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Kohn-Sham theory of a rotating dipolar Fermi gas in two dimensions
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A two-dimensional dipolar Fermi gas in a harmonic trap under rotation is studied by solving ab initio
Kohn-Sham equations. The physical parameters used match those of an ultracold gas of fermionic **Na “°K
molecules, a prototypical system of strongly interacting dipolar quantum matter, which was created very recently.
We find that, as the critical rotational frequency is approached and the system collapses into the lowest Landau
level, an array of tightly packed quantum vortices develops, in spite of the nonsuperfluid character of the system.
In this state the system loses axial symmetry and the fermionic cloud boundaries assume an almost perfect
square shape. At higher values of the filling factor the vortex lattice disappears, while the system still exhibits
square-shaped boundaries. At lower values of the filling factor the fermions become instead localized in a Wigner

cluster structure.
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Developments in the field of ultracold dipolar atoms
have boosted investigations of many-body effects associ-
ated with long-range interactions (see, e.g., the review in
Ref. [1]). Recently, the creation of ultracold dipolar gas
of fermionic molecules with large intrinsic dipole moments
has been achieved [2,3], opening the way to explore the
intriguing many-body physics of correlated Fermi systems
associated with the long-range anisotropic nature of the
dipolar interaction between molecules [4], which includes
topological superfluidity [5,6], interlayer pairing between two-
dimensional systems, and the formation of dipolar quantum
crystals [7].

Two-dimensional (2D) dipolar systems are particularly
interesting, since the lifetime of heteronuclear Feshbach
molecules with a permanent electric dipole moment increases
by the confinement in two dimensions [8]. Indeed, such polar
molecules can have very large dipole moments, of the order of
1 D, allowing us to access the regime of strong correlations in
a controllable way. A 2D dipolar Fermi liquid, which is stable
at low density, is expected to convert into a Wigner crystal at
high densities [1,9]. For intermediate values of the interaction
strengths, an instability at finite wave vector is predicted,
driving the system to a stripe phase [10-12] (see also Ref. [1]
and references therein). A recent quantum Monte Carlo study
confirmed the liquid-solid transition at high coupling but found
that the stripe phase is never energetically favored [13].

A particular fascinating route towards the realization of a
strongly correlated system of ultracold gases (either bosonic or
fermionic) is the use of rapidly rotating harmonic traps. When
the rotational frequency approaches the trap frequency, i.e., just
below the limit of centrifugal instability, the single-particle
energy spectrum becomes highly degenerate and hence the
kinetic energy of the Fermi system is greatly reduced, thus
enhancing the role of the interparticle interactions.

A uniform rotation with angular velocity approaching the
centrifugal limit is in fact formally equivalent to a magnetic
field (in the rotational frame) that regroups single-particle
states into discrete, highly degenerate Landau levels (LLs).
Such equivalence, for a 2D system, is embodied in the fol-
lowing formal identity [14] involving the many-body Hamil-
tonian of the (interacting) system in the rotating reference
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where V is the interaction energy, €2 is the rotation frequency,
and L, is the projection of the angular momentum of the ith
particle along the z axis. Here r; = x;e, + y;e, is the position
vector of the ith particle. When 2 = wj, the noninteracting part
reduces to the Landau Hamiltonian of particles with mass M
and charge e moving in a constant magnetic field B = Be, of
strength B = 2M 2 /e. The eigenvectors of the noninteracting
part span Landau levels with energies €, = hw.(n + 1/2),
where w, = 2.

We consider in the following a two-dimensional spin-
polarized dipolar Fermi gas, characterized by an interaction

termin Eq. (1) V = Z,N< j ﬁ Here d is the electric dipole
moment of an atom or molecule and r,r’ are coordinates in the
2D x-y plane. Since the dipole moments are aligned parallel to
the z axis, the (long-range) pair potential is purely repulsive.
The range of the dipole-dipole interaction is characterized by
the length ro = Md*/h?.

