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Recently, a new type of quantum key distribution, called the round-robin differential-phase-shift (RRDPS)
protocol [T. Sasaki et al., Nature (London) 509, 475 (2014)], was proposed, where the security can be guaranteed
without monitoring any statistics. In this Rapid Communication, we investigate source imperfections and side-
channel attacks on the source of this protocol. We show that only three assumptions are needed for the security,
and no detailed characterizations of the source or the side-channel attacks are needed. This high robustness is
another striking advantage of the RRDPS protocol over other protocols.
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Quantum key distribution (QKD) enables two distant
parties (Alice and Bob) to generate a key, which is secret
from any eavesdropper (Eve). Since the invention of the
first QKD protocol, the Bennett-Brassard 1984 protocol [1],
many QKD protocols have been proposed for both discrete
variable protocols [2–7] and continuous variable protocols
[8,9]. One of the most important tasks in the security proof
is to derive an upper bound on the information leakage to
Eve. Conventionally, it has been believed that the information
leakage can be estimated by monitoring some statistics by
Alice and Bob during the quantum communication part of the
QKD protocol [10–20]. Recently, a new type of protocol, the
round-robin differential-phase-shift (RRDPS) protocol [21],
was proposed and surprisingly, the information leakage of this
protocol is estimated without any monitoring, but it depends
only on the state prepared by Alice. This property leads to some
practical advantages, such as the better tolerance on the bit
error rate and the fast convergence in the finite key regime [21].
This protocol has attracted intensive attention from theoretical
works [22,23], and proof-of-principle experiments have been
demonstrated [23–26].

In practice, there are some issues to be addressed to
guarantee the security of the RRDPS protocol when it is
actually implemented. These issues arise because there is
a gap between the properties of the actual devices used in
QKD systems and the mathematical model that the security
proofs assume, which is also the case for all QKD protocols.
Therefore, to bridge this gap is crucial for the implementation
security, and many works have been devoted in this direction
[17,27–32]. In the case of the RRDPS protocol, all the security
analyses including the original proof [21] and the recent works
[22,23] have made ideal assumptions on Alice’s light source
(for instance, phase modulations are assumed to be perfect
and any side-channel attacks are excluded). Therefore, to
consider the security proof accommodating source flaws is
indispensable toward a practical and secure implementation of
the RRDPS protocol.

In this Rapid Communication, we extend the security proof
of [21] to accommodate the source flaws. Surprisingly, we
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found that the security can be guaranteed based only on
the three assumptions on Alice’s source. These assumptions
are on the probability of emitting the vacuum state, on the
probability that L light pulses contain more than a particular
number of photons, and on the independence among the
sending states. Importantly, no assumptions on the phase
modulation or detailed specifications of imperfections and
side-channel attacks on the source are needed. Even with these
imperfections and side channels, we show that the RRDPS
protocol can distribute the key over longer distances. These
results show that the RRDPS protocol is highly robust against
the source flaws, which is another striking advantage of this
protocol over other protocols.

Before explaining the security of the RRDPS protocol with
the flawed sources, we summarize the assumptions we made
on the devices. First, as for Alice’s side, she employs blocks of
L light pulses, and applies phase modulation θ (k)

ak
(1 � k � L)

to each of the pulses depending on a randomly chosen bit
ak ∈ {0,1}. The assumptions on Alice’s sending states are
summarized as follows.

A1. For every light pulse, the probability of the vacuum
emission for the bit value 0(1) is upper and lower bounded
by pU,0(1)(0) and pL,0(1)(0), respectively (see Sec. I in the
Supplemental Material for the discussions on the estimation
of these bounds for some experimental setups [33]).

A2. The L pulses contain in total at most νth photons except
with the probability esrc.

A3. There is no quantum and classical correlation among
the sending states, and the system that purifies each of the
sending states is possessed by Alice.

