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Nonperturbative calculation of QED processes involving a strong electromagnetic field, especially provided
by strong laser facilities at present and in the near future, generally resorts to the Furry picture with the use
of analytical solutions of particle dynamical equations, such as the Klein-Gordon equation and Dirac equation.
However, only for limited field configurations such as a plane-wave field could the equations be solved analytically.
Studies have shown significant interest in QED processes in a strong field composed of two counterpropagating
laser waves, but the exact solution in such a field is out of reach. In this paper, inspired by the observation of
the structure of the solutions in a plane-wave field, we develop a method and obtain the analytical solution for
the Klein-Gordon equation and equivalently the action function of the solution for the Dirac equation in this
field, under a largest dynamical parameter condition that there exists an inertial frame in which the particle
free momentum is far larger than the other field dynamical parameters. The applicable range of the solution
is demonstrated and its validity is proven clearly. The result has the advantages of Lorentz covariance, clear
structure, and close similarity to the solution in a plane-wave field, and thus favors convenient application.
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I. INTRODUCTION

QED is the successful theory to describe the interaction
between particles and photons. Conventionally the calculation
is carried out in a perturbative manner since the interaction
is characterized by the fine-structure constant �1. However,
in an intense laser field with Aμ being the four potential,
the laser-particle interaction is characterized by the classical

nonlinearity parameter ξ =
√

−〈e2A2〉
me

, where e is the electron
charge, me is the electron mass, and 〈· · · 〉 represents time
averaging [1]. If ξ � 1 the interaction is in the nonperturbative
multiphoton regime. For example, the SLAC E-144 experi-
ment with ξ ≈ 0.3 found an electron-positron-pair-production
rate scaling of R ∼ ξ 10 [2] and in the perturbative theory
this would be interpreted as the typical ξ 2N0 dependence
with N0 = 5 photon absorption. However, the calculation [3]
reveals that on average more than 6 photons are absorbed in
the process, and thus demonstrates the onset of nonperturbative
effects on the experiment. It is also found by calculation that
if the intensity of the laser field in the above experiment
is enhanced such that ξ ∼ 1, photon orders up to N ≈ 50
give significant contributions to the total rate and thus the
process enters the fully nonperturbative regime. Therefore,
special techniques are required to tackle such strong-field
nonperturbative problems in order to take the effects of the
laser field properly into account.

The general approach is to employ the Furry picture [4],
where the laser field is treated as a classical background field
and the particle state is represented by the exact solution of
the particle dynamical equation in the laser field, the so-called
laser-dressed state. For the ideal situation of the laser field
being a plane wave or a constant-crossed field (it can be viewed
as a plane wave with an infinitely long wavelength), analytical
solutions of the Klein-Gordon equation for a neutral scalar
particle or π± meson and the Dirac equation for a fermion
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have been obtained exactly [5–9], which are generally named
Volkov states after the author of Ref. [5]. By using such laser-
dressed state the particle-laser interaction has been taken into
account to all orders, and the remaining interaction between
the laser-dressed particle and the QED vacuum is weak, thus
allowing calculations in a perturbative scheme similar to the
conventional QED. Various strong-field QED processes in a
plane-wave field (or an approximated plane-wave field with
the spot radius of the laser beam being much larger than
the laser central wavelength [10]) have been investigated
by this method, including laser-assisted bremsstrahlung [11],
multiphoton Compton scattering [7,12,13], electron-positron
pair production [3,14,15], and so on.

For an arbitrary non-plane-wave field, exact analytical
solutions for the above equations are generally out of reach.
However, several laser fields of particular interest in study are
of this kind, e.g., the field composed of two counterpropagating
laser waves. The colliding wave configuration can provide
higher field intensity and the electron classical trajectory
is distinctly different compared to that in the plane-wave
field. Extensive studies suggest that this kind of laser field is
efficient in producing electron-positron pairs and supporting
avalanche pair production, and thus is ideal for vacuum cascade
observation [16–20]. Although it seems to be the simplest case
in the category of non-plane-wave fields, analytical solutions
of the Klein-Gordon equation or the Dirac equation have not
been obtained in this field yet. It is interesting to note that
already in Ref. [5] the analytical solutions were constructed
for a complex plane-wave field with component waves of
arbitrary polarizations and frequencies. However, if one tries
to generalize the method in Ref. [5] to the counterpropagating
wave case, one would find extra terms hard to deal with
which are proportional to the nonvanishing dot product of
the two wave vectors and are thus nothing else but the very
manifestation of the fundamental feature of non-plane-wave
fields.