Exotic forms of vortex lattices, e.g., square, stripe, and
bubble crystal lattices, are expected in rotating Bose Ein-
stein condensates when the critical rotational frequency is
approached [15-17]. Rotating dipolar Fermi gases have been
proposed [18,19] as suitable candidates to realize the Laughlin-
like state and more exotic quantum liquids, as well as their
crossover behavior to Wigner crystals. At variance with the
case of a nonrotating dipolar Fermi gas in a 2D trap, where
the crystalline state becomes energetically favored at high
densities, in the case of a fast rotating dipolar gas, the situation
isreversed [1]: Rotating dipoles in the lowest LL (LLL) behave
similarly to electrons, where the crystalline phase is stable at
low densities. Indeed, it has been shown [20,21] that a rapidly
rotating polarized 2D dipolar Fermi gas undergoes a transition
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to a crystalline state, similar to the two-dimensional Wigner
electron crystal in a magnetic field, for sufficiently low value
of the filling factor v < 1/7. Here v = 2w1%np (wWhere ny is
the areal density of the fermionic system and / = /h/Mwy, is
the magnetic length) gives the fraction of the occupied LLL.
At filling factor v = 1/3 the system is instead well described
in terms of fractional quantum Hall-like states [17].

Density-functional theory (DFT), which is perhaps the most
widely used and successful technique in electronic structure
calculations of condensed matter systems, has only recently
entered the field of cold gases as a useful computational tool
that goes beyond the mean-field description by taking into
account correlation effects and thus is capable of yielding
quite accurate results in agreement with more microscopic
(but also much more computationally expensive) approaches.
The well-known Kohn-Sham (KS) mapping [22] of the
many-body problem into a noninteracting one make this
approach applicable in practice, often within the so-called
local-density approximation (LDA) [22]. Recently, KS DFT
was applied to cold atomic Fermi gases in optical lattices
[23] and to the study of a unitary trapped Bose gas [24].
Density-functional theory approaches have been used recently
to describe a Fermi dipolar system in various single-orbital ap-
proximations (Thomas-Fermi [9], Thomas-Fermi-Dirac [25],
Thomas-Fermi—von Weizsacker [26,27] approximations). In
Ref. [28] a parameter-dependent DFT LDA approach was used
to study a small number of harmonically trapped fermions.
A somewhat different density-functional formalism, whose
applicability is however limited to a small number of particles
and which is based on the self-consistent combination of the
weak- and the strong-coupling limits, has been proposed to
study the ground-state properties of strongly correlated dipolar
and ionic ultracold bosonic and fermionic gases [29].

Here we use the conventional KS approach, based on an
accurate description for the correlation energy of the dipolar
system as provided by diffusion Monte Carlo calculations
[13]. Our approach does not require any adjustable parameter
and thus belongs to the family of ab initio methods well
known in the electronic structure community. The Kohn-Sham
formulation [22] of density-functional theory [30] for an
inhomogeneous system of NV interacting particles with mass M
is based on the following energy functional of the density that
includes the exact kinetic energy of a fictitious noninteracting
system and the interaction energy functional Eppc:

hZ
Exslpl = =223 f $: OV g + Eyeclpl.  (2)

The {¢;(r),i = 1,N} are single-particle orbitals, forming an
orthonormal set (¢;|¢;) = §;; filled up to the Fermi level.
The total density of the system p(r) = ZlNzl |¢; ()2 Expe
is the sum of the direct plus exchange dipolar interaction
term (usually termed the Hartree-Fock energy Eyp) and the
correlation energy E¢. The Hartree-Fock energy of a dipolar
Fermi gas in two dimensions has two contributions. The first,
for the homogeneous system of the surface density p = N/A,
is

256
Eyp = o Nd*Jp'. 3)
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The second term is nonlocal in nature and is given by [25,26]

/ dk —ik-(r—r’ /
EQ = —ndzfdrp(r)/dr f Wke k=) 5 (1).
4)

This term vanishes in the uniform limit, while the negative
sign crucially lowers the total energy of the system in
inhomogeneous configurations. This term has been shown to
be essential to stabilize structures such as one-dimensional
stripe phases and the Wigner crystal that is expected at high
densities [9]. In the following we will treat E]({l}); and E¢ within
the LDA, i.e.,

2
Eg+ Ec = / [%dzﬁpmw + p(r)6c(p(r))]dr,

®)

where €c(p) is the correlation energy per particle of the homo-
geneous system of density p, as obtained from the (virtually
exact) diffusion Monte Carlo calculations of Ref. [13].