We emphasize that we do not make any assumptions on
phase modulations. Obviously, in order to generate a secret
key, θ (k)

0 and θ
(k)
1 need to be controlled such that the resulting bit

error rate is low enough. However, for the security proof, this
precise control over the phase modulation is not needed: our
security proof holds not only when the actual value of phase
modulations {θ (k)

0 ,θ
(k)
1 } do not coincide with {0,π}, but also

when Alice has no knowledge about θ
(k)
0 and θ

(k)
1 . Assumption

A2 requires that Pr[
∑L

k=1 nk > νth] � esrc must be satisfied,
where nk denotes the number of photons included in the kth

pulse, which would be obtained if we measured it, and the
left-hand side represents the probability that the total photon
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number existing in the L pulses exceeds νth. We also emphasize
that we do not make the single-mode assumption on the pulse,
and the mode can depend on the bit value. This includes,
for instance, the following cases: (1) the polarization of the
pulse depends on the chosen bit value and (2) Eve performs
a Trojan-horse attack (THA) [34], where she injects a strong
light pulse into Alice’s source to obtain some information on
the source from the back-reflected pulse.

From the assumption of the independence among the
sending states described in A3, the kth sending state is
expressed as a partial trace over the system An of the following
state

|�ak,k〉An,B =
∑
w

√
c

(k)
w,ak

Û (k)
ak

∣∣w(k)
ak

〉
An

∣∣ϕ(k)
w,ak

〉
B,

where c(k)
w,ak

are non-negative real numbers satisfying∑
w c(k)

w,ak
= 1, Û (k)

ak
is an arbitrary unitary operator on the

system An, {|w(k)
ak

〉An}w are orthonormal bases of the ancilla
system, and {|ϕ(k)

w,ak
〉B}w are orthonormal bases to diagonalize

the density operator of the sending state

ρ̂(k)
ak

:= trAn

∣∣�ak,k

〉〈
�ak,k

∣∣
An,B

. (1)

Note that the system An that purifies each of the sending
states is possessed by Alice. Then, for each trial, Alice sends
⊗L

k=1ρ̂
(k)
ak

to Bob over the quantum channel. Note that in the
original protocol [21], Alice sends ⊗L

k=1e
iπakn̂k |�〉 in each

trial, where n̂k is the number operator for the kth pulse, and
|�〉 is the L-pulse state (contains at most νth photons) before
performing a perfect phase modulation (eiπakn̂k ).

As for the assumptions on Bob’s side, they are the same as
those made in the original security proof [21], that is, Bob uses
detectors that can discriminate among the vacuum, a single
photon, and multi photons, and Bob has a random number
generator (RNG). Using devices with these assumptions, we
describe Bob’s actual procedures in what follows. Note that
Bob’s actual procedures are the same as those in the original
protocol [21]. Bob first splits L incoming pulses into two
trains of pulses, and shifts backwards only one train by r

that is chosen randomly from {1, . . . ,L − 1}. Then Bob lets
each of the first L − r pulses in the shifted train interfere
with each of the last L − r pulses in the other train with
a 50:50 beam splitter, and performs a photon measurement
with the two detectors. Each of these detectors corresponds
to the bit value of 0 and 1, respectively. Bob takes note of
the bit value when he observes a single photon in the original
L pulses in total, otherwise he discards the data. Also, he
records in which time slot he obtained the single photon, and
he announces this time slot and r over the classical channel.
From this information, Alice obtains a sifted key akd ⊕ akd+r ,
where kd denotes the time slot of the single-photon detection.
Bob repeats this process for many blocks containing L pulses.

Under the assumptions listed above, we prove the security
of the RRDPS protocol with the source flaws. We note that,
for simplicity of the analysis, we consider that the number
of blocks containing L pulses sent is asymptotically large.
In the proof, we construct a virtual protocol that cannot be
distinguished from the actual protocol from Eve’s viewpoint.
In this virtual protocol, Alice first prepares her virtual qubit

virA, ancilla qubits, and system B in the following state:

|�〉virA,An,B = 2−L/2
L⊗

k=1

∑
ak=0,1

|ak〉virA

∣∣�ak,k

〉
An,B

, (2)

and sends only system B to Bob over the quantum channel.
Here, this state is in the tensor product due to the assumption
A3, and we define {|0〉,|1〉} as the Z basis state.

