition of
position eigenkets as our desired state.1 If we start with a
better defined and broader class of relevant states, Z(q̂mod2L)
appears naturally.

(3) Commutation and classical limit. It is well recognized
and can be shown that there is a tight relation between
nonlocality and noncommutativity of operators. The violation
occurs for choices of settings whose corresponding observ-
ables do not commute. In our construction, we can demonstrate
that the source of violation can be clearly attributed to the
noncommutativity between position and momentum, [q̂,p̂] =
i�. This would be regarded as a further illustration that
our approach provides a relevant test in phase space. We
show that in our case, [X̂(θ ),X̂(θ ′)] �= 0. To prove that, we
use X̂(θ ) = X̂eiẐθ , eiẐθ = cos θ + iẐ sin θ and the previous
results to arrive at

[X̂(θ ),X̂(θ ′)] = 2i sin(θ ′ − θ )ẐX̂2

= 2iẐX̂2 �= 0,

where the last equality holds when the angles are as defined
earlier. Classically this term not only vanishes, but the different
measurement settings also become identical. The Heisenberg
equation of motion for the displacement operator,

dX̂

dt
= i�−1[Ẑ,X̂]

= i�−1[Z(q̂mod2L) − Z(q̂mod2L ± L)]X̂

= i�−12ẐX̂, (12)

where Ẑ is the potential, shows that X̂(θ ) is essentially X̂

at some later time. However, classically, since the particle
experiences no force (constant potential), X(t) = X(t0). This
peculiarity is the same as that of the scalar Aharonov-
Bohm effect, which is exploited here for realizing different
measurement settings. Manifestly then, the noncommutativity
of q̂ and p̂ results in X̂(t) �= X̂(t0) (as it follows a nonlocal
equation of motion [32]), which is pivotal for the violation.

IV. MEASUREMENT SCHEMES

The scheme requires us to evaluate the correla-
tion functions such as 〈X̂(θ ) ⊗ X̂(φ)〉. Equivalently, the
measurement settings can be chosen by applying the
corresponding local unitaries on the entangled state,
that is, |�θφ〉 = Û (θ ) ⊗ Û (φ) |�〉. Therefore, obtaining
|〈p1,p2|�θφ〉|2 is sufficient for evaluating 〈X̂(θ ) ⊗ X̂(φ)〉 =∫

dp1dp2 cos(p1L/�) cos(p2L/�)|〈p1,p2|�θφ〉|2.

1Such a state is strictly not even in the Hilbert space.

It is known that in the far-field approximation [10],

∣∣∣∣
〈
p1 = pzq1

D
,p2 = pzq2

D

∣∣∣∣�θφ

〉∣∣∣∣
2

= D2

p2
z

∣∣〈q1,q2

∣∣�screen
θφ

〉∣∣2
,

(13)

where |�screen
θφ 〉 is the state of the system at the screen, D is

the distance between the gratings and the screens, and pz is
the z component of momentum of the particle. For a photon,
pz = h/λ, while for a massive particle with mass m, pz =
mD/T , where T is the time taken to arrive at the screen from
the grating (see Fig. 3). The idea is simply that the momentum
distribution at the grating can be recovered by observing the
spatial distribution at the screen, sufficiently far away.

V. PHYSICAL IMPLEMENTATION

The test can be implemented in a quantum interferometric
setup, using grating techniques to create multicomponent
superposition states, as is done in matter-wave experiments
for instance. We show that this scheme can be implemented
using photons. We harness the two degrees of freedom of a
photon, its polarization, and its spatial degree of freedom to
construct the required state. With a slightly modified setup, it is
possible to do the same with spin and position for matter waves
(see the Appendix, Sec. 3). The final setup is given in Fig. 3.
We need only consider the quantum-mechanical description
along the x axis.