The total energy functional in the corotating frame with
constant angular velocity €2 (where the dipolar system appears
at rest) and in the presence of an isotropic harmonic trapping
potential of frequency w,, U(r) = %M wi(x* 4+ y?), is given
by

Elpl = Exslp] + / dr p®UE — LY. (6)

Here (L;) is the total angular momentum of the system.
Constrained minimization of the above functional leads to the
coupled KS eigenvalues equations

h2
[ - WVZ + VKS]¢i(I‘) = €;¢,(r), (7

where

0e 128 R
Vis(r) = ec(p(r) + p(r)a—pc + =5 d* Ve ) - QL.

dk
—2nd? / dr’ f (M)Zke*""(‘*”p(r’) ®)

and L, = —ih(xd/dy — yd/dx).

We seek stationary solutions {¢;(r),i = 1, N} by propagat-
ing in imaginary time the time-dependent version [22] of the
KS equations (7). Both the density and the orbitals ¢; have
been discretized in Cartesian coordinates using a spatial grid
fine enough to guarantee well converged values of the total
energy. The orthogonality between different orbitals has been
enforced by a Gram-Schmidt process. The spatial derivatives
entering Eq. (7) have been calculated with accurate 13-point
formulas, while fast Fourier techniques have been used to
efficiently calculate the nonlocal term entering the KS potential
Vks.

We take in our calculations d = 0.8 D, which is appropriate
to “°K 2*Na molecules in the experimental realization of
Ref. [3]. The mass is that of a 40K 23Na molecule. The range
of the potential is thus ry = Md?*/R* ~ 0.6 um ~ 0.2ay,
ag = «/h/2Mwy, being the oscillator length. In the ground
state of the nonrotating system, the adimensional interaction
strength characterizing the system is krpro ~ 0.9 (where
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FIG. 1. Calculated KS eigenvalues (in units of cw;,) for N = 100
fermions for different values of the rotational frequency 2.

kr = /AT pmax 1s the Fermi wave vector of the 2D system
at a density equal to the maximum density in the center
of the trap), i.e., a relatively weak value that can easily be
achieved in experiments. The interparticle distance (r) is
larger than the range of the interaction, being (r)/ro ~ 3.6.
The corresponding dipolar interaction energy E; = d?/(r)?
approaches 20% of the local Fermi energy hzk% /2M. In
spite of the relatively weak coupling, as a consequence of the
rotation, strong correlation effects will show up in the density
distribution of the calculated stationary states, as shown in the
following. We consider systems with up to N = 200 fermions.

We show in Fig. 1 the evolution of the calculated single-
particle KS eigenvalues ¢; for the case N = 100, as the
rotational frequency €2 approaches from below the harmonic
frequency wy,. At Q = 0.999w;, it appears that all the energy
levels collapse into a single level, the (highly degenerate) LLL.

It is instructive to follow how the density of the system
evolves as €2 is increased. This is shown in Fig. 2, where the
densities of selected configurations corresponding to different
values of 2 are displayed.

For low values of @ (2 =0 included) the calculated
stationary states have circular symmetry and the density has
the familiar, almost featureless shape of a trapped cold gas
cloud. As soon as 2 approaches w;, however, a ring of
equally spaced deep dimples develops close to the periphery
of the cloud, while the systems loses its axisymmetric shape.
Eventually, very close to wj, an array of tightly packed vortices
develops, similarly to the Abrikosov lattice of vortices in
rotating superfluids, while the system boundaries acquire a
surprising square shape.

The calculated current density in the state with
Q/wp, =0.999 in Fig. 2 appears indeed to be circulating
around the zero-density minima (black dots in the bottom
right panel of Fig. 2), as expected for a vortex array.
The total angular momentum (L.) shows also the typical
behavior associated with the nucleation of quantum vortices,
i.e., a sequence of rounded steps (with amplitudes ~Nh)
with increasing rotation frequency €2, as more vortices are
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FIG. 2. (Color online) Density of the dipolar system (N = 100)
at selected values of 2/wj,. From left to right and from top to bottom:
Q/w, = 0.96,0.98,0.99,0.999. The x-axis coordinates are in units of
a;, while the density is in units of a; 2.

nucleated in the system during the minimization process
leading to the stationary state shown in the bottom right
panel of Fig. 2. The average distance d, between vortices in
the structure shown in Fig. 2 is ~20% larger than the one
calculated (assuming a triangular vortex lattice of areal density
n,) using Feynman’s formula [31], n, = 2/+/3d> = MQ/nh.