Next, we explain Bob’s measurement procedures for the
virtual protocol. As explained above, in the actual protocol,
Bob performs an interference measurement on i th(1 � i �
L) and j th(1 � j � L) pulses, where a difference of i and
j is randomly chosen by Bob’s RNG (i.e., |i − j | = r). In
the virtual protocol, however, Bob does not perform such an
interference measurement, but performs the measurement to
determine which pulse contains a single photon among the
incoming L pulses. In this virtual measurement, the index i is
determined by the location of the single photon (1 � i � L),
and the other index j is determined as

j = i + (−1)br(mod L), (3)

where r is randomly chosen from the RNG, and b is randomly
chosen from 0 or 1 by Bob. After obtaining the pair {i,j},
he announces {i,j} to Alice over the classical channel. Note
that Eve has perfect control over i because she can freely
choose which pulse contains a single photon, but she cannot
control j at all because j contains the randomness Bob locally
chooses. The reason why Bob can choose j as Eq. (3) is
that the probability distributions of obtaining i and j if Bob
postselects the successful detection event (i.e., only a single
photon is detected from the L pulses) are exactly the same for
both actual and virtual protocols for any eavesdropping [21].
This means that the classical information available to Eve is the
same between the two protocols. Therefore, combined with the
equivalence between the virtual and actual protocols in Alice’s
side, we are allowed to discuss the security based on the virtual
protocol. In the virtual protocol, Alice keeps all the L virtual
qubits and the ancilla qubits when Bob obtains the successful
detection.

The quantity we use to measure the leaked information
is the so-called phase error rate [35], which is related to the
smooth max-entropy [17,36]. With the phase error rate eph, the
key rate per transmission of one pulse is expressed as [37]

R = Q[1 − fECh(eb) − h(eph)]/L, (4)

where Q denotes the single-photon detection probability in
Bob’s measurement, fEC is an error correction efficiency,
and eb denotes the bit error rate in the protocol and
h(x) = −x log2 x − (1 − x) log2(1 − x) as the binary entropy
function. Here, h(eph) represents the fraction of bits to be
shortened in the privacy amplification step. Once the sifted
bits are shortened according to this fraction, the phase error
information that Eve used to have becomes totally useless for
her guessing the generated key.

Our goal below is to estimate the upper bound on the phase
error rate. For the estimation, we need to define the phase error
rate, but before we give its definition, it is convenient to rewrite
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Eq. (2) as

|�〉virA,An,B = 2−L

L⊗
k=1

[√
2 + dk|+〉virA|�+

k 〉An,B

+
√

2 − dk|−〉virA|�−
k 〉An,B

]
,

where we define |±〉 = (|0〉 ± |1〉)/√2 as the X basis state,

dk =
∑
w,w′

√
c

(k)
w,0c

(k)
w′,1

(〈
w

′(k)
1

∣∣Û (k)†
1 Û

(k)
0

∣∣w(k)
0

〉
An

× 〈
ϕ

(k)
w′,1

∣∣ϕ(k)
w,0

〉
B + c.c.

)
,

and ∣∣�±
k

〉
An,B

= (|�0,k〉An,B ± |�1,k〉An,B)/
√

2 ± dk.

Here, c.c. stands for complex conjugate. The key parameter
in the security proof is the vacuum emission probability of
|�±

k 〉An,B, which is defined by p
(k)
± (0) and given by (see Sec. II

in the Supplemental Material for details)

p
(k)
± (0) =

(√
p

(k)
0 (0) ±

√
p

(k)
1 (0)

)2

2 ± dk

. (5)

Here p
(k)
0 (0) and p

(k)
1 (0) denote the vacuum emission proba-

bilities of |�0,k〉An,B and |�1,k〉An,B, respectively. In the virtual
protocol, Alice’s task is to guess the outcome of the X basis
measurement on the j th virtual qubit. The position of the j th

virtual qubit is randomly chosen from the L − 1 virtual qubits
according to Eq. (3). Then, the phase error rate is defined as a
fraction that Alice obtains the measurement outcome − in her
X basis measurement on her j th virtual qubit that is randomly
chosen from the L − 1 virtual qubits. In the phase error rate
estimation, we consider the worst case scenario that if the total
photon number contained in the L pulses exceeds νth, Bob
surely detects such an event as a successful detection, and
Alice obtains the measurement outcome − on her j th virtual
qubit. By combining this worst case scenario and thanks to the
randomness of j from Eq. (3), the phase error rate is given
by

eph = esrc/Q + (1 − esrc/Q)n−/(L − 1), (6)

where n− denotes the number of virtual qubits resulted in the
measurement outcome of − among the L − 1 virtual qubits.