Without the analytical Volkov solution of Dirac equation in
this field, the pair production rate has been calculated under the
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important quasistationarity approximation [19]: the reaction
rate for each pair production is calculated with the value
of the external field fixed at a given time, and finally these
rates are time-averaged over the total interaction time. This
approximation is justified if ξ � 1 since the formation length
of a QED process in a plane-wave field is ξ times smaller
than the laser wavelength [1,21]. In Ref. [22] a complete QED
calculation based on the Volkov solution in a plane-wave field
is carried out for the electron-positron pair production in the
impact of a 50 MeV electron with two colliding 10 keV x-ray
laser beams each of the intensity 1020 W/cm2. This treatment
takes the advantage that ξ � 1 though the absolute intensity is
high. Although it is by this measure not a strong-field problem,
novel features in the pair production process compared to the
plane-wave case are identified. Therefore, it is meaningful
to investigate analytical solutions for the particle dynamical
equations in non-plane-wave fields to calculate more accurate
strong-field QED reaction rates in these fields, especially
in the regime with intermediate values of ξ . The recent
breakthrough in solving the Dirac equation in propagating laser
waves is worked out by Di Piazza in Refs. [23,24]. Applying
the WKB method and looking for a solution of the form
ψ(x) = exp[iS(x)/�]ϕ(x), the action function S(x) is derived
first by solving the classical electron dynamical equation in the
background electromagnetic field and then the bi-spinor ϕ(x)
is constructed via the method of characteristics. In this way
the electron wave functions in the presence of a background
electromagnetic field of a general space-time structure are
constructed in particular inertial frames where the initial
energy of the electron is the largest dynamical energy scale. In
Ref. [24] it is argued that even in view of the future strong laser
facilities, such as the Extreme Light Infrastructure (ELI) [25]
and the Exawatt Center for Extreme Light Studies (XCELS)
[26], it is still necessary to employ ultrarelativistic electrons
in experimental studies on strong-field QED problems in the
quantum nonlinearity regime where not only ξ � 1 but also the
quantum nonlinearity parameter χ = ξ ωb

me
� 1 with ωb being

the photon energy in the rest frame of the electron.
In this paper, we develop a method and analytically solve

the Klein-Gordon equation in a background electromagnetic
field composed of two counterpropagating laser waves in
a Lorentz-covariant manner. The method is inspired by the
observation that if the coefficients of the Fourier expansion of
the solution in a plane-wave field to different photon modes
are written in the form of a Bessel function, all parameters can
be determined by simple rules, as demonstrated in Sec. II.
For the solution in the non-plane-wave field under study,
the coefficients of the Fourier expansion of the solution to
different modes of the two kinds of photons are written as
a multiplication of Bessel functions, and the parameters are
determined by rules in analogy or as a development to the
simple rules found in the plane-wave case. The applicable
range is obtained by examining the validity of approximations
used in derivation steps, and a largest dynamical parameter
condition is imposed, that there exists an inertial frame in
which the particle asymptotic momentum is far larger than
the other field dynamical parameters. We can have in mind
the case of an energetic particle obliquely impacting on two
counterpropagating optical or x-ray intense laser waves in the
laboratory frame, while the calculation can be conducted in

arbitrary boosted frames. This is the content of Sec. III. By
solving the Klein-Gordon equation, the action function S(x)
of the solution of the Dirac equation is obtained, because
if the solution ψ = exp[iS ′(x)/�] satisfies the Klein-Gordon
equation [

(p̂μ − eAμ)2 − m2
e

]
ψ = 0, (1)

with p̂μ = i�∂μ, then except for a term proportional to � it
results in

(∂μS ′ + eAμ)(∂μS ′ + eAμ) − m2
e = 0, (2)

which is just the equation determining the action function S(x)
for Dirac equation [23,24].

In Sec. IV the newly obtained solution is justified by
showing that solutions in a plane-wave field can be recovered
naturally from it. In Sec. V the error induced by this solution to
calculations of scattering matrix terms is discussed. Besides,
the solution is simplified and takes a form in close similarity
to the solution in a plane-wave field. Finally it is validated by
substituting the action function into the basic equation (2) and
proving the consistency.

In the following the natural units c = � = 1 are used unless
claimed otherwise. In this context the electron charge e should
not be confused with the exponential constant in exponential
expressions.