Quantized vortices in Fermionic cold gases are usually
associated with pairing interactions, as in the BCS side of a
unitary Fermi gas [32], where they are considered the hallmark
of the superfluid character of the system. The presence
of vortices in a system with purely repulsive interactions,
like the one studied here, has been predicted to occur in
fermion systems with purely repulsive interaction such as
quantum dots, where the rotation is induced by an external
magnetic field (see, for instance, Ref. [33]). Indirect evidence
of vortices in ultrasmall fermion droplets (N = 6) with aligned
dipoles has been provided in Ref. [34]. However, due to the
implicit symmetry constraints in the calculations of Ref. [34]
multivortex structures like the one shown in Fig. 2 did not
show up in the calculated density profiles.

A striking feature of the N = 100 system in the LLL
is the lack of axial symmetry represented by the unusual
square-shaped boundaries [35]. This seems to be intimately
connected with the interactions between fermions: The system
shown in Fig. 2, under the same conditions but with no
interactions between fermions, exhibits density profiles with
circular symmetry all the way up to wj,. Deviations from
axisymmetric configurations in isotropic trapping have been
found in a fast rotating Bose-Einstein condensate (BEC) at
overcritical rotation [36], as a consequence of the interatomic
forces. Stable, nonaxisymmetric multilobed shapes also char-
acterize the fast rotation of classical liquid droplets [37]. The
symmetry-breaking instability observed in the present work
might also be related to the so-called Pomeranchuk instability
[38], i.e., a change in the topology of the Fermi surface like
the one accompanying, e.g., the first-order transition from the
isotropic to the nematic phase in a dipolar gas in an optical
lattice [39].
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FIG. 3. (Color online) Density of the dipolar system (N = 13) at
selected values of 2/w;, From left to right and from top to bottom:
Q/w, = 0.90,0.96,0.98,0.999. The x-axis coordinates are in units of
a;, while the density is in units of @, 2.

The configuration shown in the bottom right panel of Fig. 2
corresponds to a filling factor v ~ 0.77. By decreasing the
number of fermions in the trap we can reach lower values of v.
One example is shown in Fig. 3, where N = 13. Again, as the
centrifugal limit is approached, a stationary configuration with
an increasing number of vortices is found: Vortices enter the
fermion droplet from the low-density periphery (a mechanism
common to BECs [40] and helium-4 [41]). As Q2 ~ wj, (bottom
right panel in Fig. 3), however, a completely different pattern
shows up, resembling a cluster of localized particles (albeit
with a partially melted second shell). This configuration is
characterized by v ~ 0.18. We take this as a clear evidence of
the formation of a Wigner cluster structure for sufficiently low
values of the filling factor.

Higher values of v can be conversely achieved by increasing
the fermions number. In this case the vortex lattice disappears
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FIG. 4. (Color online) Density of the dipolar system at Q2/w;, =
0.999 for N = 160 (left)and N = 200 (right), corresponding to filling
factors v = 1.08 and 1.25, respectively. The units are the same as in
Fig. 3.

and the smoother structures shown in Fig. 4 develop. Here
v = 1.08 and 1.25, respectively (corresponding to N = 160
and 200 fermions). Note, however, that the peculiar square-
shaped boundaries remain even at higher values of the filling
factor.

Although small numbers of cold trapped atoms, like the
ones considered here, can nowadays be achieved in exper-
iments [42], we expect that the surprising phenomenology
revealed by our calculations should be present also in larger
systems of rotating dipolar fermionic molecules in quasi-2D
harmonic traps. Achieving rotation frequencies 2 ~ 0.999w;,
is a challenging task, but definitely within the reach of current
experiments [14]. Due to the relatively high contrast of the
vortex array shown in Fig. 2, its observation should be
possible by direct imaging of the atomic cloud after expansion
(the vortex lattice in quantum dots still awaits experimental
detection).

The author thanks S. Giorgini and N. Matveeva for having
shared their DMC numerical results and S. Giorgini, L.
Salasnich, F. Toigo, J. Boronat, and M. W. Cole for useful
discussions and comments.
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