In the following, we explain how to estimate the upper
bound on n−. Here, we use the fact that the statistics of
the X basis measurement on system virA is not affected by
any operations conducted on system B. Therefore, in order to
estimate the upper bound on n−, we are allowed to perform
the photon number measurement (PNM) on all the L − 1
sending pulses in system B in Eq. (2). This PNM is an off-line
measurement, and is not performed in either of the actual and
virtual protocols. Let us denote by nu and M(u)

X ∈ {+,−} the
outcome of the PNM of the uth (1 � u � L − 1) sending pulse
and the X basis measurement outcome performed on Alice’s
uth virtual qubit, respectively. From these measurement results
n1, . . . ,nL−1, we estimate the upper bound on n−. For later
convenience, we decompose n− into

n− = n−
nonvac + n−

vac, (7)

where n−
nonvac (n−

vac) denotes the number of u that satisfies
nu > 0 (nu = 0) and M(u)

X = −.
Now, we calculate the upper bound on Eq. (7). First, we

consider upper bounding n−
nonvac. In so doing, we consider

two worst case scenarios. The first worst case scenario is
that if the uth sending state includes more than zero photon
(i.e., nu > 0), we regard M(u)

X as −. The second one is that
νth photons are distributed over the L − 1 pulses such that
the number of pulses that contain no photon is minimized.
With these two worst case scenarios, n−

nonvac is upper bounded
by

n−
nonvac � nnonvac � νth, (8)

where nnonvac denotes the number of u that satisfies nu > 0
among the L − 1 pulses. In Eq. (8), the first and the second
inequalities are due to the first and the second worst case
scenarios, respectively.

Next, we show the upper bound on n−
vac, which is given by

(see Sec. III in the Supplemental Material for details)

n−
vac = 0[
if p

(k)
0 (0) = p

(k)
1 (0) holds for all k(1 � k � L)

]
, (9)

n−
vac � L − 1 − νth

2
max

{
(
√

pU,0(0) − √
pL,1(0))2

pU,0(0) + pL,1(0)
,

× (
√

pL,0(0) − √
pU,1(0))2

pL,0(0) + pU,1(0)

}
+ maxNvacd{Nvacdt}

=: n−
vac,U[
if p

(k)
0 (0) �= p

(k)
1 (0) for some or every k

]
, (10)

where 1 � Nvacd � L − 1 − νth and 0 < t . Note that Nvacd

and t are related to a failure probability ε (see Eq. (17) in the
Supplemental Material) of the Chernoff bound [38]. Below,
we explain the above results in more detail.

(i) The first case is that p(k)
0 (0) = p

(k)
1 (0) is satisfied for all k

(1 � k � L). From Eq. (5), we obtain p
(k)
− (0) = 0, and hence

n−
vac = 0. This means that if nu = 0, M(u)

X is + and never −.
By combining the results in Eqs. (8) and (9), the phase error
rate is upper bounded by

eph � min

{
esrc

Q
+

(
1 − esrc

Q

)
νth

L − 1
,0.5

}
. (11)

Note that this upper bound is exactly the same as the one in
the original security proof [21].

(ii) The second case is that p
(k)
0 (0) �= p

(k)
1 (0) occurs for

some or every k. First, we give an example of how this situation
arises. Suppose that Eve performs a THA where she injects a
strong pulse into Alice’s source to obtain some information on
the source from the back-reflected light. To prevent this THA,
Alice needs to suppress the intensity of the back-reflected
light, which can be accomplished by installing some optical
filters or optical isolators [31]. However, one cannot perfectly
suppress the intensity, and moreover, optical components,
such as phase modulators, may have polarization dependence
[39], which leads to the situation of p

(k)
0 (0) �= p

(k)
1 (0). This

means that even if nu = 0, we cannot conclude M(u)
X = +.
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Therefore, n−
vac results in a nonzero value, and eph is increased

compared with the one in case (i). In case (ii), by combining
Eqs. (8) and (10), the phase error rate can be obtained
as

eph � min

{
perr

Q
+

(
1 − perr

Q

)
νth + n−

vac,U

L − 1
,0.5

}
. (12)