II. RECONSTRUCTION OF THE SOLUTION FOR THE
KLEIN-GORDON EQUATION IN A CIRCULARLY

POLARIZED PLANE WAVE

We consider the solution for the Klein-Gordon equation
(1) in a circularly polarized plane wave A = a1 cos(k · x) +
a2 sin(k · x), where a1 and a2 are the field vector potential
components in two orthogonal directions, k is the wave-vector
of the field, and · denotes the four-vector multiplication. Up to
a normalization constant the Fourier expansion of the solution
to different photon modes takes the form

ψ = e±iq±·x
∞∑

n=−∞
cnJn(α)einβeink·x, (3)

where the dressed momentum is q± = p± + m2
eξ

2

2k·p±
k with p±

being the electron’s (with “−” subscript) or positron’s (with
“+” subscript) asymptotic momentum outside the electromag-
netic field, and Jn is the Bessel function. Our question is, if
we only know the form of the solution as given in Eq. (3),
how do we determine the values of cn, α, and β so that ψ

can satisfy Eq. (1)? The answer seems to be trivial, but useful
information can be drawn from the approach to actually obtain
these parameters.

Substituting Eq. (3) into Eq. (1), we obtain that
∞∑

n=−∞
cnJn(α)einβ[2nk · p± + ep± · (a1 − ia2)eik·x

+ ep± · (a1 + ia2)e−ik·x]eink·x = 0. (4)

This results in the sequence of equations related to different
photon modes

cnJn(α)2nk · p± + cn−1Jn−1(α)e−iβep± · (a1 − ia2)

+ cn+1Jn+1(α)eiβep± · (a1 + ia2) = 0. (5)
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Compared to the identity of the Bessel function

α

2n
[Jn−1(α) + Jn+1(α)] = Jn(α), (6)

it can be found that in Eq. (5) if we let

cn = 1 (7)

and

Im[e−iβep± · (a1 − ia2)] = 0, (8)

the equation becomes

−Re[e−iβep± · (a1 − ia2)]

2nk · p±
[Jn−1(α) + Jn+1(α)] = Jn(α),

(9)

and thus

α = −Re[e−iβep± · (a1 − ia2)]

k · p±
. (10)

From Eqs. (8) and (10) α and β can be written in the familiar
form

cos β = p± · a1√
(p± · a1)2 + (p± · a2)2

, (11)

sin β = − p± · a2√
(p± · a1)2 + (p± · a2)2

, (12)

α = −e
√

(p± · a1)2 + (p± · a2)2

k · p±
. (13)

Another solution is got by changing the sign of the above
quantities, corresponding to β → β + π and α → −α, but this
leads to the same wave function (3) since ein(β+π)Jn(−α) =
(−1)2neinβJn(α).

In this section the coefficients in the Fourier expansion
terms of the solution for the Klein-Gordon equation are
acquired in an empirical way, in which the identity (6) plays a
crucial role. In the following it is shown that the experiences
and observations gained here can be used to tackle nontrivial
problems.

III. CONSTRUCTION OF THE SOLUTION
FOR THE KLEIN-GORDON EQUATION

IN COUNTERPROPAGATING WAVES

Our aim is to find the solution for the Klein-Gordon
equation and equivalently the action function for the Dirac
equation in a non-plane-wave field. Consider[

(p̂ − eA − eA′)2 − m2
e

]
ψ = 0, (14)

where A = a[ε1 cos(k · x) + ε2 sin(k · x)] and A′ =
a′[ε′

1 cos(k′ · x) + ε′
2 sin(k′ · x)] respectively represent a circu-

larly polarized plane wave with the non-plane-wave condition
k · k′ �= 0. As a special case, consider that the two waves
counterpropagate with each other. Without loss of generality,
suppose k = (ω,0,0,kz) and k′ = (ω′,0,0,k′

z), where kz is
positive and k′

z is negative, and let ε1 = ε′
1 = (0,1,0,0) and

ε2 = ε′
2 = (0,0,1,0).

Based on the observation of the structure of the solution (3)
in a plane-wave field, we assume the Fourier expansion of the
solution here takes the form

ψ = e±ip′
±·x

∞∑
n=−∞

∞∑
m=−∞

Cnmeink·xeimk′ ·x, (15)

where

Cnm = cnmJn(αm)einβJm(α′
n)eimβ ′

, (16)

and the formal dressed momentum is written as

p′
± = p± + e2a2

2k · p±
k + e2a′2

2k′ · p±
k′. (17)

The arguments of the Bessel functions are assumed to be
index dependent, the reason of which will be shown later. The
quantity p′

± is not the physical dressed momentum, which can
only be determined after the acquisition of Cnm. The solution
(15) would be obtained by determining cnm, αm, α′

n, β, and β ′.
Substituting Eq. (15) into Eq. (14), a sequence of equations

related to different photon modes can be derived. Considering
the possibility of cnm to be a function of the time-space
coordinates, we get

cnmJn(αm)Jm(α′
n)(r0 + r1n + r2m + r3nm)