A. Creation of the entangled state

The desired entangled state is |�〉, as stated in Eq. (8).
We start with noting the triviality of constructing a |ψ+〉 state
[see Eq. (6)]. Consider a source that produces a state |γ 〉 at the
grating. 〈q|γ 〉 is assumed to be a real Gaussian with σ � 2NL.
The grating has N slits of width a 
 L, separated by a distance
L (center to center). After the grating, we obtain |ψ+〉 = Ĝ |γ 〉,
where Ĝ may be formally defined accordingly. Similarly, the
|ψ−〉 state can be constructed by using glass slabs at alternate
slits, such that the phase introduced is π . In Fig. 3, if you
consider only one particle and disregard everything after the
grating, then the setup is expected to produce a |ψ+〉 state right
after it. To produce the desired entangled state, we start with
two entangled photons, such that their polarization state can be
expressed as |χ〉 ≡ |H 〉1|V 〉2−|V 〉1|H 〉2√

2
. Their spatial description

(along the x axis) is initially assumed to be |γ 〉1 |γ 〉2 so that
the postgrating state is

|H 〉1 |V 〉2 − |V 〉1 |H 〉2√
2

|ψ+〉1 |ψ+〉2 .

If we had glass slabs, whose refractive index (given some
orientation) was, say, ηH = 1 for a horizontally polarized
beam and ηV = η �= 1 for vertical polarization, then we
could harness the entangled polarization state to create the
required spatially entangled state. Birefringent crystals have
such polarization-dependent refractive indices. Assume that
alternating birefringent crystals have been placed after both
the gratings with appropriate thickness so that the subsequent
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Birefringent Crystal
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450 Polarizer
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FIG. 3. (Color online) The experimental setup for implementing the test. It includes the scheme for creating the necessary entangled state.
See the text for further details.

state is
|H 〉1 |V 〉2 |ψ+〉1 |ψ−〉2 − |V 〉1 |H 〉2 |ψ−〉1 |ψ+〉2√

2
.

If the polarization state is traced out, the resultant state will be
mixed, and hence useless. Instead, a 45◦ polarizer is introduced
after which (see the Appendix, Sec. 4) the target entangled
state,

|χ45〉 |�〉 = |↗〉1 |↗〉2
|ψ+〉1 |ψ−〉2 − |ψ−〉1 |ψ+〉2√

2
,

is obtained, where | ↗〉 ≡ (|H 〉 + |V 〉)/√2. As a remark,
it may be stated that although to arrive at this result we
assumed that ηH = 1, which is physically unreasonable, we
can compensate for ηH �= 1 by putting appropriate glass slabs
at the alternate empty slits to produce zero relative phase when
the polarization is horizontal.

B. Measurement settings

The measurement setting is applied by local unitaries such
as Û (θ ) ⊗ Û (φ). A local unitary can be performed by placing
alternating glass slabs of widths such that Eq. (7) holds. These
slabs may be placed right after the birefringent crystals, before
the polarizer. The final state just after the polarizer is given
by |�θφ〉 = Û (θ ) ⊗ Û (φ)|�〉, where θφ is one of the four
possible measurement settings.

C. Effective practical setup

Placing glass slabs may not be suitable for fine gratings,
although a similar setup may be possible [33]. Practically we

can implement the same scheme using the setup shown in
Fig. 3. The first large slab is a birefringent crystal (ηH ,ηV ),
while the adjacent slab is plain glass (η). We generate
longitudinal standing pressure waves so that the effective
thickness at alternate grating sites is given by d0,d1 and l0,l1 for
the crystal and slab, respectively. The phase difference between
a horizontal |ψ0〉 and |ψ1〉 will be given by ηH (d0 − d1) ≡ φA;
note that physically only phase differences are essential. For
the vertical component, it will be ηV (d0 − d1). If we impose
ηV (d0 − d1) = π + φA, then we would have created2 the state

eiẐ
φA
2

|ψ+〉 + |ψ−〉√
2

for an incident |H 〉+|V 〉√
2

polarization state. d0 and d1 will be
constrained by some relation depending on physical properties
of the crystal; they will also depend on the amplitude of the
longitudinal wave. From this and the imposed constraint, d0,d1

and the corresponding amplitude can be determined. However,
we do not have the freedom to change φA. To remedy this, we
use the glass slab. It will introduce an additional relative phase,
η(l0 − l1) ≡ φB . Here, again l0,l1 may satisfy some constraint,
but will depend on the amplitude which is adjustable. Thus,
by changing this amplitude, we can set the relative phase φ =
φA + φB arbitrarily.

Spatial light modulators may be used to more conveniently
implement the aforesaid action of the glass slab and birefrin-
gent crystal.

2(up to an overall phase)
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Effectively therefore, this scheme allows for both the
creation of the entangled state and changing the measurement
settings in a practical way.