Here, we define perr := esrc + ε − esrcε.
We emphasize that the phase error rates given in Eqs. (11)

and (12) are derived only from the three assumptions: A1, A2,
and A3. This property is one of the striking features of the
RRDPS protocol because other protocols usually need more
detailed specifications of imperfections [28,30] and Eve’s
side-channel attacks on the source [31]. In particular, the
practical QKD systems are threatened by the THA [40], and
the recent work quantitatively shows that the key generation
rate of the BB84 protocol is compromised by this attack
[31]. More specifically, [31] shows that when the mean
photon number of the back-reflected light is μout = 10−2, the
achievable distance of the secure key generation is decreased
down to only 10 km, while it is about 150 km without the
THA. The reason for this drastic degradation is that the phase
error rate is exponentially increasing with the distance [37].
In the RRDPS protocol, however, even if Eve performs the
THA with μout = 10−2, the increase of νth is only about
Lμout. Therefore, the increase of eph (e.g., L = 100) is about
Lμout/(L − 1) ∼ 1% regardless of the distance, implying that
only a small amount of the additional privacy amplification is
needed. This shows the robustness that the RRDPS has against
the side-channel attacks on the source.

Based on the above security proof, we show the key gener-
ation rate simulation results for cases (i) and (ii). In the simu-
lation, we assume that Alice uses a weak coherent light source
with the mean photon number μ0(1) when she chooses the bit
0(1) [41]. We set the channel transmittance as ηch = 10−0.2l/10.
In the detection side, we assume the detection efficiency and
the dark count probability as ηd = 0.15 and pd = 5 × 10−7,
respectively. With these parameters, the successful detection
probability that Bob detects the single photon and the bit error
rate are assumed to be given by Q = (Lμ0ηsy)e−Lμ0ηsy/2 +
Lpd and ebit = (Lμ0ηsye

−Lμ0ηsyesym/2 + Lpd/2)/Q, respec-
tively. Here, ηsy := ηchηd, and esym is an overall misalignment
error of the optical system, and we assume that esym is 5%.
Also, we set fEC as 1.16.

First, we show the simulation result for case (i). In this
case, the mean photon numbers for both bits are the same
μ0 = μ1 =: μ. Under the above conditions, we plot the key
rate R with L = 128 by the solid line in Fig. 1, where R is
optimized over the choice of μ and νth through the relation
esrc = 1 − ∑νth

n=0 e−Lμ(Lμ)n/n!.
Next, we show the simulation result for case (ii). We

assume that μ1 lies in the range R1 := [0.99μ0,1.01μ0]. In
this case, the upper and the lower bounds on p

(k)
0(1)(0) are given

0 20 40 60 80 100 12010 8

10 7
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10 4

0.001

distance km
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ey
ra
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FIG. 1. Secret key rate R per pulse versus distances l. The
solid line is for case (i): p

(k)
0 (0) = p

(k)
1 (0) is satisfied for all k, and

the dashed line is for case (ii): p
(k)
0 (0) �= p

(k)
1 (0) occurs for some or

every k.

by pU,0(0) = e−μ0 [pU,1(0) = e−0.99μ0 ] and pL,0(0) = e−μ0

[pL,1(0) = e−1.01μ0 ], respectively. Under these conditions, we
plot the key rate R with L = 128 by the dashed line in Fig. 1,
where R is optimized over the choice of μ0, νth, and ε through
the relation esrc = 1 − minγ∈R1{

∑νth
n=0 e−Lγ (Lγ )n/n!}. This

dashed line shows that even if p
(k)
0 (0) �= p

(k)
1 (0) occurs for

some or every k, the degradation of the key generation rate is
not so compromised. This result also shows the robustness of
the RRDPS protocol against source flaws.

To conclude, we have shown the security of the RRDPS
protocol with imperfect light sources and side-channel attacks
on Alice’s source. In our security analysis, the characteri-
zation of Alice’s source is simple in the sense that if Alice
monitors only νth, the vacuum emission probability and the
independence among the sending states, the amount of privacy
amplification needed can be obtained. This means that the
security of the RRDPS protocol can be guaranteed without
detailed specifications of the source imperfections and side-
channel attacks on the source. Moreover, we found that if the
probabilities of emitting the vacuum state are the same for
both bits, the phase error rate is exactly the same as the one
in the original paper [21]. Even if these probabilities differ,
the performance of the key generation rate is not significantly
compromised. These results show that the RRDPS protocol is
highly robust against imperfections and side-channel attacks
on the source, which is another practical advantage that this
protocol has over other protocols.
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