+ cn−1,mJn−1(αm)Jm(α′
n−1)e−iβb

+ cn+1,mJn+1(αm)Jm(α′
n+1)eiβb∗

+ cn,m−1Jn(αm−1)Jm−1(α′
n)e−iβ ′

d

+ cn,m+1Jn(αm+1)Jm+1(α′
n)eiβ ′

d∗ = 0, (18)

with

r0 = e4a2a′2k · k′

2(k · p±)(k′ · p±)
+ 2e2A · A′

+ (p̂2−2eA · p̂ − 2eA′ · p̂)cnm

cnm

− 2

cnm

(p̂μcnm)(±p′μ
±),

(19)

r1 = ±2k · p± ± e2a′2

k′ · p±
k · k′ − 2

cnm

(p̂μcnm)kμ, (20)

r2 = ±2k′ · p± ± e2a2

k · p±
k · k′ − 2

cnm

(p̂μcnm)k′μ, (21)

r3 = 2k · k′, (22)
b = ±eap± · (ε1 − iε2), (23)
d = ±ea′p± · (ε′

1 − iε′
2). (24)

It is found that the empirical method (7)–(10) based on the
identity (6) can be applied. Let

r0 = 0, (25)

Im(e−iβb) = Im(e−iβ ′
d) = 0. (26)

Moreover, assuming cnm is index independent and using the
relation

Jn(α)Jm(α′)nm = α

4
[Jn+1(α) + Jn−1(α)]Jm(α′)m

+ α′

4
[Jm+1(α′) + Jm−1(α′)]Jn(α)n, (27)
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Eq. (18) can be written as

0 = Jn(αm)Jm(α′
n)r1n

+ r3mαm

4
[Jn−1(αm) + Jn + 1(αm)]Jm(α′

n)

+ Re(e−iβb)[Jn−1(αm)Jm(α′
n−1) + Jn+1(αm)Jm(α′

n+1)]

+ Jn(αm)Jm(α′
n)r2m

+ r3nα′
n

4
[Jm−1(α′

n) + Jm+1(α′
n)]Jn(αm)

+ Re(e−iβ ′
d)[Jm−1(α′

n)Jn(αm−1) + Jm+1(α′
n)Jn(αm+1)].

(28)

If we take the assumption that

αm±1 ≈ αm and α′
n±1 ≈ α′

n, (29)

Eq. (28) can be considerably simplified and reduced into two
equations

0 = Jn(αm)r1n +
[
r3mαm

4
+ Re(e−iβb)

]

× [Jn−1(αm) + Jn+1(αm)], (30)

0 = Jm(α′
n)r2m +

[
r3nα′

n

4
+ Re(e−iβ ′

d)

]

× [Jm−1(α′
n) + Jm+1(α′

n)], (31)

and thus it is straightforward to use the identity (6) to obtain

αm = −4Re(e−iβb)

2r1 + r3m
, (32)

α′
n = −4Re(e−iβd)

2r2 + r3n
. (33)

This result shows explicitly how the arguments of the Bessel
functions depend on the indices and automatically explains the
assumption in Eq. (16).

As a brief summary, the coefficients cnm, β, β ′, αm, and
α′

n needed to determine the solution (15) can be obtained
respectively from Eqs. (25), (26), (32), and (33). The remaining
task is to solve Eq. (25) for the explicit form of cnm and finally
check the validity of the assumption (29).

In the derivation for solving Eq. (25), we keep � explicitly
for the benefit of indicating the perturbation orders. Presume
the solution takes the form

cnm = ηe− i
�

[f (k·x)+g(k′ ·x)+q(kd ·x)], (34)

where kd = k − k′ and η is a constant; f , g, and q are
defined as real functions with the argument k · x, k′ · x,
and kd · x, respectively. Thus, there is p̂μcnm = i�∂μcnm =
cnm[kμf ′ + k′

μg′ + (kμ − k′
μ)q ′] with f ′, k′, and q ′ being the

total differential of the corresponding functions with respect to
the variables k · x, k′ · x, and kd · x, respectively. Substituting
this expression into Eq. (25), it can be derived that

k · k′[2f ′g′ + 2(g′ − f ′)q ′ − 2q ′2 − 2i�q ′′ + 1 ∓ 22g
′

∓ 23f
′ ∓ 2q ′(3 − 2)] − 2e2aa′ cos(kd · x)