VI. DISCUSSION

It is worth adding that one can use an alternative measure-
ment strategy giving the same violation of the inequality; that
is, to measure the modular variable with two-valued positive
operator-valued measure (POVM) elements Ê±, given by

Ê± = 1
2 (Î ± X̂), (14)

satisfying E+ + E− = Î. It follows that 〈X̂〉 = p+ − p−,
where the probabilities of getting ± outcomes, p± = 〈Ê±〉,
can be determined from the observed binary statistics read out
from an ancillary two-level system [34].

An interesting problem is to develop our approach to finite-
dimensional systems, i.e., qudits. A class of Bell inequalities
was proposed by Collins et al. [35], which is useful for demon-
strating nonlocality in high-dimensional entangled states. Our
version of the Bell inequality generalized to d-dimensional
systems can be achieved by using the discrete translation
operators known as Heisenberg-Weyl or generalized Pauli op-
erators, i.e., e−i2πP̂ l/d , whose action is ê−i2πP̂ l/d |n〉 = |n + l〉,
where l describes the steps translated in discrete position space
with periodic boundary conditions and P̂ = ∑d−1

k=0 k |k〉〈k| is
the discrete momentum operator. From this, we obtain the
relevant discrete modular variable X̂l

d = cos(2πP̂ l/d). We
expect that the class of d-dimensional entangled states which
demonstrate nonlocality here will be different from those
considered by Collins et al. [35] and Lee et al. [36].

It is obvious from the properties of the modular variables we
use that the violation is more pronounced for higher number
of slits. One can, however, imagine that those entangled
states created with slits which are fewer than the minimum
number needed for obtaining a violation must also hold
nonlocal properties. To reveal the nonlocality in this range,
one may need a more optimal set of observables, which
involve a suitable combination of different modular variables,
as opposed to the set considered here.

VII. CONCLUSION

In the present work, we constructed a different Bell operator
in terms of phase-space measurements via modular variables.
In this scheme, there is no possibility for a bipartite system
with a positive-definite Wigner function, formally entangled
or not, to yield a violation of the inequality. Therefore, a
violation of the inequality truly contradicts local (hidden)
phase-space models. From this perspective, our scheme is
strongly different from the other approaches reported in
Refs. [12,37–39] where sharp quantum measurements with no
classical analog have been used. The measurement observables
in our scheme instead are very simple with a clear classical
limit. The relevant entangled states used for achieving a
violation of the inequality, however, required the creation of
multicomponent superposition states characterized by a nega-
tive Wigner function. Interestingly, our scheme also involves
the scalar Aharonov-Bohm effect, manifesting another type of
nonlocality [32].
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APPENDIX: CLAIMS

Here, we provide more detailed derivations of the results.

1. Useful expectation values

〈ψ+|X̂|ψ+〉 = N − 1

N
, 〈ψ−|X̂|ψ−〉 = −N − 1

N
,

〈ψ0|X̂|ψ0〉 = 0, 〈ψ1|X̂|ψ1〉 = 0,

〈ψ1|X̂|ψ0〉 =
N−1
N

+ N
N

2
= 2N − 1

2N
= 〈ψ0|X̂|ψ1〉,

〈ψ−|X̂|ψ+〉 = −〈ψ1|X̂|ψ0〉 + 〈ψ0|X̂|ψ1〉
2

= 0 = 〈ψ+|X̂|ψ−〉,
〈�|X̂ ⊗ X̂|�〉 = 1

2
(〈ψ−|X̂|ψ−〉〈ψ+|X̂|ψ+〉

+ 〈ψ+|X̂|ψ+〉〈ψ−|X̂|ψ−〉)

= −
(

N − 1

N

)2

.