∓ 2(f ′k + g′k′ + q ′kd ) · p± = 0, (35)

with 1 = 223, 2 = e2a2/(2k · p±), and 3 = e2a′2/(2k′ ·
p±). Equation (35) can be simplified by taking f ′ = ±2 and
g′ = ±3 for corresponding p±, such that

k · k′(−2q ′2 − 2i�q ′′) − 2e2aa′ cos(kd · x)

− 2(2k + 3k
′ ± q ′kd ) · p± = 0. (36)

Therefore,

±q ′kd · p± + e2aa′ cos(kd · x) + 1
2e2(a2 + a′2)

= −(q ′2 + i�q ′′)k · k′. (37)

According to Eq. (37) if kd · p± = 0, for example in a
standing-wave case k′

z = −kz and a = a′ with the particle
beam shooting perpendicular to the ẑ direction, the function

y(φ) = e− i
�

q(2φ), (38)

with φ = kd · x/2, satisfies the Mathieu differential equation

d2y

dφ2
+ [c1 − 2c2 cos 2φ]y = 0, (39)

with

c1 = −2e2a2

�2ω2
, c2 = e2a2

�2ω2
. (40)

A Mathieu equation is also found in solving the Klein-
Gordon equation in a rotating electric field [27]. The formal
resemblance is reasonable since a particle located in the
vicinity of an antinode of the standing wave experiences a
rotating electric field.

In the following we consider an oblique incidence of the
particle into the laser field and suppose the condition

|λ| =
∣∣∣∣ k · k′

±kd · p±

∣∣∣∣ � 1. (41)

Then Eq. (37) can be solved by the perturbative method and the
solution is obtained as a sum of terms proportional to different
orders of λ, such that

q = q0 +
∞∑

n=1

λnqn, (42)

where the zeroth-order solution takes a simple form

q0 = ∓e2aa′ sin(kd · x)

kd · p±
∓ (2k + 3k

′) · p±
kd · p±

kd · x. (43)

Therefore, the solution cnm reads

cnm = ηe
± i

�
[−2k·x−3k

′·x+ e2aa′ sin(kd ·x)
kd ·p± + e2(a2+a′2)

2kd ·p± kd ·x+O(λ)]
. (44)

Note that

e±ip′
±·xcnm = ηe

±i(p±+ e2a2+e2a′2
2kd ·p± kd )·x

e
±i[ e2aa′ sin(kd ·x)

kd ·p± +O(λ)]
, (45)

where the natural units c = � = 1 are used again.
The condition (41) is satisfied in many scenarios. This

means that there exists at least one inertial frame; here for
the sake of convenient illustration we assume it to be the
laboratory frame, in which the particle asymptotic energy
satisfies ε � ω(ω′) and we further require that ε � meξ (meξ

′)
with ξ = ea

me
and ξ ′ = ea′

me
. This is referred to as the largest

dynamical parameter condition in the paper similarly to that
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in Ref. [23]. Besides this energy requirement, the geometry of
the setup of the particle-laser system can become significant
in special cases, which will be discussed later. Then it can be
calculated that

r1 = ±2k · p±

(
1 ± q ′ k · k′

k · p±

)
≈ ±2k · p±, (46)

r2 = ±2k′ · p±

(
1 ∓ q ′ k · k′

k′ · p±

)
≈ ±2k′ · p±, (47)

since the terms q ′ k·k′
k·p±

,q ′ k·k′
k′ ·p±

∼ m2
e (ξ 2+ξ ′2+ξξ ′)

ε2 . As stated ear-
lier, the approximation presented in Eq. (29) needs to be
checked. It is validated by

|αm±1 − αm| ≈ meξω′ sin θp

εω(1 − cos θp)2
∼ meξ

ε
� 1, (48)

|α′
n±1 − α′

n| ≈ meξ
′ω sin θp

εω′(1 + cos θp)2
∼ meξ

′

ε
� 1, (49)

where for illustration simplicity ω ≈ ω′ is assumed and θp is
the azimuth angle of the particle’s asymptotic momentum to
the ẑ axis.

Therefore, the solution for the Klein-Gordon equation (14)
is obtained, which reads

ψ = ηe
±i(p±+ e2a2+e2a′2

2kd ·p± kd )·x
e
±i[ e2aa′ sin(kd ·x)

kd ·p± +O(λ)]

×
∞∑

n=−∞

∞∑
m=−∞

Jn(αm)einβJm(α′
n)eimβ ′

eink·xeimk′ ·x, (50)

where

cos β = cos β ′ = p± · ε1√
(p± · ε1)2 + (p± · ε2)2

, (51)

sin β = sin β ′ = − p± · ε2√
(p± · ε1)2 + (p± · ε2)2

, (52)

αm = −ea
√

(p± · ε1)2 + (p± · ε2)2

k · p± ± m
2 k · k′ , (53)

α′
n = −ea′√(p± · ε1)2 + (p± · ε2)2

k′ · p± ± n
2 k · k′ , (54)

and the constant η can be acquired by the normalization of the
wave function.

Finally the applicable range of the solution (50)–(54) is
addressed. First, let us scrutinize the steps (41), (46), (47), (48),
and (49) which have taken approximations regarding four-
vector multiplications. As mentioned previously, the validity of
these approximations relies not only on the largest dynamical
parameter condition but also on the geometric relations among
the constituents’ momenta. By checking the denominators of
the expressions in these five equations, specifically speaking
|kd · p±|, |k · p±|, and |k′ · p±|, the conclusion is that to justify
these steps the angle θp should satisfy

cos θp �= ω − ω′

ω + ω′ (55)

and

cos θp �= ±1. (56)

Second, since the magnitudes of αm and α′
n scale as meξ/ω

and meξ
′/ω′, respectively, and thus can be large, the usage of

Eqs. (46) and (47) in Eqs. (53) and (54) can only ensure that the
neglected part is relatively much smaller than the remaining
one. To guarantee the absolute magnitude of the neglected part
to be �1, extra constraints on the parameters are taken, such
that ∣∣∣∣q ′ k · k′

k · p±

∣∣∣∣αm � 1,

∣∣∣∣q ′ k · k′

k′ · p±

∣∣∣∣α′
n � 1. (57)

These leads to the constraint on the field intensity

ξ � (ε2ω)
1
3

me

, ξ ′ � (ε2ω′)
1
3

me

. (58)

As an example, consider the two waves coming from the
tunable Ti : Sa lasers with the photon energy ω = ω′ ∼ 2 eV
and the particle being an electron accelerated by the laser-
plasma wake field to the energy 10 GeV [28] with θp = π/4.
Take ξ ∼ ξ ′ ∼ 1 which corresponds to the laser intensity
about 1019 W/cm2. Then it can be calculated that |λ| ∼ 10−10,
|q ′ k·k′

k·p±
| ∼ |q ′ k·k′

k′ ·p±
| ∼ 10−8, |αm±1 − αm| ∼ |α′

n±1 − α′
n| ∼

10−4, and |q ′ k·k′
k·p±

|αm ∼ |q ′ k·k′
k′·p±

|α′
n ∼ 10−2, and thus it is in

the applicable range of the solution (50)–(54). Consider, as
another example, the same particle condition but the waves
are 1 keV x-ray lasers with ξ ∼ ξ ′ ∼ 1 corresponding to the
laser intensity about 1025 W/cm2, which is even higher than
that available by the present technology, it can be found that
|λ| ∼ 10−7, |q ′ k·k′

k·p±
| ∼ |q ′ k·k′

k′·p±
| ∼ 10−8, |αm±1 − αm| ∼

|α′
n±1 − α′

n| ∼ 10−4, and |q ′ k·k′
k·p±

|αm ∼ |q ′ k·k′
k′·p±

|α′
n ∼ 10−5.

Therefore it is also in the applicable range of the solution
(50)–(54).

IV. RECOVERING SOLUTIONS IN A PLANE-WAVE FIELD

By taking A′ = 0, it is found that the solution (50)–(54) is
reduced to the familiar solution of the Klein-Gordon equation
in a plane-wave field as given in Eqs. (3)–(13).

It is more interesting to note that by taking k′ in the same
direction as k and thus denoting k′ = rk with r = ω′/ω, the
solution (50)–(54) becomes

ψ = ηe
±i(p±+ e2a2

2k·p± k+ e2a′2
2k′ ·p± k′)·x

e
±i

e2aa′ sin(kd ·x)
kd ·p±

×
∞∑

n=−∞
Jn(α)einβeink·x

∞∑
m=−∞

Jm(α′)eimβ ′
eimk′ ·x, (59)

where

cos β = cos β ′ = p± · ε1√
(p± · ε1)2 + (p± · ε2)2

, (60)

sin β = sin β ′ = − p± · ε2√
(p± · ε1)2 + (p± · ε2)2

, (61)

α = −ea
√

(p± · ε1)2 + (p± · ε2)2

k · p±
, (62)

α′ = −ea′√(p± · ε1)2 + (p± · ε2)2

k′ · p±
. (63)
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Therefore

ψ = ηe
±ip±·x−i

∫ y

−∞ dy ′ 1
2k·p± [2ep±·At (y ′)±e2A2

t (y ′)] (64)

with y = k · x and the total field potential At (y) = A(y) +
A′(ry), and thus the solution of the Klein-Gordon equation in
a two-color plane-wave field is recovered.