2. For arbitrary θi and φi

〈Û†(φi )X̂Û(φi ) ⊗ Û†(θi )X̂Û(θi )〉 = −( N−1
N )2 cos(φi − θi )

Proof. We start with defining φ ≡ φi , θ ≡ θi , δ ≡ φ − θ ,
δ′ ≡ δ/2. Next, we note that LHS = 〈� ′|X̂ ⊗ X̂|� ′〉 where
|� ′〉 = Û (φi) ⊗ Û (θi)|�〉,

|� ′〉 = eiδ′

√
2

( |ψ+〉 − |ψ−〉√
2

)( |ψ+〉 + |ψ−〉√
2

)

−e−iδ′

√
2

( |ψ+〉 + |ψ−〉√
2

)( |ψ+〉 − |ψ−〉√
2

)

= eiδ′

2
√

2
(|ψ+ψ+〉 + |ψ+ψ−〉 − |ψ−ψ+〉 − |ψ−ψ−〉)

−e−iδ′

2
√

2
(|ψ+ψ+〉 − |ψ+ψ−〉 + |ψ−ψ+〉 − |ψ−ψ−〉)

= eiδ′ − e−iδ′

2
√

2
|ψ+ψ+〉 + eiδ′ + e−iδ′

2
√

2
|ψ+ψ−〉

−
(

eiδ′ + e−iδ′

2
√

2

)
|ψ−ψ+〉 −

(
eiδ′ − e−iδ′

2
√

2

)
|ψ−ψ−〉.
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Now using section 1 of this Appendix, we have

LHS = 〈� ′|X̂ ⊗ X̂|� ′〉

= 1

2

(
N − 1

N

)2
⎡
⎣

∣∣∣∣∣e
iδ′ − e−iδ′

2

∣∣∣∣∣
2

−
∣∣∣∣∣e

iδ′ + e−iδ′

2

∣∣∣∣∣
2

−
∣∣∣∣∣e

iδ′ + e−iδ′

2

∣∣∣∣∣
2

+
∣∣∣∣∣e

iδ′ − e−iδ′

2

∣∣∣∣∣
2
⎤
⎦

= −
(

N − 1

N

)2 1

2
[2(cos2 δ/2 − sin2 δ/2)]

= −
(

N − 1

N

)2

cos (δ).

3. Physical implementation with electrons is also possible

If we can show that the basic components used to describe
the photon setup can be translated to the electron setup, then,
in principle, we are through. (a) Glass slab: The equivalent
is the electric AB effect. We need to simply put a capacitor
after the slit and the two components will pick up a phase
difference. (b) Polarizer: The Stern-Gerlach setup is the
classic analog. We simply block the orthogonal component.
(c) Birefringent crystal: This is slightly tricky. It can be
modeled by using a combination of gradient of magnetic
field (as in Stern-Gerlach) and a capacitor. We start with an
equivalent superposition of spin states, |↑↓〉−|↓↑〉√

2
|ψ+ψ+〉. To

construct the spin-dependent |ψ−〉 state, we use the magnetic
field gradient to spatially separate the |↑〉 and |↓〉 states.
We place capacitors as described at the spatial position
corresponding to, say, |↓〉. Thereafter, we remove the magnetic
field gradient and allow the beams to meet again. This

will effectively act as a birefringent crystal, since the phase
difference is spin dependent.

4. Action of a polarizer

If we define |↗〉 ≡ |H 〉+|V 〉√
2

,|↖〉 ≡ −|H 〉−|V 〉√
2

and the 45◦

projector as |↗〉〈↗|, then both |H 〉 → |↗〉 and |V 〉 → |↗〉
where, of course, with a probability 1/2, the photon will be
lost.

5. More on measurement

It is essential to know what ballpark resolution is required
for detecting the violation from the screen. We note

|〈p1,p2|�θφ〉| = |ϕ̃(p1)ϕ̃(p2)Fθφ(p1,p2)|,
where

Fθφ(p1,p2) = 1√
2

� M−1
2 	∑

n,m=−� M
2 	

ei(np1+mp2)L/�{− cos(δ′)

× [(−1)m − (−1)n] + i sin(δ′)[1 + (−1)n+m]}.
Here, ϕ̃(p) ≡ 〈p|ϕ〉 and δ′ = (φ − θ )/2. Since the wave

function ϕ(q) was assumed sharp with respect to L, |ϕ̃(p)|
will only correspond to a broad envelope, over the range
(−Nh/2L,Nh/2L). Thus the main feature of |〈p1,p2,�θφ〉|2
will be given by |Fθφ|, as shown in Fig. 3. Graphically,
it is clear that resolving at the scale ptyp = h

L
should be

sufficient to capture the relevant features. On the screen, this
translates to a typical length, qtyp = λD/L, which follows
from Eq. (13) and pz = h/λ for a photon. This is reminiscent
of typical diffraction experiments and is in units that are readily
measurable.
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