V. VALIDATION AND SIMPLIFICATION
OF THE SOLUTION

In the derivation for the solution, we have solved Eq. (25)
and obtained the arguments of the Bessel functions in an
approximate manner. The errors they induce to the result
can be well estimated. In the solution (50), there is an error
proportional to λ ∼ ω/ε in the phase which can be diminished
by calculating higher order terms in Eq. (42). The error caused
by the approximated arguments of the Bessel functions to the
coefficients of each photon mode is proportional to meξ/ε � 1
or meξ

′/ε � 1. Therefore the error of a scattering matrix
term computed by using this wave function (50)–(54) can be
estimated accordingly.

Let us consider the spectral width of the solution. The
asymptotic formula of the Bessel function for n � α > 0 gives

Jn(α) ≈ 1√
2πn

(
eα

2n

)n

. (65)

Thus the cutoff takes place at n = α and Jn(α) drops sharply
as n increases beyond α [29]. For Jn(α)Jm(α′) with

α = ea
√

(p± · ε1)2 + (p± · ε2)2

k · p±
, (66)

α′ = ea′√(p± · ε1)2 + (p± · ε2)2

k′ · p±
, (67)

the cutoff indices are nc = ±α and mc = ±α′. These turn
out to be approximately also the cutoff indices of the term
Jn(αm)Jm(α′

n) in Eq. (50) since there are | nck·k′
k·p±

| ∼ meξ

ε
� 1

and mck·k′
k′ ·p±

∼ meξ
′

ε
� 1.

To estimate how well the approximated solution (50)–(54)
satisfies the Klein-Gordon equation (14), let us calculate the
expectation value of the left-hand side of Eq. (14) with Dirac
bra-ket notation

δε2 = 〈ψ |(p̂ − eA − eA′)2 − m2
e |ψ〉. (68)

This is to compute the temporal-spatial integration of the
multiplication of the conjugate of the solution (50) and the
right-hand side of Eq. (28). It is reasonable to compare this
residual energy with the characteristic energy of the particle,
for example ε2 in the laboratory frame or Lorentz invariants
such as k · p±. Without going into the details and focusing
only on the energy scales, we get

δε2

ε2
∼ m2

eξξ ′ncmc

ε2
∼

(
m2

eξξ ′)2

ωω′ε2
. (69)

It is tempting to write the solution (50) in a more concise
form via using the identity

eix sin θ =
∞∑

−∞
Jn(x)einθ , (70)

like what has been done to the solution (59) and (64). But due
to the index-dependent arguments αm and α′

n of the Bessel
functions in the solution (50), not only the direct application
of this identity is incorrect, but also the sum there cannot be
decomposed as a product of two sums like in Eq. (59). This
illustrates the complex manner of the particle coupling with
the non-plane-wave field composed of two counterpropagating
laser waves.

However, if at the cutoff there is

∣∣αmc
− α

∣∣ ∼
∣∣∣∣αα′ ω

′

ε

∣∣∣∣ ∼ m2
eξξ ′

ωε
� 1, (71)

∣∣α′
nc

− α′∣∣ ∼
∣∣∣∣αα′ ω

ε

∣∣∣∣ ∼ m2
eξξ ′

ω′ε
� 1, (72)

which compared to Eq. (69) just means the energy scale of
δε/ε is small, then the following approximation is reasonable:

αm ≈ α, α′
n ≈ α′. (73)

Therefore the solution is simplified as

ψ = eiS, (74)

where the action function reads

S = ±
(

p± + e2a2 + e2a′2

2kd · p±
kd

)
· x ± e2aa′ sin(kd · x)

kd · p±

−
[
eap± · ε1

k · p±
sin(k · x) − eap± · ε2

k · p±
cos(k · x)

]

−
[
ea′p± · ε1

k′ · p±
sin(k′ · x) − ea′p± · ε2

k′ · p±
cos(k′ · x)

]
,

(75)

or in an integral form

S = ±
(

p± + e2a2 + e2a′2

2kd · p±
kd

)
· x ±

∫ y

−∞
dy ′ 1

kd · p±
e2F (y ′)

−
∫ y

−∞
dy ′ 1

k · p±
ep± · A(y ′)

−
∫ y

−∞
dy ′ 1

k′ · p±
ep± · A′(y ′), (76)

with F = −A · A′ and y = kd · x. In analogy to the plane-
wave solution, the dressed momentum of the particle in this
non-plane-wave field can be identified as

q = p± + e2a2 + e2a′2

2kd · p±
kd, (77)

and accordingly the dressed mass is

m∗ =
√

q2 ≈ me

√
1 + ξ 2 + ξ ′2. (78)

The validity of action (75) can be checked by substituting
it into Eq. (2). Then the left-hand side of the equation reads

(∂μS + eAμ + eA′
μ)(∂μS + eAμ + eA′μ) − m2

e

∼ (meξ )3

ε
+ m2

eξξ ′, (79)
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and with meξ
3

ε
� 1 it is

(∂μS + eAμ + eA′
μ)(∂μS + eAμ + eA′μ) − m2

e[1 − O(ξξ ′)]

= 0. (80)

Like above, the ratio of the extra term over the characteristic
energy of the particle ∼m2

eξξ ′/ε2 � 1. Note also that there
are meaningful strong-field problems with ξ ∼ 1 and ξ ′ � 1,
which results in ξξ ′ � 1.

In fact, it is possible to construct other forms of expressions
which can also make Eq. (2) established up to a certain
perturbation order, but this paper shows how this particular
action function (75) or (76) is derived step by step and proves
its reasonableness. It takes the form analogous to that of the
plane-wave solution and laser-dressed physical quantities
such as the dressed momentum and the dressed mass can be
directly identified.

It is worth noticing that neglecting in Eq. (28) the terms
multiplied by r3mαm and r3nα′

n, the arguments of the Bessel
functions would be index independent and the action function
(75) can be obtained. However, if the error brought to the
Klein-Gordon equation is estimated based on Eq. (28), an

energy scale of m3
e ξ

2ξ ′

ω
or m3

e ξξ ′2

ω′ is found which is more severe
than m2

eξξ ′ found in Eq. (80) by direct calculation with the
explicit expression of the action function. This also indicates
that the amplitude of δε is overestimated in Eq. (69).

VI. CONCLUSIONS

The analytical solution of the Klein-Gordon equation
and equivalently the action function of a Dirac particle in a
non-plane-wave electromagnetic field are investigated. The
method is developed based on the idea that the coefficients
of the Fourier expansion terms of the solution to different
photon modes mainly adopt the form of multiplications of
Bessel functions.

For the field composed of two counterpropagating circu-
larly polarized plane waves, a detailed derivation is illustrated.
The coefficients are determined by the rules (25), (26), (32),
and (33) as a development or direct analogy to the rules
observed in the plane wave case; see Eqs. (7), (8), and
(10). In order to solve Eq. (25) explicitly and justify the
assumption (29), the largest dynamical parameter condition
is imposed, that there exists an inertial frame in which the
particle asymptotic momentum is far larger than the other
field dynamical parameters. As already mentioned in Sec. I,
this condition is of realistic meaning in view of strong-field
experimental campaigns into the quantum nonlinearity regime.

The solution for the Klein-Gordon equation is obtained
analytically; see Eqs. (50)–(54). Discussions on its applicable
range and examples can be found at the end of Sec. III.

It is clearly shown in Sec. IV that the solutions for the Klein-
Gordon equation in the one-color and two-color plane-wave
fields can be recovered. In Sec. V the error of the solution and
the error it can induce to the scattering matrix term calculation
are discussed. Considering the cutoff property of the Bessel
function, it is found that the solution can be simplified and the
action function takes an integral form (76) similar to that in
the plane-wave case. The laser-dressed momentum and mass of
the particle are identified. The validity of the simplified action
is justified by directly calculating the basic equation (2) that
defines the action function. Comparing the simplified action
(75) and Eq. (44), it can be found that the non-plane-wave
feature of the coupling of the particle to the two waves is
mainly determined by Eq. (25).

The solution (50)–(54) as well as the action (76) is Lorentz
invariant. It has the advantage of clear structure and close
similarity to the solution in a plane-wave case, and thus favors
convenient application. This solution for scalar particles can
be used to calculate QED processes of fermions (electrons
and positrons) if the spin effect can be neglected, which
indicates the laser field of optical or lower frequency [30]
and detailed analysis can be found in Ref. [13]. Besides, with
the solution of the Klein-Gordon equation, the solution of
the corresponding Dirac equation in the same electromagnetic
field can be derived, for example, by the characteristic
method shown in the paper [23]. It then can provide more
exact reaction rates of multiphoton pair production process,
Compton scattering process, and so on in this non-plane-wave
field. By comparing the results calculated from the plane-wave
solution and the non-plane-wave solution, features particularly
related to the non-plane-wave field can be identified and used
in experimental design and explanation.

This paper indicates the special convenience of using
Bessel functions in describing the dressed states of particles
in electromagnetic fields. Extending this method to solve
problems in other field configurations shall be investigated
in the future work.
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